Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Σχετικά έγγραφα
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Solutions to Exercise Sheet 5

2 Composition. Invertible Mappings

Homework 3 Solutions

Math221: HW# 1 solutions

Finite Field Problems: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Problem Set 3: Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

Second Order Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ST5224: Advanced Statistical Theory II

Srednicki Chapter 55

Concrete Mathematics Exercises from 30 September 2016

Other Test Constructions: Likelihood Ratio & Bayes Tests

Exercises to Statistics of Material Fatigue No. 5

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Areas and Lengths in Polar Coordinates

Lecture 21: Scattering and FGR

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Matrices and Determinants

Differential equations

Trigonometry 1.TRIGONOMETRIC RATIOS

C.S. 430 Assignment 6, Sample Solutions

CRASH COURSE IN PRECALCULUS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Example Sheet 3 Solutions

D Alembert s Solution to the Wave Equation

PARTIAL NOTES for 6.1 Trigonometric Identities

w o = R 1 p. (1) R = p =. = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

EE512: Error Control Coding

1 String with massive end-points

The Simply Typed Lambda Calculus

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Parametrized Surfaces

Notes on the Open Economy

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math 6 SL Probability Distributions Practice Test Mark Scheme

CE 530 Molecular Simulation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Second Order RLC Filters

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 2. Soundness and completeness of propositional logic

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Higher Derivative Gravity Theories

Section 7.6 Double and Half Angle Formulas

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

( y) Partial Differential Equations

Solution Series 9. i=1 x i and i=1 x i.

Μηχανική Μάθηση Hypothesis Testing

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

[1] P Q. Fig. 3.1

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

6.3 Forecasting ARMA processes

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

F19MC2 Solutions 9 Complex Analysis

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Reminders: linear functions

Statistical Inference I Locally most powerful tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

( ) 2 and compare to M.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

Strain gauge and rosettes

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Trigonometric Formula Sheet

Every set of first-order formulas is equivalent to an independent set

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ECON 381 SC ASSIGNMENT 2

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Differentiation exercise show differential equation

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Homomorphism in Intuitionistic Fuzzy Automata

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Lecture 26: Circular domains

Approximation of distance between locations on earth given by latitude and longitude

Η ΣΥΝΘΕΣΗ ΚΑΙ ΤΑ ΣΥΝΘΕΤΑ ΝΟΗΜΑΤΑ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΝΟΗΜΑΤΙΚΗ ΓΛΩΣΣΑ

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Transcript:

Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering times 7 IV. Hall Factors 13 I. Introduction We write the mobility as µ q m * (1) and the Hall factor as r H. () What are these factors in 1D, D, and 3D for parabolic energy bands, E E C + m, (3) * and power law scattering? τ ( ) B τ s. (4) II. Solution of the BE Begin with the general BE: f t + υ i r f + F e i p f Ĉf, (5) and mae the Relaxation ime Approximation to the collision integral, f ( p) p Ĉf f p δ f, (6) to write the steady- state, spatially homogeneous BE as 1

p qe i p f δ f. (7) Now assume p f p f (8) to find δ f ( p) +q E i p f. (9) Recognizing that f is a function of energy, we use the chain rule p f ( E) f p E f υ, (1) which can be used to write (9) as δ f p f υ i( qe ). (11) Equation (11) is the solution to the steady- state, spatially uniform BE in the Relaxation ime Approximation. o find the current, we evaluate 1 J n ( r ) ( q) υ ( )δ f ( r, ), (1) L d where d 1,, or 3 depending on the dimension. For the x- directed current: 1 J nx ( r ) ( q)υ x ( )δ f J nx L d 1 ( r ) L d ( r, ) ( q)υ x ( ) f υ i( qe ). (13) For an x- directed electric field 1 J nx ( r ) q υ L d x ( ) f υ x E x 1 J nx ( r ) q υ L d x ( ) f E σ x ne x, so we have J nx σ xx E x σ xx 1 q υ L d x ( ) f. (14)

Equation (14) is valid in 1D, D, or 3D for arbitrary bandstructures If we write σ n nqµ n, then we obtain from (14) µ n 1 L d q υ x ( ) f nq qυ x ( ) f E Now let s assume parabolic energy bands and write the mobility as in (1) µ n q τ qυ x f m m * f from which we obtain m * υ x f, (15) f which is the definition of the average scattering time and is valid for parabolic energy bands in 1D, D, or 3D. f. Case i): 3D with parabolic energy bands Assuming that υ is equally distributed between the three degrees of freedom, υ x υ y υ z υ So (15) becomes 3. m * υ 3 f f E, (16) and for parabolic energy bands 1 m* υ ( ) (17) so (16) becomes ( ) f. (18) 3 f 3

Equation (18) is analogous to Eq. (7.76) in Near- Equilibrium ransport (Lundstrom and Jeong). If we now assume non- degenerate conditions, then f 1 B f, and (18) becomes ( ) f ( 3 B ) f Recognizing that the average thermal energy is W 3 n B n we can express (19) as. (19) ( ), ( ) ( ) where the average of a quantity, X E according to X X ( E) f ( E) f ( E), () is over the equilibrium distribution function. (1) Equation () is valid for a 3D semiconductor with parabolic energy bands under non- degenerate conditions. It is Eq. (3.6) in Fundamentals of Carrier ransport (Lundstrom). Case ii): D with parabolic energy bands Assuming that υ is equally distributed between the three degrees of freedom, υ x υ y υ. So (15) becomes m * υ f f E, () and for parabolic energy bands, we use (17), so () becomes 4

( ) f. (3) f Equation (3) is Eq. (7.76) in Near- Equilibrium ransport (Lundstrom and Jeong). If we now assume non- degenerate conditions, then f 1 B f, and (3) becomes ( ) f. (4) B f Recognizing that the average thermal energy in D is W n B n ( ), we can express (4) as ( ) ( ), (5) which is the same as (). Equation (5) is valid for a D semiconductor with parabolic energy bands under non- degenerate conditions. Case iii): 1D with parabolic energy bands In 1D, υ x υ So (15) becomes m * υ f, (6) f and for parabolic energy bands, we use (17), so (6) becomes ( ) f. (7) 1 f Equation (7) is analogous to Eq. (7.76) in Near- Equilibrium ransport (Lundstrom and Jeong). 5

If we now assume non- degenerate conditions, then f 1 B f, and (7) becomes ( ) f ( B ) f. (8) Recognizing that the average thermal energy in 1D is W n B n ( ), we can express (8) as ( ) ( ), (9) which is the same as () and (5). Equation (9) is valid for a 1D semiconductor with parabolic energy bands under non- degenerate conditions. Summary: he general expression for the average scattering time for a semiconductor with parabolic energy bands is ( ) f d f, (3) where d 1,, or 3 depending on the dimension. For a nondegenerate semiconductor we find (independent of dimension) ( ), (31) ( ) where the average is over the equilibrium distribution as defined in (1). 6

III. Exercises: Woring out average scattering times 1) For power law scattering in D Γ s + τ Γ, where s is the characteristic exponent in the expression τ ( ) B τ s, and nondegenerate conditions are assumed. Prove this result. Solution: Begin with the definition of average momentum relaxation time: ( ) f ( E E B η C ) f F d num denom f f (i) Consider the numerator first. In D, we have: num 1 ( E E B η C ) f 1 τ F π Assuming parabolic energy bands: m * d g V de so (ii) becomes num τ g V m * π B s+1 f de B s+1 f π d (ii) (iii) (iv) Change variables to η E E C B E E F C B so num τ g V m * B π η s+1 1+ e η dη (v) (vi) 7

num τ g V m * B π Γ s + Now wor on the denominator: denom f 1 denom 1 π f d denom g V m * π denom g V m * B π f de π F η s+1 F f π d dη 1+ e η (vii) m * denom g B V Γ( 1)F π ( ) (viii) Using (viii) and (vii), we find num denom τ Γ s + Γ 1 F s F ( ) (ix) Assuming non- degenerate conditions, we find Γ s + τ Γ 1 Γ s + τ Γ. ) Wor out the corresponding result in 1D. Solution: he solution proceeds much as in problem 1). ( ) f d f 1 B ( E E η C ) f F 1 f num denom 8

num 1 B 1 B τ ( ) f E E ( )τ C B B s+1 f d s f d Assuming parabolic energy bands: m* num τ E C B s+1 d m* f m * ( ) 1/ de ( ) 1/ de num τ m * B Change variables: E C B s+1/ f de num τ m * B E C η s+1/ 1+ e η dη num τ num τ denom 1 m * B m * B f B Γ( s + 3/ )F η s+1/ ( ) F B Γ( s + 3/ )F s 1/ ( ) (x) 1 f d denom 1 f f denom m* denom m* B m * 1/ ( 1+ e E E C ) de B ( ) 1/ de 1/ B ( 1+ e E E C ) de B 9

denom m* B denom m* B Using (x) and (xi) num denom τ η 1/ dη 1+ e η Γ( 1/ )F 1/ ( ) (xi) Γ( 3/ ) Γ s + 3/ ( 1 )Γ 1/ num denom τ Γ s + 3/ F s 1/ F 1/ F s 1/ F 1/ ( ) ( ) ( ) For non- degenerate conditions power law scattering, and 1D, (xii) Γ s + 3/ τ Γ 3/. 3) Wor out the corresponding result in 3D. Solution: he solution proceeds much as in problem 1) and ). ( ) f 1 ( E E B η C ) f F ( d ) f 3 f num 1 B 1 B 4πτ ( ) f E E ( )τ C B B s+1 f d s f 4π d num denom Assuming parabolic energy bands: m* d m* ( ) 1/ de d m* 3/ 1/ 3 de 1

num 4πτ E C B num πτ 3/ m* 3 num πτ 3/ m* B 3 E C Change variables: num πτ ( m* B ) 3/ 3 num πτ ( m* B ) 3/ 3 s+1 3/ f m * B E C η s+3/ dη 1+ e η s+1 B 1/ 3 de 1/ f de s+3/ Γ( s + 5 / )F η s+3/ ( ) F num πτ ( m* B ) 3/ Γ( s + 5 / )F 3 s+1/ Now the denominator: denom 3 f 3 f 4π d denom 3 ( f 4π d 3π f m ) * 3/ 3 denom 3π ( m* ) 3/ 3 f 3/ 1/ de denom 3π m* B 3 Γ( 3/ )F 1/ Using (xiii) and (xiv) num denom τ Γ s + 5 / F s+1/ Γ s + 5 / τ Γ 5 / 3Γ ( 3/ ) F s+1/ F 1/ f de (xiii) 1/ de (xiv) F 1/ ( ) τ Γ s + 5 / ( 3 )Γ 3/ For non- degenerate conditions power law scattering, and 3D, Γ s + 5 / τ Γ 5 /. F s+1/ F 1/ (xv) 11

Summary of non- degenerate results: For power law scattering, parabolic energy bands, and non- degenerate carrier statistics. the transport average momentum relaxation time in 1D, D, and 3D are: Γ( ) Γ( 5 / ) Γ s + 3/ 1D : τ Γ 3/ D : τ Γ s + 3D : τ Γ s + 5 /. Knowing these times, we get the mobility from µ q m * he analogous procedure in the Landauer approach is to relate the mobility to the mean- free- path according to µ D n B q υ λ B q o compute λ, we assume power law scattering λ ( ) B λ E r where the characteristic exponent for the mfp is r rather than s. From the definition of the average mean- free- path λ de de λ( E) M ( E) f f M E assuming parabolic bands and nondegenerate conditions, we could express λ in terms of Gamma functions. 1

IV. Hall Factors he definition of the Hall factor was given in () as r H. We have wored out the denominator in 1D, D, and 3D. For the numerator, we can recognize from (4) that τ m is also in power law form. From (4), we write τ B s, (xx) so we can evaluate by using the results for with s s. Hall Factor in 1D: (non- degenerate) Γ s + 3/ τ Γ 3/ Γ( 3/ ) Γ s + 3/ τ r H τ Γ( 3/ ) Γ( 3/ ) Γ s + 3/ Γ s + 3/ τ Γ( s + 3/ )Γ 3/ Γ( s + 3/ ) Hall Factor in D: (non- degenerate) Γ( ) Γ s + τ Γ τ Γ s + 13

r H Γ( ) τ Γ s + Γ Γ ( s + )Γ Γ s + τ Γ( s + ) Hall Factor in 3D: (non- degenerate) Γ s + 5 / τ Γ 5 / r H Γ( 5 / ) τ Γ ( s + 5 / ) Γ( 5 / ) Γ( s + 5 / ) τ Γ( 5 / ) τ Γ s + 5 / Γ ( s + 5 )Γ 5 Γ( s + 5 ) Summary of Hall factors: (non- degenerate) Γ( s + 3/ )Γ 3/ 1D : r H Γ( s + 3/ ) D : r H Γ ( s + )Γ( ) Γ( s + ) 3D : r H Γ ( s + 5 )Γ( 5 ) Γ( s + 5 ) 14