Tree Transformations and Dependencies

Σχετικά έγγραφα
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chap. 6 Pushdown Automata

2 Composition. Invertible Mappings

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 2. Soundness and completeness of propositional logic

Fractional Colorings and Zykov Products of graphs

Example Sheet 3 Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Congruence Classes of Invertible Matrices of Order 3 over F 2

Every set of first-order formulas is equivalent to an independent set

Homework 8 Model Solution Section

Finite Field Problems: Solutions

C.S. 430 Assignment 6, Sample Solutions

Formal Semantics. 1 Type Logic

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

derivation of the Laplacian from rectangular to spherical coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Models for Probabilistic Programs with an Adversary

EE512: Error Control Coding

TMA4115 Matematikk 3

Cyclic or elementary abelian Covers of K 4

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

The Simply Typed Lambda Calculus

Abstract Storage Devices

Inverse trigonometric functions & General Solution of Trigonometric Equations

Bounding Nonsplitting Enumeration Degrees

Section 8.3 Trigonometric Equations

ST5224: Advanced Statistical Theory II

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homomorphism in Intuitionistic Fuzzy Automata

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The challenges of non-stable predicates

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Generating Set of the Complete Semigroups of Binary Relations

Lecture 15 - Root System Axiomatics

Homework 3 Solutions

Uniform Convergence of Fourier Series Michael Taylor

How to register an account with the Hellenic Community of Sheffield.

Iterated trilinear fourier integrals with arbitrary symbols

A Lambda Model Characterizing Computational Behaviours of Terms

Advanced Subsidiary Unit 1: Understanding and Written Response

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

5. Choice under Uncertainty

From the finite to the transfinite: Λµ-terms and streams

A Note on Intuitionistic Fuzzy. Equivalence Relation

Statistical Inference I Locally most powerful tests

Reminders: linear functions

Test Data Management in Practice

( y) Partial Differential Equations

New bounds for spherical two-distance sets and equiangular lines

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 34 Bootstrap confidence intervals

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

The Pohozaev identity for the fractional Laplacian

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 21: Properties and robustness of LSE

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Heisenberg Uniqueness pairs

About these lecture notes. Simply Typed λ-calculus. Types

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Strukturalna poprawność argumentu.

Chapter 3: Ordinal Numbers

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

On the Galois Group of Linear Difference-Differential Equations

Areas and Lengths in Polar Coordinates

Mean-Variance Analysis

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Solutions to Exercise Sheet 5

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

4.6 Autoregressive Moving Average Model ARMA(1,1)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Matrices and Determinants

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Approximation of distance between locations on earth given by latitude and longitude

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CE 530 Molecular Simulation

Lecture 13 - Root Space Decomposition II

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Trigonometric Formula Sheet

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

Transcript:

Tree Transformations and Deendencies Andreas Maletti Institute for Natural Language Processing University of Stuttgart andreasmaletti@imsuni-stuttgartde Nara Setember 6, 2011 A Maletti MOL 2011 1

Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL 2011 2

Warning! This won t be a regular survey talk A Maletti MOL 2011 3

Warning! This won t be a regular survey talk Rather I want to show a useful techniue A Maletti MOL 2011 4

Context-free Language Question How do you show that a language is not context-free? A Maletti MOL 2011 5

Context-free Language Question How do you show that a language is not context-free? Answers uming lemma (BAR-HILLEL lemma) semi-linearity (PARIKH s theorem) A Maletti MOL 2011 6

Context-free Language Hardly ever Let us assume that there is a CFG (long case distinction on the shae of its rules) Contradiction! A Maletti MOL 2011 7

Tree Transformation Alication areas NLP XML rocessing syntax-directed semantics Examle t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 1 t 2 t 3 t 4 t n 3 t n 2 t n 1 t n A Maletti MOL 2011 8

Tree Transducer Definition A formal model comuting a tree transformation A Maletti MOL 2011 9

Tree Transducer Definition A formal model comuting a tree transformation Examle to-down or bottom-u tree transducer synchronous grammar (SCFG, STSG, STAG, etc) multi bottom-u tree transducer bimorhism A Maletti MOL 2011 10

Tree Transducer Question How do you show that a tree transformation cannot be comuted by a class of tree transducers? A Maletti MOL 2011 11

Tree Transducer Question How do you show that a tree transformation cannot be comuted by a class of tree transducers? Answers uming lemma (????) size and height deendencies domain and image roerties roerties under comosition (??) A Maletti MOL 2011 12

Tree Transducer Question How do you show that a tree transformation cannot be comuted by a class of tree transducers? Tyical aroach Assume that it can be comuted Contradiction! A Maletti MOL 2011 13

Examle t 1 t 2 t 3 t n 4 t n 3 t 2 t 1 t 4 t 3 t n 2 t n 3 t n 2 t n 1 t n t n 1 t n Question Can this tree transformation be comuted by a linear, nondeleting extended to-down tree transducer (XTOP)? A Maletti MOL 2011 14

Examle t 1 t 2 t 3 t n 4 t n 3 t 2 t 1 t 4 t 3 t n 2 t n 3 t n 2 t n 1 t n t n 1 t n Question Can this tree transformation be comuted by a linear, nondeleting extended to-down tree transducer (XTOP)? Answer [Arnold, Dauchet 1982] No! (via indirect roof) A Maletti MOL 2011 15

Another Examle γ γ t 1 t 2 t 3 t 1 t 2 t 3 Question Can this tree transformation be comuted by an XTOP? A Maletti MOL 2011 16

Another Examle γ γ t 1 t 2 t 3 t 1 t 2 t 3 Question Can this tree transformation be comuted by an XTOP? Answer [, Graehl, Hokins, Knight 2009] No! (via indirect roof) A Maletti MOL 2011 17

Yet Another Examle β β γ Question Can this tree transformation be comuted by an MBOT? β γ β γ γ A Maletti MOL 2011 18

Yet Another Examle β β γ β β γ γ Question Can this tree transformation be comuted by an MBOT? MBOT linear, nondeleting multi bottom-u tree transducer γ A Maletti MOL 2011 19

Yet Another Examle Question β β γ Can this tree transformation be comuted by an MBOT? β γ β γ MBOT linear, nondeleting multi bottom-u tree transducer γ Answer We ll know at the end A Maletti MOL 2011 20

Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL 2011 21

Extended To-down Tree Transducer Definition (XTOP) tule (Q, Σ,, I, R) Q: states Σ, : inut and outut symbols I Q: initial states [ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 1982] A Maletti MOL 2011 22

Extended To-down Tree Transducer Definition (XTOP) tule (Q, Σ,, I, R) Q: states Σ, : inut and outut symbols I Q: initial states R T Σ (Q) Q T (Q): finite set of rules l and r are linear in Q var(l) = var(r) for every l r R [ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 1982] A Maletti MOL 2011 23

Examle XTOP Examle XTOP (Q, Σ, Σ, {}, R) with Q = {,,, r} and Σ = {,,, } r r x x x x A Maletti MOL 2011 24

Sentential Form L = {S S N N } A Maletti MOL 2011 25

Sentential Form L = {S S N N } Definition (Sentential form) ξ, D, ζ T Σ (Q) L T (Q) such that v os(ξ) and w os(ζ) for every (v, w) D A Maletti MOL 2011 26

Link Structure Definition rule l r R, ositions v, w N links v,w (l r) = {(vv, ww ) v os (l), w os (r)} Q A Maletti MOL 2011 27

Link Structure Definition rule l r R, ositions v, w N links v,w (l r) = {(vv, ww ) v os (l), w os (r)} Q A Maletti MOL 2011 28

Link Structure Definition rule l r R, ositions v, w N links v,w (l r) = {(vv, ww ) v os (l), w os (r)} Q A Maletti MOL 2011 29

Derivation Definition ξ, D, ζ ξ[l] v, D links v,w (l r), ζ[r] w if rule l r R osition v os (ξ) osition w os (ζ) such that (v, w) D A Maletti MOL 2011 30

Derivation Rules r r x x x x A Maletti MOL 2011 31

Derivation Rules r r x x x x A Maletti MOL 2011 32

Derivation Rules r r x x x x A Maletti MOL 2011 33

Derivation Rules r r x x x x A Maletti MOL 2011 34

Derivation Rules r r x x x x A Maletti MOL 2011 35

Derivation Rules r r x x x x A Maletti MOL 2011 36

Derivation Rules r r x x x x r r A Maletti MOL 2011 37

Derivation Rules r r x x x x r r r r A Maletti MOL 2011 38

Derivation Rules r r x x x x r r A Maletti MOL 2011 39

Semantics of XTOP Definition the deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL 2011 40

Semantics of XTOP Definition the deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL 2011 41

Semantics of XTOP A Maletti MOL 2011 42

Semantics of XTOP Examle D = {(ε, ε), (1, 1), (2, 2), (21, 21), (211, 211), (22, 221), (23, 222), (231, 2221), (232, 22221), (233, 22222)} A Maletti MOL 2011 43

Semantics of XTOP Examle D = {(ε, ε), (1, 1), (2, 2), (21, 21), (211, 211), (22, 221), (23, 222), (231, 2221), (232, 22221), (233, 22222)} A Maletti MOL 2011 44

Non-closure under Comosition t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 1 t 2 t 3 t 4 t n 3 t n 2 t 2 t 1 t 4 t 3 t n 2 t n 3 t n 1 t n t n 1 t n [ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 1982] A Maletti MOL 2011 45

Secial Linking Structure Definition D L is inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D A Maletti MOL 2011 46

Secial Linking Structure Definition D L is inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 47

Secial Linking Structure Definition D L is inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 48

Secial Linking Structure Definition D L is strictly inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D w 1 w 2 imlies v 1 v 2 v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 49

Secial Linking Structure Definition D L is strictly inut hierarchical if for all (v 1, w 1 ), (v 2, w 2 ) D v 1 < v 2 imlies w 2 w 1 and w 1 w 2 : (v 1, w 1 ) D w 1 w 2 imlies v 1 v 2 v v 1 w 1 w 2 v 2 w 1 w 2 A Maletti MOL 2011 50

Deendencies Examle This linking structure is strictly (inut and outut) hierarchical A Maletti MOL 2011 51

Deendencies v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 52

Deendencies v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 53

Deendencies v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 54

Deendencies v v 1 w 1 w 2 v 2 w 1 w 2 A Maletti MOL 2011 55

Another Proerty Definition D L has bounded distance if k N such that D D if v, vw dom(d) with w > k, then w w with vw dom(d) w k Illustration: v > k vw A Maletti MOL 2011 56

Another Proerty Definition D L has bounded distance if k N such that D D if v, vw dom(d) with w > k, then w w with vw dom(d) w k Illustration: k v vw vw A Maletti MOL 2011 57

Another Proerty Definition D L has bounded distance if k N such that D D if v, vw dom(d) with w > k, then w w with vw dom(d) w k (symmetric roerty for range) A Maletti MOL 2011 58

Bounded Distance Examle inut side: bounded by 1 outut side: bounded by 2 A Maletti MOL 2011 59

Main Result Theorem The deendencies comuted by an XTOP are: strictly (inut and outut) hierarchical bounded distance A Maletti MOL 2011 60

Comatibility Definition ξ, D, ζ is comatible with ξ, D, ζ if D D A Maletti MOL 2011 61

Comatibility Definition ξ, D, ζ is comatible with ξ, D, ζ if D D set L is comatible with L if for all ξ, _, ζ L (some comutation) exists ξ, D, ζ L (imlemented comutation) exists comatible ξ, D, ζ L (comatible comutation) A Maletti MOL 2011 62

Comatibility Illustration Some comutation A Maletti MOL 2011 63

Comatibility Illustration Imlemented comutation A Maletti MOL 2011 64

Comatibility Illustration Comatible comutation A Maletti MOL 2011 65

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL 2011 66

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n use boundedness A Maletti MOL 2011 67

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n use boundedness A Maletti MOL 2011 68

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL 2011 69

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 70

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 71

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 w 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 72

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 73

Back to the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n Theorem The deendencies above are incomatible with any XTOP A Maletti MOL 2011 74

A First Instance t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t 4 t 3 t n 2 t n 3 t n 2 t n 1 t n t n 1 t n Theorem (ARNOLD, DAUCHET 1982) The transformation above cannot be comuted by any XTOP A Maletti MOL 2011 75

A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 A Maletti MOL 2011 76

A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 A Maletti MOL 2011 77

A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 use boundedness A Maletti MOL 2011 78

A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 use boundedness A Maletti MOL 2011 79

A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 A Maletti MOL 2011 80

A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 Theorem The deendencies above are incomatible with any XTOP A Maletti MOL 2011 81

A Second Instance γ t 3 γ t 1 t 2 t 3 t 1 t 2 Theorem (, GRAEHL, HOPKINS, KNIGHT 2009) The transformation above cannot be comuted by any XTOP A Maletti MOL 2011 82

Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL 2011 83

Extended Multi Bottom-u Tree Transducer Definition (MBOT) tule (Q, Σ,, I, R) Q: ranked alhabet of states Σ, : inut and outut symbols I Q 1 : unary initial states A Maletti MOL 2011 84

Extended Multi Bottom-u Tree Transducer Definition (MBOT) tule (Q, Σ,, I, R) Q: ranked alhabet of states Σ, : inut and outut symbols I Q 1 : unary initial states R T Σ (Q) Q T (Q) : finite set of rules l is linear in Q rk() = r var( r) var(l) for every (l,, r) R A Maletti MOL 2011 85

Examle MBOT Examle (Q, Σ, Σ, {f }, R) with Q = { (2), (1), (1), r (1), f (1) } and Σ = {,,, } f x x x x r r A Maletti MOL 2011 86

New Linking Structure Definition rule l r R, ositions v, w 1,, w n N w = w 1 w n with n = rk() links v, w (l r) = Q i=1 n {(vv, w i w i ) v os (l), w i os (r i )} A Maletti MOL 2011 87

New Linking Structure Definition rule l r R, ositions v, w 1,, w n N w = w 1 w n with n = rk() links v, w (l r) = Q i=1 n {(vv, w i w i ) v os (l), w i os (r i )} Illustration: A Maletti MOL 2011 88

New Linking Structure Definition rule l r R, ositions v, w 1,, w n N w = w 1 w n with n = rk() links v, w (l r) = Q i=1 n {(vv, w i w i ) v os (l), w i os (r i )} Illustration: A Maletti MOL 2011 89

Derivation Definition ξ, D, ζ ξ[l] v, D links v, w (l r), ζ[ r] w if rule l r R with rk() = n osition v os (ξ) w = w 1 w n os (ζ) with w 1 w n {w 1,, w n } = {w (v, w) D} A Maletti MOL 2011 90

Derivation Rules f x x x x r r A Maletti MOL 2011 91

Derivation Rules f x x x x r r A Maletti MOL 2011 92

Derivation Rules f x x x x r r A Maletti MOL 2011 93

Derivation Rules f x x x x r r A Maletti MOL 2011 94

Derivation Rules f x x x x r r A Maletti MOL 2011 95

Derivation Rules f x x x x r r A Maletti MOL 2011 96

Derivation Rules f x x x x r r A Maletti MOL 2011 97

Derivation Rules f x x x x r r r r A Maletti MOL 2011 98

Derivation Rules f x x x x r r r r A Maletti MOL 2011 99

Semantics of MBOT Definition MBOT M comutes deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL 2011 100

Semantics of MBOT Definition MBOT M comutes deendencies de(m) { t, D, u T Σ L T I :, {(ε, ε)}, M t, D, u } the tree transformation M = {(t, u) t, D, u de(m)} A Maletti MOL 2011 101

Semantics of MBOT Examle D = {(ε, ε), (1, 2), (2, 1), (2, 3), (21, 1), (211, 11), (22, 32), (23, 31), (23, 33), (231, 31), (232, 331), (233, 332)} A Maletti MOL 2011 102

Semantics of MBOT A Maletti MOL 2011 103

Semantics of MBOT Examle Above deendencies are inut hierarchical strictly outut hierarchical A Maletti MOL 2011 104

Semantics of MBOT Examle Above deendencies are inut hierarchical but not strictly strictly outut hierarchical A Maletti MOL 2011 105

Semantics of MBOT v v 1 w 1 w 2 v 2 w 1 w 2 A Maletti MOL 2011 106

Main Result Theorem The deendencies comuted by an MBOT are: inut hierarchical strictly outut hierarchical bounded distance A Maletti MOL 2011 107

Link Structure for the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL 2011 108

Link Structure for the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n A Maletti MOL 2011 109

Link Structure for the Examle t 1 t 2 t 1 t 2 t 3 t n 4 t n 3 t n 2 t n 1 t n t 4 t 3 t n 2 t n 3 t n 1 t n Theorem Above deendencies are comatible with an MBOT A Maletti MOL 2011 110

Another MBOT Examle (Q, Σ,, {f }, R) with Q = { (3), (3), r (3), f (1) } Σ = {,, β, γ} and = Σ {} f β β γ r r r r r γ r r r r r A Maletti MOL 2011 111

Another MBOT β β γ γ β β γ γ taken from Examle 45 of [RADMACHER: An automata theoretic aroach to the theory of rational tree relations TR AIB-2008-05, RWTH Aachen, 2008] {( l (β m (γ n ())), ( l (), β m (), γ n ())) l, m, n N} A Maletti MOL 2011 112

Another MBOT Theorem β β γ β β γ γ These inverse deendencies are not comatible with any MBOT (because the dislayed deendencies are not strictly inut hierarchical) v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 γ A Maletti MOL 2011 113

Another MBOT Theorem β β γ β β γ γ These inverse deendencies are not comatible with any MBOT (because the dislayed deendencies are not strictly inut hierarchical) v 1 w 2 v 1 v 2 w 1 v 2 w 1 w 2 γ Theorem This tree transformation cannot be comuted by any MBOT A Maletti MOL 2011 114

Contents 1 Motivation 2 Extended to-down tree transducer 3 Extended multi bottom-u tree transducer 4 Synchronous tree-seuence substitution grammar A Maletti MOL 2011 115

Synchronous Tree-Seuence Substitution Grammar Definition (STSSG) tule (Q, Σ,, I, R) with Q: doubly ranked alhabet Σ, : inut and outut symbols I Q 1,1 : doubly unary initial states [ZHANG et al: A tree seuence alignment-based tree-to-tree translation model Proc ACL, 2008] A Maletti MOL 2011 116

Synchronous Tree-Seuence Substitution Grammar Definition (STSSG) tule (Q, Σ,, I, R) with Q: doubly ranked alhabet Σ, : inut and outut symbols I Q 1,1 : doubly unary initial states R T Σ (Q) Q T (Q) : finite set of rules rk() = ( l, r ) for every ( l,, r) R [ZHANG et al: A tree seuence alignment-based tree-to-tree translation model Proc ACL, 2008] A Maletti MOL 2011 117

Yet Another Linking Structure Definition rule l r R, ositions v 1,, v m, w 1,, w n N with rk() = (m, n) links v, w ( l r) = m n {(v j v j, w iw i ) v j os (l j ), w i os (r i )} Q j=1 i=1 where v = v 1 v m and w = w 1 w n A Maletti MOL 2011 118

Derivation Definition if rule l ξ, D, ζ ξ[ l] v, D links v, w ( l r R r), ζ[ r] w v = v 1 v m os (ξ) and w = w 1 w n os (ζ) v 1 v m, w 1 w n, and rk() = (m, n) linked ositions {w 1,, w n } = m j=1 {w (v j, w) D} {v 1,, v m } = n i=1 {v (v, w i) D} A Maletti MOL 2011 119

A Final Theorem β β γ β β γ γ Examle This transformation can be comuted by an STSSG (because it is an inverse MBOT) γ A Maletti MOL 2011 120

A Final Theorem β β γ β β γ γ Examle This transformation can be comuted by an STSSG (because it is an inverse MBOT) γ A Maletti MOL 2011 121

A Final Theorem β β γ β β γ γ Examle This transformation can be comuted by an STSSG (because it is an inverse MBOT) γ Theorem Deendencies comuted by STSSG are (inut and outut) hierarchical bounded distance A Maletti MOL 2011 122

A Final Instance β γ γ β Theorem These deendencies are not comatible with any STSSG v 1 w 2 v 1 w 1 β γ β v 2 w 1 v 2 w 1 w 2 γ A Maletti MOL 2011 123

A Final Instance γ Theorem γ These deendencies are not comatible with any STSSG β β v 1 w 2 v 1 w 1 β γ β v 2 w 1 Theorem v 2 w 1 w 2 γ This transformation cannot be comuted by any STSSG A Maletti MOL 2011 124

Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical A Maletti MOL 2011 125

Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical MBOT hierarchical strictly hierarchical A Maletti MOL 2011 126

Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical MBOT hierarchical strictly hierarchical STSSG hierarchical hierarchical A Maletti MOL 2011 127

Summary Comuted deendencies by device inut outut XTOP strictly hierarchical strictly hierarchical MBOT hierarchical strictly hierarchical STSSG hierarchical hierarchical STAG A Maletti MOL 2011 128

That s all, folks! Thank you for your attention! A Maletti MOL 2011 129

References ARNOLD, DAUCHET: Morhismes et bimorhismes d arbres Theor Comut Sci 20, 1982 ENGELFRIET, LILIN, MALETTI: Extended multi bottom-u tree transducers Acta Inf 46, 2009 MALETTI, GRAEHL, HOPKINS, KNIGHT: The ower of extended to-down tree transducers SIAM J Comut 39, 2009 RADMACHER: An automata theoretic aroach to rational tree relations Proc SOFSEM 2008 RAOULT: Rational tree relations Bull Belg Math Soc Simon Stevin 4, 1997 ZHANG, JIANG, AW, LI, TAN, LI: A tree seuence alignment-based tree-to-tree translation model Proc ACL 2008 A Maletti MOL 2011 130