Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

Σχετικά έγγραφα
Structural Expression of Exo-Anomeric Effect

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Electronic Supplementary Information

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Electronic Supplementary Information

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Electronic Supplementary Information (ESI) for

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Supporting Information for

Supporting Information

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Supporting Information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Supporting Information

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Supporting Information

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Supporting Information for:

Supporting Information

Accessory Publication

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

SUPPORTING INFORMATION

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Supporting Information

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Synthesis, characterization and luminescence studies of

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Electronic Supplementary Information for

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Electronic Supplementary Information (ESI)

Supporting Information

Chemical Communications. Electronic Supporting Information

A turn-off emission based chemosensor for HSO formation of a hydrogen-bonded complex

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Supplementary Figures

Supporting Information

Supporting Information

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Electronic Supplementary Information

Disulfide-based metal free sulfanylation of ketones

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Fused Bis-Benzothiadiazoles as Electron Acceptors

Table of Contents 1 Supplementary Data MCD

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information

Amplification of a metallacyclic receptor out of a dynamic combinatorial library. - Supporting Information -

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Commiphoratones A and B, Two Sesquiterpene Dimers from Resina Commiphora

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Butadiene as a Ligand in Open Sandwich Compounds

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Divergent synthesis of various iminocyclitols from D-ribose

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information for Substituent Effects on the Properties of Borafluorenes

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Electronic Supplementary Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Electronic Supplementary Information (ESI)

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

difluoroboranyls derived from amides carrying donor group Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Electronic supplementary information for

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting Information

Supporting Information. Experimental section

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information for Bis(perylene diimide) with DACH bridge as nonfullerene electron acceptor for organic solar cells Guangpeng Gao, ab Xiaolong Zhang, cde Dong Meng, ab Andong Zhang, ab Yanxia Liu, e Wei Jiang,* a Yanming Sun* cd and Zhaohui Wang a a. Beijing ational Laboratory for Molecular Science, Key Laboratory of rganic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China b. University of Chinese Academy of Sciences, Beijing 100049, P. R. China c. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China d. Heeger Beijing Research and Development Center, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China e. College of Physics, Liaoning University, o. 66 Chongshan Zhong Road, Huanggu District, Shenyang, P. R. China E-mail:jiangwei@iccas.ac.cn -S1 -

Theoretical calculations Figure S1. Chemical structures of PTB7-Th (a) and DACH-PPDIs (b). ptimized geometries of DACH-PPDI by DFT at the ωb97xd/6-31g(d) level (c, d) and APFD/6-31G(d) level (e, f). 1 ptical, electrochemical and thermal Properties of DACH-PPDIs 140000 (a) 120000 100000 ε (M -1 cm -1 ) 80000 60000 2a 2b 2c 3a 3b 3c (b) 1.4 ε (M -1 cm -1 ) 1.2 1.0 0.8 0.6 2a (in solution) 2a (in film) PTB7-Th PTB7-Th:2a 40000 0.4 20000 0.2 0 200 300 400 500 600 700 Wavelength (nm) 0.0 200 300 400 500 600 700 800 900 Wavelength (nm) -S2 -

(c) 1.4 1.2 2b(in solution) 2b(in film) PTB7-Th PTB7-Th:2b (d) 1.4 1.2 2c(in solution) 2c(in film) PTB7-Th PTB7-Th:2c 1.0 1.0 ε (M -1 cm -1 ) 0.8 0.6 ε (M -1 cm -1 ) 0.8 0.6 0.4 0.4 0.2 0.2 0.0 200 300 400 500 600 700 800 900 Wavelength (nm) 0.0 200 300 400 500 600 700 800 900 Wavelength (nm) 1.6 (e) 1.4 ε(m -1 cm -1 ) 1.2 1.0 0.8 0.6 3a(in solution) 3a(in film) PTB7-Th PTB7-Th:3a (f) 2.0 ε(m -1 cm -1 ) 1.5 1.0 3b(in solution) 3b(in film) PTB7-Th PTB7-Th:3b 0.4 0.5 0.2 0.0 200 400 600 800 Wavelength (nm) 0.0 200 400 600 800 Wavelength (nm) (g) 1.4 1.2 1.0 3c(in solution) 3c(in film) PTB7-Th PTB7-Th:3c ε(m -1 cm -1 ) 0.8 0.6 0.4 0.2 0.0 200 400 600 800 Wavelength (nm) Figure S2. a) UV-Vis absorption spectra of 2 and 3 in chloroform solution (10 5 M). ormalized UV-Vis absorption spectra of b) 2a in solution, 2a and PTB7-Th in film on quartz substrate, PTB7-Th:2a blend film. c) 2b in solution, 2b and PTB7-Th in film on quartz substrate, PTB7- Th:2b blend film. d) 2c in solution, 2c and PTB7-Th in film on quartz substrate, PTB7-Th:2c blend film. e) 3a in solution, 3a and PTB7-Th in film on quartz substrate, PTB7-Th:3a blend film. f) 3b in solution, 3b and PTB7-Th in film on quartz substrate, PTB7-Th:3b blend film. g) 3c in solution, 3c and PTB7-Th in film on quartz substrate, PTB7-Th:3c blend film. -S3 -

(a) Current ( A) 2a 2b 2c 3a 3b 3c (b) Current ( A) 2a 2b 2c 3a 3b 3c -1.0-0.5 0.0 0.5 1.0 Potential (V) -1.0-0.5 0.0 0.5 1.0 Potential (V) Figure S3. CVs of DACH-PPDIs in solution (a) and film (b). CVs were calibrated by the Fc/Fc + as the redox couple and oxidation were from the reference compound ferrocene. Figure S4 a) Energy levels of IT, Zn, DACH-PPDIs, PTB7-Th, Mo 3, and Al. b) The device architecture of non-fullerene SCs. 100 Weight (%) 90 80 70 2a 2b 2c 3a 3b 3c 60 100 200 300 400 500 Temperature ( ) Figure S5. TGAs of DACH-PPDIs under nitrogen flow. -S4 -

θ CD (mdeg) 40 30 20 10 0-10 2a 2b 2c θ CD (mdeg) 40 20 0 3a 3b 3c -20-20 -30-40 400 500 600 Wavelength (nm) -40 400 450 500 550 600 Wavelength (nm) Figure S6. CD spectra of DACH-PPDIs in chloroform solution (10 5 M) Photovoltaic performances Figure S7. Tapping mode AFM height images (top) and phase images (bottom) of the active layers based on PTB7-Th:DACH-PPDIs, all images are 3 μm 3 μm 0 (a) Currrent Density (ma/cm 2 ) -2-4 -6-8 -10-12 1:1 1:1.5 1:2 1:2.5 PTB7-Th:2a -0.4-0.2 0.0 0.2 0.4 0.6 0.8 Voltage(V) (b) Currrent Density (ma/cm 2 ) 0-2 -4-6 -8 1:1 1:1.5 1:2 1:2.5-10 PTB7-Th:2b -12-0.4-0.2 0.0 0.2 0.4 0.6 0.8 Voltage (V) 0 (c) Currrent Density(mA/cm 2 ) -2-4 -6-8 -10-12 -14 1:1 1:1.5 1:2 1:2.5 PTB7-Th:2c -0.4-0.2 0.0 0.2 0.4 0.6 0.8 Voltage (V) 0 (d) Currrent Density (ma/cm 2 ) -2-4 -6-8 -10-12 1:1 1:1.5 1:2 1:2.5 PTB7-Th:3a -0.4-0.2 0.0 0.2 0.4 0.6 0.8 Voltage (V) -S5 -

(e) Currrent Density (ma/cm 2 ) 0-2 -4-6 -8-10 -12-14 1:1 1:1.5 1:2 1:2.5 PTB7-Th:3b -0.4-0.2 0.0 0.2 0.4 0.6 0.8 Voltage (V) (g) Currrent Density(mA/cm 2 ) 0-2 -4-6 -8-10 -12 1:1 1:1.5 1:2 1:2.5 PTB7-Th:3c -0.4-0.2 0.0 0.2 0.4 0.6 0.8 Voltage (V) Figure S8. J-V curves of non-fullerene SCs based on PTB7-Th with 2 and 3 by different ratio Currrent Density (ma/cm 2 ) 0-2 -4-6 -8-10 -12-14 PTB7-Th:2c PTB7-Th:3a PTB7-Th:3b PTB7-Th:3c -0.4-0.2 0.0 0.2 0.4 0.6 0.8 Voltage (V) Figure S9. J-V curves of non-fullerene SCs based on PTB7-Th with 2c and 3a-3c, respectively. (1:2 ratio, w:w) (a) 10000 Current Density (ma/cm^2) 1000 PTB7-Th:2a PTB7-Th:2b PTB7-Th:2c electron mobility 0.1 1 Voltage (V) (b) Current Density (ma/cm^2) 1000 100 10 PTB7-Th:2a PTB7-Th:2b PTB7-Th:2c hole mobility 0.1 1 Voltage (V) (c) 10000 Current Density (ma/cm^2) 1000 PTB7-Th:3a PTB7-Th:3b PTB7-Th:3c electron mobility (d) Current Density (ma/cm^2) 1000 100 10 PTB7-Th:3a PTB7-Th:3b PTB7-Th:3c hole mobility 100 0.1 1 Voltage (V) 0.1 1 Voltage (V) Figure 10. Measured space-charge-limited J V characteristics of PTB7-Th:DACH-PPDIs blend films under dark conditions for electron-only devices and hole-only devices -S6 -

Table S1. Photophysical, electrochemical and thermal properties of DACH-PPDIs λ max sol. ε λ max film E g E onset re E LUM E HM T deg [nm] a [M -1 cm -1 ] a [nm] b [ev] c [V] d [ev] e [ev] f [ºC] g 2a 526 132703 494 2.28-0.92-3.88-6.16 397 2b 526 137768 496 2.28-0.92-3.88-6.16 398 2c 526 140160 494 2.28-0.92-3.88-6.16 392 3a 526 135399 494 2.27-0.92-3.88-6.15 401 3b 526 138677 494 2.27-0.92-3.88-6.15 403 3c 526 128232 492 2.27-0.92-3.88-6.15 401 a Measured in dilute CHCl 3 solution (1.0 10-5 M). b Measured in spin-coating film from CHCl 3 solution. c Calculated by the onset of absorption in CHCl 3 solution according to E g (ev) = (1240/λ onset ). d In CH 2 Cl 2 solution vs. Fc/Fc +. e LUM (ev) estimated by the onset of the reduction peaks and calculated according to E LUM = -(4.8 + E re onset ) ev. f HM (ev) calculated according to E HM = (E LUM - E g ) ev. g Decomposition temperature determined by TGA corresponding to 5% weight loss at 10 ºC/min under nitrogen flow. Table S2. The performances of PTB7-Th:2c blend based devices (1:2, w/w) under different annealing temperature Annealing temperature ratio (ºC) V oc J sc FF PCE (V) (ma cm -2 ) (%) (%) a 1:2 -- 0.79 ± 0.007 7.19 ± 0.19 51.80 ± 1.67 2.95 ± 0.05 (3.00) 1:2 70 0.80 ± 0.006 10.63 ± 0.39 51.40 ± 1.56 4.34 ± 0.20 (4.68) 1:2 90 0.77 ± 0.014 9.81 ± 0.46 45.15 ± 0.94 3.40 ± 0.10 (3.48) a Tested under the illumination of AM 1.5 G 100 mw/cm 2. The values in parentheses refer to the max PCEs obtained from over five devices. Table S3. The detailed photovoltaic values of the non-fullerene devices with an inverted structure based on PTB7-Th:DACH-PPDIs 2 and 3 by different ratios (w/w), under the annealing temperature of 70 ºC ratio V oc (V) J sc (ma cm -2 ) FF (%) PCE (%) a 1:1 0.76 ± 0.017 9.73 ± 0.24 41.12 ± 1.47 3.05 ± 0.11 (3.25) PTB7-Th/2a 1:1.5 0.78 ± 0.014 9.63 ± 0.36 49.48 ± 1.65 3.70 ± 0.10 (3.81) 1:2 0.77 ± 0.006 10.52 ± 0.37 50.40 ± 1.63 4.09 ± 0.15 (4.36) -S7 -

1:2.5 0.77 ± 0.007 8.54 ± 0.43 44.28 ± 1.42 2.92 ± 0.11 (3.05) ratio V oc (V) J sc (ma cm -2 ) FF (%) PCE (%) 1:1 0.78 ± 0.008 9.54 ± 0.34 49.20 ± 2.00 3.66 ± 0.14 (3.91) PTB7-Th/2b 1:1.5 1:2 0.78 ± 0.012 0.79 ± 0.003 9.64 ± 0.49 50.20 ± 1.25 3.79 ± 0.19 (4.01) 10.47 ± 0.34 51.47 ± 0.56 4.25 ± 0.11 (4.42) 1:2.5 0.79 ± 0.008 8.30 ± 0.19 45.85 ± 1.26 3.00 ± 0.13 (3.24) ratio V oc (V) J sc (ma cm -2 ) FF (%) PCE (%) 1:1 0.77 ± 0.012 10.92 ± 0.43 42.20 ± 1.30 3.54 ± 0.21 (3.81) PTB7-Th/2c 1:1.5 1:2 0.79 ± 0.005 0.80 ± 0.006 9.60 ± 0.51 52.00 ± 1.07 3.95 ± 0.19 (4.29) 10.63 ± 0.39 51.40 ± 1.56 4.34 ± 0.20 (4.68) 1:2.5 0.77 ± 0.009 7.74 ± 0.30 35.26 ± 1.56 2.10 ± 0.16 (2.38) ratio V oc (V) J sc (ma cm -2 ) FF (%) PCE (%) 1:1 0.67 ± 0.052 3.18 ± 0.38 41.60 ± 0.92 0.89 ± 0.17 (1.09) PTB7-Th/3a 1:1.5 0.79 ± 0.002 7.27 ± 0.61 47.48 ± 1.92 2.73 ± 0.20 (2.95) 1:2 0.79 ± 0.010 9.56 ± 0.33 50.03 ± 1.12 3.78 ± 0.05 (3.87) 1:2.5 0.79 ± 0.004 7.82 ± 0.25 45.04 ± 1.49 2.79 ± 0.05 (2.84) -S8 -

ratio V oc (V) J sc (ma cm -2 ) FF (%) PCE (%) 1:1 0.79 ± 0.005 5.04 ± 0.48 45.06 ± 1.59 1.79 ± 0.12 (1.92) PTB7-Th/3b 1:1.5 0.80 ± 0.008 6.53 ± 0.68 46.20 ± 1.70 2.40 ± 0.23 (2.69) 1:2 0.80 ± 0.006 9.51 ± 0.15 49.78 ± 1.15 3.80 ± 0.06 (3.85) 1:2.5 0.80 ± 0.007 7.37 ± 0.45 51.44 ± 1.62 3.03 ± 0.09 (3.17) ratio V oc (V) J sc (ma cm -2 ) FF (%) PCE (%) 1:1 0.78 ± 0.009 5.35 ± 0.22 43.48 ± 1.78 1.81 ± 0.16 (1.97) PTB7-Th/3c 1:1.5 0.79 ± 0.008 7.46 ± 0.31 44.06 ± 1.31 2.59 ± 0.06 (2.66) 1:2 0.81 ± 0.007 9.55 ± 0.23 50.55 ± 1.47 3.90 ± 0.06 (3.97) 1:2.5 0.79 ± 0.006 6.91 ± 0.55 34.55 ± 0.97 1.87 ± 0.16 (2.07) a Tested under the illumination of AM 1.5 G 100 mw/cm 2. The values in parentheses refer to the max PCEs obtained from over five devices. References: 1. (a) J. -D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys.,2008, 10, 6615 6620; (b) A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, and K. Throssell, J. Chem. Theory Comput., 2012, 8, 4989 5007; (c) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654-3665; (d) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. akatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. akajima, Y. Honda,. Kitao, H. akai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. gliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.. Kudin, V.. Staroverov, T. Keith, R. Kobayashi, J. ormand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. chterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,. Farkas, J. B. Foresman, J. V. rtiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. -S9 -

1 H MR spectrum of 2a in CDCl 3 (400 MHz, 25 ºC). GGP-20141010-6fR 8.6800 8.6602 8.5670 8.5232 8.5015 8.4778 8.4326 8.4123 8.3992 8.3790 6.4195 6.4074 6.3954 5.1539 5.1398 5.1315 5.1170 5.1027 5.0945 5.0797 2.7697 2.7476 2.1930 2.1695 2.1628 2.0644 2.0340 2.0065 1.9818 1.8343 1.8190 1.7873 1.7709 1.7394 1.2528 1.2436 1.2273 0.8069 0.7905 9 8 7 6 5 4 3 2 1 ppm 2.09 10.00 3.98 1.96 2.00 1.95 3.98 4.08 6.08 26.72 12.29 1 H MR spectrum of 2b in CDCl 3 (400 MHz, 25 ºC). -S10 -

GGP-20141016-6fS 8.6856 8.6656 8.5762 8.5352 8.5157 8.5080 8.4875 8.4453 8.4250 8.4131 8.3928 6.4218 6.4113 6.3975 5.1602 5.1450 5.1370 5.1222 5.1077 5.0995 5.0853 2.7713 2.7474 2.2206 2.1979 2.1737 2.1652 2.0645 2.0339 2.0015 1.9807 1.8360 1.8218 1.8024 1.7885 1.7689 1.7400 1.2634 1.2454 1.2297 0.8087 9 8 7 6 5 4 3 2 1 ppm 2.08 10.08 3.91 1.95 2.00 1.95 3.91 3.97 6.01 25.29 12.38 1 H MR spectrum of 2c in CDCl 3 (400 MHz, 25 ºC). GGP-20140903-6f 8.6890 8.6690 8.5887 8.5453 8.5249 8.5196 8.4988 8.4593 8.4389 8.4285 8.4083 6.4221 6.4075 6.3978 5.1644 5.1511 5.1430 5.1282 5.1136 5.1055 5.0903 2.7679 2.7443 2.2247 2.2017 2.1909 2.1774 2.1692 2.1459 2.0673 2.0336 2.0000 1.9794 1.8382 1.8242 1.8049 1.7903 1.7680 1.7401 1.7160 1.2666 1.2325 0.8103 9 8 7 6 5 4 3 2 1 ppm 2.04 9.85 3.81 1.91 2.00 1.91 3.78 3.86 5.68 24.20 12.25 1 H MR spectrum of 3a in CDCl 3 (400 MHz, 25 ºC). -S11 -

GGP-20141124-6-C77-R 8.6797 8.6596 8.5660 8.5252 8.5068 8.4975 8.4771 8.4346 8.4143 8.4007 8.3803 6.4198 6.4082 6.3954 5.1541 5.1396 5.1310 5.1168 5.1025 5.0943 5.0793 2.7714 2.7492 2.2176 2.1943 2.1633 2.0631 2.0330 2.0004 1.9830 1.8340 1.8207 1.7882 1.7713 1.7393 1.2615 1.2230 1.1720 0.7873 0.7704 9 8 7 6 5 4 3 2 1 ppm 2.04 10.06 4.00 1.98 2.00 1.96 3.97 3.97 5.96 40.78 12.11 1 H MR spectrum of 3b in CDCl 3 (400 MHz, 25 ºC). GGP-20141124-6-C77-S 8.6818 8.6617 8.5663 8.5303 8.5100 8.5012 8.4806 8.4385 8.4175 8.4049 8.3846 6.4208 6.4064 6.3966 6.3694 5.1554 5.1411 5.1329 5.1183 5.1039 5.0955 5.0810 2.7706 2.7468 2.2193 2.1965 2.1642 2.1408 2.0637 2.0328 2.0028 1.9819 1.8355 1.8213 1.7889 1.7738 1.7403 1.7146 1.2622 1.2546 1.2234 1.1728 0.8010 9 8 7 6 5 4 3 2 1 ppm 2.07 10.09 3.98 1.98 2.00 1.95 3.96 3.97 5.93 41.01 12.24 1 H MR spectrum of 3c in CDCl 3 (400 MHz, 25 ºC). -S12 -

GGP-20141124-6-C77 8.6828 8.6628 8.5703 8.5359 8.5154 8.5116 8.4908 8.4499 8.4294 8.4180 8.3977 6.4207 6.4068 6.3963 5.1591 5.1453 5.1367 5.1221 5.1075 5.0993 5.0844 2.7681 2.7440 2.2216 2.1985 2.1889 2.1757 2.1659 2.1415 2.0642 2.0353 2.0016 1.9812 1.8370 1.8224 1.7894 1.7737 1.7404 1.7156 1.2642 1.2558 1.2245 1.1737 9 8 7 6 5 4 3 2 1 ppm 2.07 10.11 4.01 1.98 2.00 1.98 3.99 4.02 5.97 41.09 12.29 13 C MR spectrum of 2a in CDCl 3 (100 MHz, 25 ºC). 163.7082 163.5965 134.1819 134.1322 131.5108 131.2522 129.3214 129.2697 126.1265 126.0519 123.8827 122.9885 122.8189 122.7476 122.6932 122.5493 GGP-20150503-6FR 54.7175 53.3111 32.2380 31.6964 29.7071 29.2488 26.6067 25.6208 22.5197 13.9932 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 13 C MR spectrum of 2b in CDCl 3 (100 MHz, 25 ºC). -S13 -

163.6798 163.5277 134.0726 134.0336 131.3807 131.1725 129.2445 129.2079 126.0346 125.9620 123.8838 122.9764 122.7381 122.6655 122.6089 122.4429 6F-S 54.7119 53.2621 32.2213 31.6936 29.2002 26.6166 25.6072 22.5197 13.9883 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 13 C MR spectrum of 2c in CDCl 3 (100 MHz, 25 ºC). 163.6817 163.6024 134.2036 134.1433 131.5472 131.2375 129.3373 129.2647 126.1441 126.0660 123.8626 122.9793 122.8210 122.7538 122.7091 122.5922 GGP-20150503-6F 54.7245 53.3845 32.2510 31.6974 29.3134 26.6051 25.6435 22.5192 13.9941 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 13 C MR spectrum of 3a in CDCl 3 (100 MHz, 25 ºC). -S14 -

163.6467 163.4739 134.0139 131.3001 131.1203 129.1984 129.1546 125.9744 125.9029 123.8676 122.9410 122.6884 122.6200 122.3783 6-C77R 54.7274 53.2276 32.2737 31.7571 29.4607 29.1796 26.9823 25.6046 22.5618 14.0100 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 13 C MR spectrum of 3b in CDCl 3 (100 MHz, 25 ºC). 163.6805 163.5532 134.1420 134.0960 131.4485 131.2088 129.2990 129.2388 126.0949 126.0225 123.8908 122.9778 122.7815 122.7092 122.6535 122.4973 6-C77S 54.7379 53.2942 32.2980 31.7584 29.4626 29.1768 26.9723 25.6232 22.5632 14.0100 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 13 C MR spectrum of 3c in CDCl 3 (100 MHz, 25 ºC). -S15 -

163.6516 163.5605 134.1414 131.4862 131.1861 129.3141 129.2380 126.1111 126.0336 123.8702 122.9765 122.7711 122.6747 122.5445 6-C77 54.7441 53.3817 32.3000 31.7613 29.4654 29.3117 29.1772 26.9726 25.6502 22.5639 14.0112 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm HRMS spectrum of 2a. -S16 -

HRMS spectrum of 2b. -S17 -

-S18 -

HRMS spectrum of 2c. -S19 -

HRMS spectrum of 3a. -S20 -

HRMS spectrum of 3b. HRMS spectrum of 3c. -S21 -

-S22 -