derivation of the Laplacian from rectangular to spherical coordinates

Σχετικά έγγραφα
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 7.6 Double and Half Angle Formulas

Section 9.2 Polar Equations and Graphs

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Areas and Lengths in Polar Coordinates

2 Composition. Invertible Mappings

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

F-TF Sum and Difference angle

Homework 3 Solutions

Areas and Lengths in Polar Coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Approximation of distance between locations on earth given by latitude and longitude

CRASH COURSE IN PRECALCULUS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Matrices and Determinants

Solutions to Exercise Sheet 5

The Simply Typed Lambda Calculus

Partial Trace and Partial Transpose

Problem Set 3: Solutions

Math221: HW# 1 solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Other Test Constructions: Likelihood Ratio & Bayes Tests

Second Order Partial Differential Equations

Example Sheet 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Finite Field Problems: Solutions

Section 8.2 Graphs of Polar Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

EE512: Error Control Coding

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Strain gauge and rosettes

MathCity.org Merging man and maths

Answer sheet: Third Midterm for Math 2339

Variational Wavefunction for the Helium Atom

Srednicki Chapter 55

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

A Note on Intuitionistic Fuzzy. Equivalence Relation

Orbital angular momentum and the spherical harmonics

Math 6 SL Probability Distributions Practice Test Mark Scheme

Homework 8 Model Solution Section

Lecture 26: Circular domains

Reminders: linear functions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Every set of first-order formulas is equivalent to an independent set

CYLINDRICAL & SPHERICAL COORDINATES

ST5224: Advanced Statistical Theory II

1 String with massive end-points

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Derivation of Optical-Bloch Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Right Rear Door. Let's now finish the door hinge saga with the right rear door

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Statistical Inference I Locally most powerful tests

Uniform Convergence of Fourier Series Michael Taylor

4.6 Autoregressive Moving Average Model ARMA(1,1)

Exercises to Statistics of Material Fatigue No. 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

CORDIC Background (2A)

Parametrized Surfaces

Notes on the Open Economy

D Alembert s Solution to the Wave Equation

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Trigonometry 1.TRIGONOMETRIC RATIOS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Numerical Analysis FMN011

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

( ) 2 and compare to M.

6.3 Forecasting ARMA processes

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

w o = R 1 p. (1) R = p =. = 1

Second Order RLC Filters

Trigonometric Formula Sheet

CORDIC Background (4A)

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Differential equations

Spherical Coordinates

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Transcript:

derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used to denote the azimuthal angle, whereas θ is used to denote the polar angle) x = r cos(φ), y = r sin(φ), z = r cos(θ), () and conversely from spherical to rectangular coordinates r = ( z ) ( y x y z, θ = arccos, φ = arctan. () r x) Now, we know that the Laplacian in rectangular coordinates is defined in the following way f = f f f z. (3) We also know that the partial derivatives in rectangular coordinates can be expanded in the following way by using the chain rule =, (4) =, (5) = z z z z. (6) The next step is to convert the right-hand side of each of the above three equations so that it only has partial derivatives in terms of r, θ and φ. We can do DerivationOfTheLaplacianFromRectangularToSphericalCoordinates created: 03-03- by: swapnizzle version: 39376 Privacy setting: Topic 53A45 This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license. Readers should note that we do not have to define the Laplacian this way. A more rigorous approach would be to define the Laplacian in some coordinate free manner.

this by substituting the following values (which are easily derived from ()) in their respective places in the above three equations = cos(φ), = sin(φ), z = cos(θ), = cos(θ) cos(φ), r = cos(θ) sin(φ), r z z = r, After the substitution, equation (4) looks like the following = sin(φ) r, = cos(φ) r, = 0. (7) = cos(φ) cos(θ) cos(φ) r sin(φ) r. (8) Assuming that f is a sufficiently differentiable function, we can replace f by in the above equation and arrive at the following = cos(φ) r cos(θ) cos(φ) r sin(φ) (9). Now the trick is to substitute equation (8) into equation (9) in order to eliminate any partial derivatives with respect to x. The result is the following equation = cos(φ) cos(φ) r cos(θ) cos(φ) sin(φ) r cos(θ) cos(φ) r r cos(φ) cos(θ) cos(φ) r r cos(φ) cos(θ) cos(φ) r r sin(φ) sin(φ) sin(φ). In the hopes of simplifying the above equation, we operate the derivates on the operands and get = cos(φ) cos(φ) f cos(θ) cos(φ) r r cos(θ) cos(φ) f sin(φ) r sin(φ) r r cos(θ) cos(φ) cos(θ) cos(φ) cos(φ) f cos(φ) r r cos(θ) f cos(φ) sin(φ) cos(θ) r sin (θ) sin(φ) sin(φ) sin(φ) r r cos(φ) f cos(θ) sin(φ) r r cos(θ) cos(φ) f cos(φ) r sin(φ) r.

After further simplifying the above equation, we arrive at the following form = sin (θ)cos (φ) f r cos(θ) cos (φ) r cos(θ) cos (φ) f sin(φ) cos(φ) r r sin(φ) cos(φ) f r cos (θ)cos (φ) r cos(θ)cos (φ) f r cos(θ)cos (φ) r cos (θ)cos (φ) f sin(φ) cos(φ)cos (θ) r sin (θ) cos(θ) sin(φ) cos(φ) r r sin(φ) cos(φ) f cos(θ)sin (φ) r sin(φ) cos(φ) r sin (θ) sin (φ) r sin (θ). r sin (φ) cos(θ) cos(φ) sin(φ) r Notice that we have derived the first term of the right-hand side of equation (3) (i.e. f ) in terms of spherical coordinates. We now have to do a similar arduous derivation for the rest of the two terms (i.e. f and f z ). Lets do it! After we substitute the values of (7) into equation (5) we get = sin(φ) cos(θ) sin(φ) r cos(φ) r. (0) Again, assuming that f is a sufficiently differentiable function, we can replace f by in the above equation and arrive at the following = sin(φ) r cos(θ) sin(φ) r cos(φ) (). Now we substitute equation (0) into equation () in order to eliminate any partial derivatives with respect to y. The result is the following = sin(φ) r cos(θ) sin(φ) cos(φ) r sin(φ) cos(θ) sin(φ) r r sin(φ) cos(θ) sin(φ) r r sin(φ) cos(θ) sin(φ) r r cos(φ) cos(φ). cos(φ) 3

Now we operate the operators and get = sin(φ) sin(φ) f cos(θ) sin(φ) r r cos(θ) sin(φ) f cos(φ) r cos(φ) r r cos(θ) sin(φ) sin(φ) cos(θ) sin(φ) sin(φ) r r cos(θ) f sin(φ) r cos(φ) cos(φ) cos(φ) r r sin(φ) f cos(θ) cos(φ) r r cos(θ) sin(φ) f r and after some simplifications = sin(φ) r cos(φ)cos(θ) sin (θ) cos(φ), sin (θ)sin (φ) f r cos(θ)sin (φ) r cos(θ)sin (φ) f sin(φ) cos(φ) r r sin(φ) cos(φ) f r cos(θ) sin (φ) r cos (θ)sin (φ) r cos(θ)sin (φ) r cos (θ)sin (φ) f sin(φ) cos(φ)cos (θ) r sin (θ) cos(θ) sin(φ) cos(φ) r r cos (φ) r cos(φ) sin(φ) f cos(θ)cos (φ) r sin(φ) cos(φ) r sin (θ) cos (φ) r sin (θ). Now its time to derive f equation (6) we get z z. cos(θ)cos(φ) sin(φ) r After our substitution of value in (7) into = cos(θ) r. () Once more, assuming that f is a sufficiently differentiable function, we can replace f by z in the above equation which gives us the following z = cos(θ) z r. (3) z Now we substitute equation () into equation (3) in order to eliminate any partial derivatives with respect to z and we arrive at z = cos(θ) cos(θ) r r cos(θ) r. 4

After operating the operators we get z = cos(θ) cos(θ) f r r f r and then simplifying z =, f cos (θ) f r f, cos(θ) f r cos(θ) cos(θ) r r cos(θ) f r cos(θ) f cos(θ) r r sin (θ) f. r sin (θ) Now that we have all three terms of the right hand side of equation (3)(i.e. and f z ), we add them all together (because of equation (3)) to get 5

the laplacian in terms of r, θ and φ f = sin (θ)cos (φ) f r cos(θ) cos (φ) r cos(θ) cos (φ) f sin(φ) cos(φ) r r sin(φ) cos(φ) f r cos (θ)cos (φ) r cos(θ)cos (φ) f r cos(θ)cos (φ) r cos (θ)cos (φ) f sin(φ) cos(φ)cos (θ) r sin (θ) cos(θ) sin(φ) cos(φ) r r sin (φ) r sin(φ) cos(φ) f cos(θ)sin (φ) r cos(θ) cos(φ) sin(φ) r sin(φ) cos(φ) r sin (θ) sin (φ) r sin (θ) sin (θ)sin (φ) f r cos(θ)sin (φ) r cos(θ)sin (φ) f r sin(φ) cos(φ) f sin(φ) cos(φ) r r cos(θ) sin (φ) r cos (θ)sin (φ) r cos(θ)sin (φ) r cos (θ)sin (φ) f sin(φ) cos(φ)cos (θ) r cos(θ) sin(φ) cos(φ) r sin (θ) r cos (φ) r cos(φ) sin(φ) f cos(θ)cos (φ) r cos(θ)cos(φ) sin(φ) r sin(φ) cos(φ) r sin (θ) cos (φ) r sin (θ) cos (θ) f cos(θ) r r cos(θ) f r sin (θ) r cos(θ) f cos(θ) r r sin (θ) f. It may be hard to believe but the truth is that the above expression, after some miraculous simplifications of course, reduces to the following succinct form and we finally arrive at the Laplacian in spherical coordinates! f = f r r sin (θ) r cos(θ) r We can write the Laplacian in an even more compact form as f = r r r. (4) r sin (θ). (5) Readers might be surprised how I got from expression (4) to expression (5) so fast! Even though it is true that expression (4) is equivalent to expression (5), I wouldn t have been able to write the expression (5) if I hadn t known about it beforehand. 6