-ΣΚΟΤΕΙΝΗ ΥΛΗ (BLACK - Επιστημονικό Άρθρο

Σχετικά έγγραφα
ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας παρατηρήσεις και τ

ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ

Κοσμολογία. Η δομή, η εξέλιξη του Σύμπαντος και τα πειράματα στο CERN. Γιάννης Νταλιάνης (PhD)

θεμελιακά Ερωτήματα Κοσμολογίας & Αστροφυσικής

Τα φωτόνια από την μεγάλη έκρηξη Τι είναι η Ακτινοβολία υποβάθρου.

Δύο Συνταρακτικές Ανακαλύψεις

Ινστιτούτο Αστρονομίας & Αστροφυσικής, ΕΑΑ

"Στην αρχή το φως και η πρώτη ώρα που τα χείλη ακόμα στον πηλό δοκιμάζουν τα πράγματα του κόσμου." (Οδυσσέας Ελύτης)

Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010

ΚΟΣΜΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΧΕΙΜΩΝΑΣ 2004 Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ


ΑΝΑΖΗΤΗΣΗ ΕΞΩΗΛΙΑΚΩΝ ΠΛΑΝΗΤΩΝ Κ.Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ

βαρυτικά συστήματα αστέρων, γαλαξιακών αερίων, αστρικής σκοτεινής ύλης. Η ετυμολογία της λέξης αναφέρεται στον δικό μας

Η πρόβλεψη της ύπαρξης και η έµµεση παρατήρηση των µελανών οπών θεωρείται ότι είναι ένα από τα πιο σύγχρονα επιτεύγµατα της Κοσµολογίας.

Λέανδρος Περιβολαρόπουλος Καθηγητής Παν/μίου Ιωαννίνων

The particle nature of Dark Matter

ΘΑΥΜΑΤΑ ΚΑΙ ΜΥΣΤΗΡΙΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ


To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδι

Β. ΘΕΜΑΤΑ ΑΣΤΡΟΝΟΜΙΑΣ

Νετρίνο το σωματίδιο φάντασμα

Αστρονομία στις ακτίνες γ

Μερικές αποστάσεις σε έτη φωτός: Το φως χρειάζεται 8,3 λεπτά να φτάσει από τον Ήλιο στη Γη (απόσταση που είναι περίπου δεκάξι εκατομμυριοστά του

Εισαγωγή Οι µαύρες τρύπες είναι ουράνια σώµατα σαν όλα τα άλλα, όπως οι πλανήτες και ο ήλιος, τα οποία όµως διαφέρουν από αυτά σε µία µικρή αλλά θεµελ

Δρ. Μανώλης Ξυλούρης, Φεβρουάριος 2004

Ανακάλυψη βαρυτικών κυμάτων από τη συγχώνευση δύο μαύρων οπών. Σελίδα LIGO

1 Μονάδες - Τυπικά μεγέθη. 2 Η Διαστολή και η Ηλικία του Σύμπαντος ΚΟΣΜΟΓΡΑΦΙΑ. 2.1 Ο νόμος του Hubble. Διδάσκων: Θεόδωρος Ν.

Ο ΝΟΜΟΣ TOY HUBBLE ΚΑΙ Η ΔΙΑΣΤΟΛΗ ΥΠΟΒΑΘΡΟΥ

Μ αρέσει να κοιτάω ψηλά. Αλλά τι είναι αυτό που βλέπω;;

ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΠΙΣΚΕΨΗΣ ΤΩΝ ΜΑΘΗΤΩΝ : ΤΟΥ ΠΣΠΑ ΤΗΣ ΒΠΣ ΣΤΟ. public.web.cern.ch/ public/en/about/ About-en.html

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Εξαιρετικά σπάνια διάσπαση στο CMS, CERN 19 Ιουλίου 2012

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

Ανακάλυψη βαρυτικών κυµάτων από τη συγχώνευση δύο µαύρων οπών. Σελίδα LIGO

Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις

ΤΟ ΠΛΗΘΩΡΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΔΥΝΑΤΟΤΗΤΑ ΕΠΙΛΥΣΗΣ ΚΟΣΜΟΛΟΓΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. ΓΟΥΡΓΟΥΛΙΑΤΟΣ ΧΕΙΜΩΝΑΣ 2004

Λόγοι που ήθελαν να σταματήσουν το πείραμα το CERN

διατήρησης της μάζας.

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Αστροφυσικοί πίδακες: Εκροή ύλης από μαύρες τρύπες

Εργαστήριο Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών.

Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση. Θωµάς Μελίστας Α 3

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ

H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ

Aναλαµπές ακτίνων -γ

7.2. ΠΑΡΑΤΗΡΗΣΕΙΣ (ΚΑΤΑ ΣΕΙΡΑ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ)

Δx

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

Αστρικά Συστήματα και Γαλαξίες

ΑΝΙΧΝΕΥΤΕΣ ΚΑΒΑΛΑΡΗ ΑΝΝΑ ΟΙΚΟΝΟΜΙΔΟΥ ΙΩΑΝΝΑ ΚΟΥΣΟΥΝΗ ΜΑΡΓΑΡΙΤΑ

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Η ΕΣΩΤΕΡΙΚΗ ΔΟΜΗ ΤΟΥ ΗΛΙΟΥ

Τα Κύματα της Βαρύτητας

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/04/16

Ηλιακά νετρίνα. Εικόνα 1 Πυρηνικές αντιδράσεις στο κέντρο του ηλίου. * σ ve : 9.3*10-45 cm 2 (E/Mev) 2

Υπάρχουν οι Μελανές Οπές;

ΕΜΕΙΣ ΚΙ Ο ΚΟΣΜΟΣ. Λεονάρδος Γκουβέλης. Διημερίδα Αστροφυσικής 4-5 Απριλίου

ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ

Αστρική Εξέλιξη. Η ζωή και ο θάνατος των αστέρων. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Κεφάλαιο 6 ο : Φύση και

Η ΜΕΓΑΛΗ ΑΡΚΤΟΣ. Τα κυριότερα αντικείμενα της Μ. Άρκτου ALIOTH. Μπλε γίγαντας ορατός με γυμνό μάτι. Απόσταση : 82 ε.φ. Διάμετρος : 6 εκ. χιλιόμετρα.

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16

Η κατακόρυφη τομή...

Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ευτράπελα σχετικά με τον επιταχυντή LHC και τους ελέφαντες. Μετάφραση του Fun facts about LHC and elephants του Πανεπιστημίου του Birmingham

ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ. Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH)

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Μάθημα 1

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ

ΟΡΟΣΗΜΟ ΘΕΜΑ Δ. Δίνονται: η ταχύτητα του φωτός στο κενό c 0 = 3 10, η σταθερά του Planck J s και για το φορτίο του ηλεκτρονίου 1,6 10 C.

Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Τμήμα Φυσικής ΕΚΠΑ. Μελανές Οπές

ΕΝΤΟΝΑ ΗΛΙΑΚΑ ΦΑΙΝΟΜΕΝΑ

ΑΣΤΕΡΟΣΚΟΠΕΙΟ ΣΚΙΝΑΚΑ ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ MAX-PLANCK-INSTITUT FUER EXTRATERRESTRICHE PHYSIK

Κβαντικό κενό ή πεδίο μηδενικού σημείου και συνειδητότητα Δευτέρα, 13 Οκτώβριος :20. Του Σταμάτη Τσαχάλη

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

ΤΑ ΑΚΡΟΤΑΤΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

ΠΕΙΡΑΜΑ FRANK-HERTZ ΜΕΤΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΕΓΕΡΣΗΣ ΕΝΟΣ ΑΤΟΜΟΥ

Εκλαϊκευτική Ομιλία. Θεοδώρα. Παπαδοπούλου, Ομ. Καθηγήτρια Φυσικής, ΕΜΠ Μέλος του Συμβουλίου Πελοποννήσου. Ημερίδα CERN Τρίπολη, 13 Νοεμβρίου 2013

Εισαγωγή στην Αστροφυσική

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Ατομική φύση της ύλης. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης

Το χρονικό του χρόνου (Stephen Hawking)

Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας

ΠΡΟΓΡΑΜΜΑ ΠΑΡΟΥΣΙΑΣΕΩΝ ΕΡΓΑΣΙΩΝ ΠΑΡΑΤΗΡΗΣΙΑΚΗΣ ΑΣΤΡΟΦΥΣΙΚΗΣ 2017

Το Φως της Αστροφυσικής Αν. καθηγητής Στράτος Θεοδοσίου Πρόεδρος της Ένωσης Ελλήνων Φυσικών

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ιστοσελίδα μαθήματος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΓΕΝΝΗΣΗ ΕΞΕΛΙΞΗ ΚΑΙ ΘΑΝΑΤΟΣ ΑΣΤΕΡΩΝ

Transcript:

www.perignoseos.edu.gr -ΣΚΟΤΕΙΝΗ ΥΛΗ (BLACK - Επιστημονικό Άρθρο...Πράξεις Παιδείας Or DARK MATTER)"dunkle Materie" Φωτογραφία: NASA Η κατανόηση της «σκοτεινής ύλης» αποτελεί μια από τις μεγαλύτερες προκλήσεις της σύγχρονης φυσικής. Η σκοτεινή ύλη αντιστοιχεί στο 25% του Σύμπαντος, ενώ αντίστοιχα η ορατή ύλη, την οποία παρατηρούμε γύρω μας, καταλαμβάνει μόνο το 5% του Σύμπαντος. Αν και φαίνεται να κυριαρχεί στο Σύμπαν μας, αυτό το αινιγματικό υλικό δεν έχει ποτέ ανιχνευθεί. Η σκοτεινή ύλη δε μπορεί να παρατηρηθεί απευθείας από τηλεσκόπια όπως συμβαίνει με απομακρυσμένους γαλαξίες, καθώς δεν εκπέμπει ούτε απορροφά φως. Σε αυτή την ιδιότητα οφείλεται και ο χαρακτηρισμός της ως «σκοτεινής». Η «σκοτεινή ύλη» δεν αλληλεπιδρά με καμία από τις τέσσερις θεμελιώδεις αλληλεπιδράσεις που γνωρίζουμε σήμερα, πλην της βαρύτητας. Οι βαρυτικές επιδράσεις της μας οδήγησαν να συμπεράνουμε την ύπαρξή της και κάποιες από τις ιδιότητές της. Ωστόσο, παρά τον ρόλο που παίζει στην εξέλιξη και δομή του Σύμπαντος λίγα πράγματα είναι γνωστά για τη φύση της σκοτεινής ύλης. Η «σκοτεινή» της σύσταση σε συνδυασμό με

το γεγονός πως υπερτερεί της ορατής ύλης μέσα στο Σύμπαν, καθιστούν την ανίχνευσή της μια από τις μεγαλύτερες πειραματικές προκλήσεις. Ένα σύνολο πειραμάτων προσπαθούν να ανιχνεύσουν και να μελετήσουν σωματίδια που έχουν προταθεί ως υποψήφια για την σύστασή της. Πειράματα που λαμβάνουν χώρα σε πανίσχυρους επιταχυντές σωματιδίων ή σε τηλεσκόπια εγκατεστημένα στο διάστημα. Ποιοι λόγοι μας οδηγούν να πιστεύουμε πως υπάρχει «σκοτεινή ύλη»; Εύλογα αναρωτιέται κανείς πως οδηγηθήκαμε στο συμπέρασμα για την ύπαρξη της σκοτεινής ύλης. Γιατί εισάγαμε την ύπαρξη ενός τόσο μυστηριώδους συστατικού στο Σύμπαν; Οι ενδείξεις για την ύπαρξή της προέρχονται κυρίως από παρατηρήσεις γαλαξιών καθώς και από κοσμολογικές παρατηρήσεις, που μας οδηγούν σε συμπεράσματα για την ιστορία και τον τρόπο που εξελίχθηκε μετά την Μεγάλη Έκρηξη. Η πρώτη παρατήρηση για την ύπαρξη της σκοτεινής ύλης ήρθε από τη μελέτη του σμήνους γαλαξιών COMA, περισσότερο γνωστό ως Κόμη της Βερενίκης, από τον Ελβετό αστρονόμο Fritz Zwicky το 1933. Ο F. Zwicky (February 14, 1898 February 8, 1974) μελέτησε την κίνηση των περίπου 1000 γαλαξιών που αποτελούν το σμήνος. Υπολογίζοντας την ταχύτητα περιστροφής του σμήνους και εφαρμόζοντας τους νόμους της κλασσικής μηχανικής - όπου η ταχύτητα περιστροφής συνδέεται με τη βαρυτική δύναμη που ασκείται σε αυτό - ο Zwicky υπολόγισε τη συνολική μάζα του Σμήνους. Στη συνέχεια, ο Zwicky κατέγραψε και το συνολικό φως που εκπέμπεται από τους γαλαξίες της Κόμης της Βερενίκης. Γνωρίζοντας τη μάζα και το συνολικό φως που εκπέμπεται από αυτό το σμήνος γαλαξιών, υπολόγισε τον λόγο (Φωτεινότητας/Μάζας) και με έκπληξη διαπίστωσε την τεράστια ασυμφωνία σε σχέση με τον αντίστοιχο λόγο (φωτεινότητας/μάζας) που ισχύει για ένα τυπικό αστέρι όπως ο Ήλιος μας. Η διαφορά άγγιζε τις δύο τάξεις μεγέθους και ήταν φανερό πως δεν μπορεί να προέρχεται από κάποιο στατιστικό λάθος. Κάτι περίεργο έπρεπε να συμβαίνει στο σμήνος Γαλαξίας για να εξηγήσει αυτή την μεγάλη απόκλιση από τις τιμές που ισχύουν σε ένα αστέρι. Ο μόνος τρόπος για να συμβιβάσει τις μετρήσεις του με την τιμή, που θα περιμέναμε για έναν γαλαξία που περιέχει τυπικά αστέρια όπως ο δικός μας, ήταν να υποθέσουμε πως στον Γαλαξία υπήρχε ταυτόχρονα και μια μεγάλη ποσότητα μάζας, η οποία δεν εκπέμπει φως και άρα δεν συμβάλλει στη φωτεινότητα. Με αυτή την υπόθεση ο λόγος (Φωτεινότητας/Μάζας) θα έπαιρνε μικρότερες τιμές κοντά σε αυτές που γνωρίζουμε από τον Ήλιο μας. Πράγματι, ο Zicky πρότεινε την ύπαρξη μιας επιπλέον ποσότητας ύλης, η οποία δεν εξέπεμπε φως και η οποία ονομάστηκε «σκοτεινή ύλη». Την ίδια χρονιά, οι αστροφυσικοί Jeremiah Ostriker και James Peebles ανέπτυξαν έναν υπολογιστικό κώδικα, που προσομοιώνει την εξέλιξη των γαλαξιών λαμβάνοντας υπόψη την αλληλεπίδραση ύλης και ακτινοβολίας. Στα μοντέλα τους παρατηρούσαν πως κατά την εξέλιξη ενός Γαλαξία η μάζα του τείνει να συγκεντρωθεί στο κέντρο. Το συμπέρασμα ήταν εντυπωσιακό καθώς έρχεται σε αντίθεση με τις παρατηρήσεις Γαλαξιών που φαίνονται να έχουν μια ελλειπτική ή σπειροειδή μορφή (όπως φαίνεται στην παρακάτω εικόνα από το

τηλεσκόπιο Hubble). Με άλλα λόγια, η μάζα τους δεν φαίνεται να καταρρέει προς το κέντρο, αλλά παρουσιάζει μια κατανομή γύρω από αυτό. Για να κάνει τα πράγματα πιο περίπλοκα, το μοντέλο τους έδειχνε πως στον χρόνο μιας περιστροφής - που για έναν Γαλαξία σαν τον δικό μας ισοδυναμεί με 50 εκατομμύρια χρόνια - η μάζα του Γαλαξία καταρρέει στο κέντρο του και ένα μικρό κομμάτι της καταλαμβάνει απομακρυσμένες θέσεις στις παρυφές του Γαλαξία. Πρακτικά, δηλαδή, κανένας Γαλαξίας δεν θα μπορούσε να δημιουργηθεί αφού αργά ή γρήγορα όλοι θα κατέρρεαν προς το κέντρο τους. Ο μόνος τρόπος για να πάρουν διαφορετικά αποτελέσματα από την προσομοίωση γαλαξιών ήταν να υποθέσουν την ύπαρξη περισσότερης ύλης, η οποία δεν αλληλεπιδρά με την ακτινοβολία. Πρόκειται για μια ακόμη ένδειξη - έστω και αν έρχεται από αριθμητικές προσεγγίσεις - για ένα είδος ύλης που δεν αλληλεπιδρά με το φως και άρα μπορεί να ονομαστεί «σκοτεινή» ύλη. Το 1973, οι παρατηρήσεις της ταχύτητας περιστροφής γαλαξιών από την Vera Rubin και τον Kent Ford επιβεβαίωσαν τις πρώτες υποψίες. Οι Rubin και Ford μελετούσαν τον γειτονικό μας γαλαξία της Ανδρομέδας. Παρά τις δυσκολίες στη μέτρηση, κατάφεραν να υπολογίσουν με μεγάλη ακρίβεια την ταχύτητα των νεφών υδρογόνου της Ανδρομέδας. Προς έκπληξή τους προέκυπτε πως η ταχύτητα περιστροφής των νεφών υδρογόνου μένει ίδια ακόμη και σε μεγάλες αποστάσεις από το κέντρο του Γαλαξία, γεγονός που έρχεται σε αντίθεση με όσα θα περίμενε κανείς από τον νόμο του Kepler. Προκειμένου να εξηγηθεί η παρατηρούμενη ασυμφωνία, ήταν απαραίτητο να εισαχθεί μια επιπλέον ποσότητα «σκοτεινής» ύλης. Μάλιστα, η Rubin πρότεινε πως για να συμφωνούν τα δεδομένα με τον νόμο του Κέπλερ, η ποσότητα της

«σκοτεινής ύλης» στον γαλαξία της Ανδρομέδας θα πρέπει να αυξάνεται καθώς απομακρυνόμαστε από το κέντρο του. Εικόνα 1.1. Στην παραπάνω εικόνα μπορεί να δει κανείς τα πράσινα σημεία που αντιστοιχούν στις ταχύτητες περιστροφής αστεριών στον γαλαξία Μ33. Τα πορτοκαλί σημεία δείχνουν τις ταχύτητες περιστροφής που περιμέναμε για αντικείμενα εντός του φωτεινού δίσκου του Γαλαξία. Φαίνεται ξεκάθαρα η απόκλιση που παρατηρείται, καθώς η ταχύτητα μεγαλώνει ενώ απομακρυνόμαστε από το κέντρο του Γαλαξία. Η διαφορά αυτή αποτελεί μια από τις ισχυρότερες ενδείξεις για την ύπαρξη σκοτεινής ύλης στον Γαλαξία, η οποία κάνει αισθητή την παρουσία της μέσω της βαρύτητας. Η ανακάλυψη της Κοσμικής Ακτινοβολίας Υποβάθρου. Κομβικό σημείο για την εξέλιξη της σύγχρονης κοσμολογίας αλλά και την κατανόηση της ύπαρξης σκοτεινής ύλης υπήρξε η ανακάλυψη της Κοσμικής Ακτινοβολίας Υποβάθρου και η πρόσφατη λεπτομερής χαρτογράφησή της από την αποστολή Planck του Ευρωπαικό Οργανισμό Διαστήματος (2013). Η Κοσμική Ακτινοβολία Υποβάθρου (ΚΑΥ) είναι ένα αρχέγονο φως, που δημιουργήθηκε περίπου 380.000 χρόνια μετά τη Μεγάλη Έκρηξη. Από τότε, ταξιδεύει στο Σύμπαν μεταφέροντας πληροφορίες. Στα τηλεσκόπια φαίνεται ως ένα «ψυχρό» φως που έρχεται από όλες τις διευθύνσεις και η ενέργειά του αντιστοιχεί σε θερμοκρασία 2.7Κ. Μελετώντας τα χαρακτηριστικά της ΚΑΥ, μπορούμε να αντλήσουμε πληροφορίες για τη σύσταση του σύμπαντος και για το πώς εξελίχτηκε μετά τη Μεγάλη Έκρηξη. Το πρώτο εντυπωσιακό δεδομένο από τη μελέτη της ΚΑΥ είναι η ομοιομορφία της. Παρατήρηση που

μας οδηγεί στο συμπέρασμα πως η ύλη που δημιουργήθηκε αμέσως μετά τη Μεγάλη Έκρηξη πρέπει να εξαπλώθηκε με ομοιόμορφο τρόπο. Οι πρώτες διακυμάνσεις στην κατανομή της ΚΑΥ παρατηρήθηκαν από τη χαρτογράφηση αυτής της ακτινοβολίας, που έγινε το 1992 από τον δορυφόρο COBE (Cosmic Background Explorer) της NASA. Πρόκειται για την αρχαιότερη φωτογραφία του Σύμπαντος, που διαθέτουμε, καθώς είναι το πρώτο φως που ταξιδεύει ελεύθερο στο Σύμπαν. Τα δεδομένα έδειξαν ορισμένες διακυμάνσεις στην κατανομή της θερμοκρασίας της ΚΑΥ, που πιθανότατα δημιουργήθηκαν περίπου 400.000 χρόνια μετά τη Μεγάλη Έκρηξη. Οι διακυμάνσεις αυτές αντιστοιχούν σε θερμές και ψυχρές περιοχές του Σύμπαντος, που συνδέονται αντίστοιχα με περιοχές χαμηλής και υψηλής συγκέντρωσης ύλης. Η ανισοτροπία αυτή μελετήθηκε με ακόμη μεγαλύτερη ακρίβεια από μετέπειτα διαστημικές αποστολές, όπως ο WMAP (2001-10) και πιο πρόσφατα, το 2013, από τον δορυφόρο Planck της ESA, που μας προσέφερε έναν εξαιρετικά λεπτομερή χάρτη της ΚΥΑ, φανερώνοντας με μεγαλύτερη ακρίβεια τις διακυμάνσεις αυτής της ακτινοβολίας.

Εικόνα 2. Η κατανομή της κοσμικής ακτινοβολίας υποβάθρου από τον δορυφόρο WMAP (2005) και Planck (2013). Από τη σύγκριση των δυο εικόνων φαίνεται εύκολα και η διαφορά στον βαθμό λεπτομέρειεας. Με βάση τη θεωρία της βαρύτητας του Αϊνστάιν και τις εξισώσεις του για την περιγραφή του χωρόχρονου και λαμβάνοντας υπόψη τις παρατηρούμενες ανωμαλίες της ΚΑΜ, o χρόνος των 13,7 δισεκατομμυρίων χρόνων, που πέρασε από τη Μεγάλη Έκρηξη, δεν θα ήταν αρκετός για να επιτρέψει τη δημιουργία μεγάλων δομών όπως οι γαλαξίες μας. Με πιο απλά λόγια, το ερώτημα είναι πως μπορεί κανείς να συμβιβάσει τη σχετικά ομοιογενή κατανομή ακτινοβολίας, που παρατηρεί στο Σύμπαν, με τη μεγάλη ανομοιογένεια που παρατηρείται στην κατανομή της ύλης η οποία συγκεντρώνεται σε αστέρια, γαλαξίες ή σμήνη Γαλαξιών. Η δημιουργία τέτοιων δομών μπορεί να εξηγηθεί μόνο αν κανείς υποθέσει πως υπάρχει πολύ περισσότερη ύλη στο Σύμπαν σε σχέση με αυτήν που παρατηρούμε, η οποία δεν αλληλεπιδρά με την ακτινοβολία. Πρόκειται για ένα ακόμη στοιχείο - ίσως το κρισιμότερο υπέρ της υπόθεσης της ύπαρξης της λεγόμενης σκοτεινής ύλης. Συγκεκριμένα, οι μετρήσεις αυτές δείχνουν πως το σύμπαν αποτελείται κατά 30% από ύλη. Από αυτό το ποσοστό, μόνο το 5% αντιστοιχεί στην ύλη που παρατηρούμε γύρω μας - το υπόλοιπο 25% είναι κάτι άλλο. Πρόσφατες μετρήσεις από τον δορυφόρο Planck δείχνουν πως η σκοτεινή ύλη αντιστοιχή στο 83% της συνολικής ύλης που περιέχεται στο Σύμπαν - είναι δηλαδή 4 φορές περισσότερη από την ορατή ύλη. Μετά από δεκαετίες αστροφυσικών παρατηρήσεων υψηλής ακριβείας, είμαστε πλέον σίγουροι πως η πλειοψηφία της ύλης που σχηματίζει τους γαλαξίες, σμήνη γαλαξιών και τις μεγαλύτερες δομές ύλης, που παρατηρούμε στο Σύμπαν μας, είναι «σκοτεινό». Το συμπέρασμα για την ύπαρξή της προκύπτει από ακριβείς μετρήσεις της ταχύτητας περιστροφής γαλαξιών σε σμήνη, της λεγόμενης γαλακτικής καμπύλης περιστροφής, της μέτρησης της κοσμικής ακτινοβολίας υποβάθρου, της αφθονίας των ελαφρών στοιχείων

και της χαρτογράφησης μεγάλων δομών στο Σύμπαν αλλά και της κοσμικής ακτινοβολίας υποβάθρου. Σύγκρουση Γαλαξιών: Το σμήνος της σφαίρας Το πιο πρόσφατο εύρημα, που φαίνεται να υποστηρίζει την ύπαρξη της σκοτεινής ύλης, είναι η παρατήρηση δυο γαλαξιών (σε απόσταση 3.5 δις έτη φωτός από τη Γη) που διαπέρασαν ο ένας τον άλλο μετά από μια βίαιη σύγκρουση και τώρα απέχουν 2 εκ. έτη φωτός. Οι γαλαξίες αυτοί είναι γνωστοί ως 1Ε0657-56 ή το σμήνος της σφαίρας (Bullet Cluster) λόγω του βίαιου γεγονότος που προηγήθηκε. Τα άστρα εντός των γαλαξιών φαίνονται να μένουν άθικτα, ενώ τα αέρια που καταλαμβάνουν τον μεγάλο χώρο σε έναν γαλαξία αλληλεπιδρούν πολύ έντονα. Το αποτέλεσμα της σύγκρουσης ήταν η απελευθέρωση ενός εξαιρετικά θερμού κύματος αερίων, που αποτελεί το 90% περίπου της φωτεινής τους μάζας, γεγονός που έγινε αντιληπτό από τ- μέτρηση της εκπομπής ακτίνων Χ. Χαρτογραφήσεις του βαρυτικού πεδίου κατά τη διάρκεια της σύγκρουσης δείχνουν πως η κατανομή της συνολικής μάζας του σμήνους είναι τελείως διαφορετική από την κατανομή της φωτεινής ύλης των δύο γαλαξιών.. Πιο συγκεκριμένα, το κέντρο της συνολικής μάζας του σμήνους - που βρίσκεται με τεχνικές στηριγμένες στη μέτρηση της καμπύλωσης του φωτός λόγω βαρυτικών πεδίων 1 - βρέθηκε να είναι μετατοπισμένο σε σχέση με το κέντρο μάζας της παρατηρήσιμης ύλης των δύο σμηνών, με παρατηρήσεις στο ορατό φάσμα και με ακτίνες Χ. Το γεγονός αυτό μπορεί να εξηγηθεί μόνο αν κανείς υποθέσει την ύπαρξη σκοτεινής ύλης μεταξύ των γαλαξιών του Bullet Cluster, η οποία αλληλεπιδρά με διαφορετικό τρόπο από τη συνήθη ύλη. Η παρατήρηση της σύγκρουσης των δυο γαλαξιών του Bullet Cluster συχνά αναφέρεται και ως η πιο καθοριστική απόδειξη υπέρ της ύπαρξης σκοτεινής ύλης απέναντι στις διάφορες θεωρίες τροποποιημένης βαρύτητας (MOND). Ωστόσο, μέχρι την παρατήρηση

κάποιου σωματιδίου σκοτεινής ύλης, δεν μπορεί κανείς να αποκλείσει κανένα εναλλακτικό ενδεχόμενο. Θα κλείσουμε παρουσιάζοντας έναν από τους πρώτους τρισδιάστατους χάρτες που απεικονίζουν την ύπαρξη σκοτεινής ύλης στο Σύμπαν μας. Πρόκειται για έναν χάρτη που έγινε με βάση τα δεδομένα του COSMOS, μιας έρευνας που έγινε με το Hubble. Καθώς η ύπαρξή της κερδίζει όλο και περισσότερο έδαφος, πληθαίνουν και οι διαφορετικές θεωρίες για τα υποψήφια σωματίδια σκοτεινής ύλης. Πως όμως μπορούμε να παρατηρήσουμε τη σκοτεινή ύλη στο εργαστήριό μας; Ποια είναι τα υποψήφια σωματίδια από τα οποία μπορεί να αποτελείται; Τι έχουμε μάθει τόσο από τα πειράματα του LHC όσο και από άλλα πειράματα μέχρι τώρα; Σε αυτά τα ερωτήματα θα προσπαθήσουμε να απαντήσουμε στο επόμενο σημείωμα ενώ ταυτόχρονα θα συζητήσουμε τη σημασία της σκοτεινής ύλης για τη σύγχρονη φυσική και τα επόμενα βήματα στον 21ο αιώνα. --------------------------------------1Το φαινόμενο του βαρυτικού φακού, αναφέρεται στο γεγονός πως μία μεγάλη συγκέντρωση μάζας συγκεντρώνει γύρω της ακτίνες φωτός, όπως ένας μεγεθυντικός φακός συγκεντρώνει τις ακτίνες του Ήλιου.

ΑΝΙΧΝΕΥΟΝΤΑΣ ΤΗΝ ΣΚΟΤΕΙΝΗ ΥΛΗ II ΜΕΡΟΣ ΙΙ Πριν λίγες ημέρες ανακοινώθηκε από την Αμερικανική Επιτροπή Ενέργειαςη έγκριση της κατασκευής ενός νέου πειράματος για την ανίχνευση της σκοτεινής ύλης. Το LUXZEPLIN (LZ)έχει 100πλάσια ευαισθησία από προηγούμενα πειράματα και σύμφωνα με την ανακοίνωση θα αναζητήσει τα ίχνη ενός υποθετικού είδους σωματιδίων που ονομάζονται «ασθενώς αλληλεπιδρώντα βαρέα σωματίδια» (WIMP). Πρόκειται για ένα από τα επικρατέστερα υποψήφια σωματίδια σκοτεινής ύλης και η ανακάλυψή τους θα απαντήσει σε ένα από τα μεγαλύτερα ερωτήματα της σύγχρονης φυσικής. Πώς όμως μπορούμε να παρατηρήσουμε την σκοτεινή ύλη και ποιά είναι τα υποψήφια σωματίδια; Όπως περιγράψαμε στο προηγούμενο σημείωμα, μια σειρά παρατηρήσεων μας οδηγεί στο συμπέρασμα πως το μεγαλύτερο μέρος της ύλης του Σύμπαντος διαφέρει από την ύλη από την οποία είμαστε φτιαγμένοι εμείς, η οθόνη του υπολογιστή σας και ο Ήλιος μας. Η λεγόμενη «σκοτεινή ύλη» καταλαμβάνει το 25% του Σύμπαντος, ενώ την ίδια στιγμή η ορατή ύλη μόνο το 4-6%.

Η μελέτη της σκοτεινής ύλης αποτελεί σήμερα μια από τις μεγαλύτερες προκλήσεις της πειραματικής φυσικής. Η ανίχνευση σωματιδίων «σκοτεινής ύλης» και η μελέτη του τρόπου, που αλληλεπιδρούν με την «ορατή» ύλη, μπορεί να μας δώσει μια βαθύτερη κατανόηση της φύσης και στην επαναδιατύπωση των θεωριών που την περιγράφουν. Εύλογα γεννιέται το ερώτημα: Πώς μπορούμε να παρατηρήσουμε κάτι που από τη φύση του δεν αλληλεπιδρά με το ορατό φως ή για την ακρίβεια με την ηλεκτρομαγνητική ακτινοβολία; Για να απαντήσουμε θα πρέπει να κάνουμε ορισμένες υποθέσεις σχετικά με τη φύση της σκοτεινής ύλης, προκειμένου να σχεδιάσουμε τα κατάλληλα πειράματα για την ανίχνευσή της. Σε γενικές γραμμές, σήμερα, υπάρχουν δύο «οικογένειες» σκοτεινής ύλης που ερευνούν οι επιστήμονες: η βαρυονική και η μη βαρυονική. Η πρώτη είναι συνηθισμένης μορφής ύλη, η οποία για κάποιο λόγο δεν εκπέμπει κάποιας μορφής ακτινοβολία, που θα την καθιστούσε ορατή. Χαρακτηριστικό παράδειγμα αποτελούν τα MACHO s: (Massive Compact Halo Objects), δηλαδή Μεγάλης Μάζας Συμπαγή Αντικείμενα της Άλω. Τέτοια αντικείμενα μπορούν να είναι καφέ νάνοι με μάζες κάτω από 0,08 της μάζας του Ήλιου ή άλλα αντικείμενα με μάζα κοντά στη μάζα του Δία (0.001 της μάζας του Ήλιου). Εναλλακτικά, τα MACHO θα μπορούσαν να είναι μελανές οπές με μάζες 10-100 φορές την μάζα του Ήλιου. Αν ο περιγαλαξιακός χώρος αποτείται από ΜACHOs, τότε, όταν ένα από αυτά περάσει πολύ κοντά στην γραμμή όρασης μεταξύ ενός παρατηρητή και ενός μακρινού άστρου υποβάθρου, το βαρυτικό του πεδίο θα καμπυλώσει το φως του άστρου και η φωτεινότητα του αστεριού θα αυξηθεί προσωρινά σε όλα τα μήκη κύματος. Πρόκειται για ένα φαινόμενο γνωστό ως βαρυτική μικροεστίαση. Για την ανίχνευση σκοτεινής ύλης που μπορεί να έχει την μορφή MACHOs απαιτείται παρακολούθηση πολλών άστρων για μεγάλα διαστήματα, προκειμένου να καταγραφούν τέτοιες αλλαγές στη φωτεινότητα. Τρεις διαφορετικές ερευνητικές ομάδες, το MACHOS, EROS, OGLE παρατήρησαν εκατομμύρια άστρα στο μεγάλο και το μικρό νέφος του Μαγγελάνου και στη γαλαξιακή μας γειτονιά. Μάλιστα, το OGLE III που παρατήρησε το νέφος του Μαγγελάνο παρατήρησε σε διάστημα 7 ετών 4 περιπτώσεις που μπορεί να οφείλονται στο φαινόμενο του βαρυτικού φακού. Ωστόσο μέχρι σήμερα τα γεγονότα μικροεστίασης, που έχουν παρατηρηθεί δεν είναι αρκετά για να εξηγήσουν όλη την ποσότητα της βαρυτικά παρατηρούμενης σκοτεινής ύλης στον περιγαλαξιακό χώρο. Η μη-βαρυονική σκοτεινή ύλη Τα σενάρια της μη-βαρυονικής σκοτεινής ύλης στηρίζονται στο γεγονός πως τα σωματίδια που περιγράφονται από το Καθιερωμένο Μοντέλο δεν μπορούν να αποτελούν τη σκοτεινή ύλη. Σύμφωνα με αυτά τα σενάρια, η σκοτεινή ύλη μπορεί να αποτελείταια από βαριά νετρίνο - για τα οποία θα μιλήσουμε σε άλλο σημείωμα - ή από δύο άλλες κατηγορίες σωματιδίων που είναι τα αξιόνια και τα WIMPs. Eπιπλέον, όπως η ορατή ύλη αποτελείται από μια ποικιλία σωματιδίων, όπως τα πρωτόνια και τα ηλεκτρόνια, δεν θα ήταν παράλογο να περιμένει κανείς πως και η σκοτεινή ύλη θα αποτελείται από διαφορετικά είδη σωματιδίων. Αξιόνια Αναφέραμε πως τα σωµατίδια της σκοτεινής ύλης θα πρέπει να είναι ευσταθή σε κοσµολογικές χρονικές κλίµακες, διαφορετικά θα είχαν ήδη διασπασθεί. Επιπλέον, δεν θα

πρέπει να αλληλεπιδρούν ηλεκτροµαγνητικά µε την ύλη, καθώς ήδη αναφέραμε πως η σκοτεινή ύλη ούτε απορροφά, ούτε εκπέμπει φως. Στο πλαίσιο του Καθιερωµένου Προτύπου των αλληλεπιδράσεων, οι σηµαντικότεροι υποψήφιοι που πληρούν τις παραπάνω προυποθέσεις, εκτός από τα νετρίνα, είναι τα αξιόνια ή σωματίδια σαν τα αξιόνια [ALP=axionlike-particles]. Τα αξιόνια μπορεί επίσης να βοηθήσουν να λυθεί ένας γρίφος στο Καθιερωμένο Πρότυπο που αφορά την παρατηρούμενη ασυμμετρία μεταξύ της ύλης και της αντιύλης στο Σύμπαν. Πρόκειται για τη λεγόμνη παραβίαση της συμμετρίας CP, η οποία όμως μπορεί να εξηγηθεί, αν πράγματι καταφέρναμε να ανιχνεύσουμε κάποιο αξιόνιο. Τα αξιόνια είναι σωματίδια με εξαιρετικά μικρή μάζα, από 1 μev μέχρι 1 ev, δηλαδή το ένα εκατομμυριοστό του ηλεκτρονίου. Μάζες πέραν αυτού του εύρους φαίνονται απίθανες εξαιτίας θεωρητικών και αστροφυσικών παρατηρήσεων. Επίσης, είναι ηλεκτρικά ουδέτερα και αλληλεπιδρούν πολύ ασθενώς με την ύλη. Αν τα αξιόνια παράχθηκαν στο πρώιμο σύμπαν, τότε θα μπορούσαν να ευθύνονται για το σύνολο ή για ένα σημαντικό κλάσμα της ψυχρής σκοτεινής ύλης. Συγκεκριμένα, μια πυκνότητα της τάξης των 1014 αξιονίων/cm³ είναι συμβατή με τη συνολική πυκνότητα του Σύμπαντος που βλέπουμε. Τα αξιόνια μπορούν να ανιχνευθούν μέσου της αλληλεπίδρασής τους με φωτόνια υπό την παρουσία μαγνητικού πεδίου. Βασική αρχή, που χρησιμοποιείται στην ανίνχευση, είναι η μετατροπή αξιονίων σε φωτόνια και αντιστρόφως. Πρόκειται για το φαινόμενο Primakoff, στο οποίο η αλληλεπίδραση δύο φωτονίων υπό την επίδραση πολύ ισχυρού ηλεκτρομαγνητικού πεδίου μπορεί να οδηγήσει σε παραγωγή αξιονίων και αντιστρόφως η αλληλεπίδραση ενός αξιονίου με ένα δυνητικό φωτόνιο σε ανιχνεύσιμο φωτόνιο. Στην πρώτη περίπτωση ένας αριθμός φωτονίων που διαπερνά ένα μαγνητικό πεδίο μπορεί να μετατρέπεται σε αξιόνια. Με έναν παρόμοιο μηχανισμό αξιόνια θα παράγονται στον Ήλιο καθώς το φως διαπερνά το μαγνητικό του πεδίο. Συγκεκριμένα, αξιόνια θα παράγονται καθώς φωτόνια πολύ υψηλής ενέργειας διαπερνούν τα ισχυρά ηλεκτρομαγνητικά του πεδία. Η μέτρηση αξιονίων, που μπορεί να παραγόνται στον Ήλιο, ήταν ένας από τους βασικούς πειραματικούς στόχους του πειράματος CAST - ενος ηλιακού τηλεσκοπίου που λειτουργεί στο CERN από το 2003.

Το πείραμα CAST που ψάχνει για ηλιακά αξιόνια χρησιμοποιώντας έναν από τους διπολικούς μαγνήτες που αναπτύχθηκαν για τον LHC. (Credits@CERN). Το τηλεσκόπιο είναι κατασκευασμένο από ένα μαγνητικό δίπολο που χρησιμοποιεί ο LHC και κοίλους σωλήνες που ενεργούν ως οπτικοί σωλήνες. Για να μπορέσει ο μαγνήτης να λειτουργεί σε υπεραγώγιμη κατάσταση, παρέχεται σε κρυογονική υποδομή που χρησιμοποιήθηκε στο πείραμα DELPHI. Το κατοπτρικό σύστημα εστίασης ακτίνων Χ έχει παραχωρηθεί από Γερμανικό διαστημικό πρόγραμμα. Μέχρι σήμερα το CAST δεν έχει ανιχνεύσει κάποιο αξιόνιο, ωστόσο οι ερευνητές έχουν καταφέρει να περιορίσουνν σημαντικά το πιθανό εύρος μαζών που μπορούν να έχουν τα αξιόνια. Στην αντίθετη περίπτωση, που τα φωτόνια μετατρέπονται σε αξιόνια, στηρίζονται πειράματα της κατηγορίας «διάδοση φωτός μέσα από έναν τοίχο». Ένα από αυτά είναι και το πείραμα OSQAR του CERN, όπου μια δέσμη laser διέρχεται μέσα από μαγνητικό πεδίο 9 Τ (περίπου 360.000 φορές το μαγνητικό πεδίο της Γης). Αυτό το μαγνητικό πεδίο θα μπορούσε να μετατρέψει ορισμένα από τα φωτόνια της δέσμης lazer σε αξιόνια. Η δέσμη laser περνάει από έναν θάλαμο κενού, που εμποδίζει τα φωτόνια να περάσουν, ενώ ταυτόχρονα θα επέτρεπε στα αξιόνια να διέλθουν ανενόχλητα. Αν δουν φως στην άλλη άκρη του θαλάμου τότε μπορούμε να υποθέσουμε πως ορισμένα από τα αξιόνια μετατράπηκαν σε φως. Όσο μεγαλύτερο το ηλεκτρομαγνητικό πεδίο, τόσο μεγαλύτερη και η πιθανότητα κάποιο από τα αξιόνια να μετατραπεί σε φωτόνιο. Τέλος, ένα ακόμη πείραμα που προσπαθεί να ανιχνεύσει αξιόνια μέσω του μετασχηματισμού τους σε φως είναι το Axion Dark Matter experiment (ADMX). Το πείραμα είναι εγκατεστημένο στο Κέντρο Πειραματικής Φυσικής στο Πανεπιστήμιο της Washington. Αν τα αξιόνια έχουν πολύ μικρές μάζες, τότε αξιόνια από τη γαλαξιακή άλω θα μπορούσαν να μετατρέπονται σε φως στην περιοχή των μικροκυμάτων. Τα μικροκύματα αυτά μπορούν να ανιχνευτούν από τη διάταξη του ADMX. Συγκεκριμένα, μια πρόσφατη αναβάθμιση του πειράματος εστιάζει στην ανίχνευση αξιονίων με μάζα από 10 μev μέχρι 100 μev.

WIMPs, δηλαδή Ασθενώς Αλληλεπιδρώντα Βαριά Σωµατίδια... Φεύγοντας από το καθιερωμένο πρότυπο, ένας άλλος τύπος σωματιδίων, που έχουν προταθεί ως σωματίδια σκοτεινής ύλης, είναι τα WIMPs, δηλαδή τα Ασθενώς Αλληλεπιδρώντα Βαριά Σωµατίδια. Πρόκειται για σωματίδια που μπορούν να ανιχνευθούν έμμεσα ή άμεσα, ενώ οι μάζες τους βρίσκονται στην περιοχή από 10 GeV μέχρι μερικά TeV. Υπάρχουν και άλλοι τύποι σωματιδίων όπως τα cryptons, τα branons και καταστάσεις Kaluza-Klein, που προκύπτουν από θεωρίες που περιλαµβάνουν επιπλέον διαστάσεις, αλλα θα εστιάσουμε στο WIMPS καθώς σε αυτά έχει επικεντρωθεί μεγάλο κομμάτι της πειραματικής έρευνας. Σύμφωνα με τα όσα πιστεύουμε για τον αριθμό και τη μάζα τους, ανα δευτερόλεπτο βομβαρδίζουν τη γη περίπου 100.000 WIMPS με μια ταχύτητα (220km/s) ανα κυβικό εκατοστό. Δεδομένου ότι υποθέτουμε πως τα WIMPs αλληλεπιδρούν μέσω της ασθενούς πυρηνικής δύναμης, η αλληλεπίδρασή τους με τη συνηθισμένη ύλη θα λαμβάνει χώρα σε πολύ μικρές κλίμακες μήκους. Για αυτόν τον λόγο, πολλά από τα πειράματα που έχουν σχεδιαστεί για την άμμεση ανίχνευση σκοτεινής ύλης επικεντρώνονται γύρω από τις αλληλεπιδράσεις των WIMPs με άλλα σωματίδια και μετρήσεις πολύ μεγάλης ακριβείας, που μπορεί να φανερώσουν μια τέτοια αλληλεπίδραση. Η καταγραφή μιας τέτοιας αλληλεπίδρασης θα αποτελούσε άμεσο εντοπισμό τους. Παράδειγμα απότελεί το πείραμα της Κρυογενικής Αναζήτησης Σκοτεινής Ύλης, η οποία μετρά τις δονήσεις του πυρήνα του γερμανίου μετά από τη σύγκρουση ενός πυρήνα γερμανίου με ένα WIMP. Προκειμένου να μετρηθούν τέτοια φαινόμενα, τα άτομα γερμανίου ψύχονται κοντά στο απόλυτο μηδέν και η θερμότητα που μπορεί να παραχθεί από μια τέτοια σύγκρουση αποτελεί το χαρακτηριστικό σήμα ενός τέτοιου γεγονότος. Οι ενέργειες που εκλύονται από μια τέτοια αλληλεπίδραση είναι της τάξης των μερικών kev. Είναι ωστόσο αρκετές ώστε να ανεβάσουν τη θερµοκρασία των κρυογενών υλικών και να καταγραφεί το σήμα μιας τέτοιας αλληλεπίδρασης. Μία άλλη κατηγορία πειραμάτων άμεσης ανίχνευσης περιλαμβάνει τη χρήση ευγενών αερίων σε υγρή μορφή. Παραδείγματα τέτοιων αερίων είναι το αργό και το ξένο. Σε αυτά τα πειράματα, τα WIMP που αλληλεπιδρούν με τους πυρήνες θα μπορούσαν να τους διεγείρουν σε μια υψηλότερη ενεργειακή στάθμη. Κατά την αποδιέγερσή τους στη θεμελιώδη ενεργειακή στάθμη οι πυρήνες θα εξέπεμπαν ένα φωτόνιο. Το φωτόνιο αυτό μπορεί να ανιχνευθεί άμεσα ή μέσω ενος καταιγισμού που προκαλεί. Ανάλογα με τον αριθμό των γεγονότων που καταγράφονται και τον όγκο του υγροποιημένου «ξένου», οι φυσικοί μπορούν να μετρήσουν τη μάζα του WIMP που μπορεί να προκαλέσει ένα τέτοιο γεγονός. Προκειμένου να βεβαιωθούμε πως το σήμα που ανιχνεύεται προέρχεται από ένα σωματίδιο σκοτεινής ύλης και όχι από κάποιο σωματίδιο που βρίσκεται στην κοσμική ακτινοβολία, τα περισσότερα από αυτά τα πειράματα βρίσκονται σε βάθος αρκετών μέτρων. Τα υγροποιημένα φυσικά αέρια βρίσκονται σε θερμοκρασία μείον 100 βαθμών Κελσίου και επιπλέον περιβάλλονται από δεξαμενές με εκατοντάδες τόνους καθαρού νερού, ώστε να ελαχιστοποιηθεί η επίδραση της φυσικής ραδιενέργειας από τη Γη. Οι φυσικοί προσπαθούν να παρατηρήσουν την ασθενή αλληλεπίδραση των ευγενών αερίων με τα προερχόμενα από το διάστημα σωματίδια της σκοτεινής ύλης και το φως που μπορεί να εκλυθεί από ένα τέτοιο γεγονός. Αξίζει να αναφερθούμε σε δυο από τα πιο γνωστά πειράματα αυτής της κατηγορίας. Το πρώτο είναι το πείραμα XENON που ξεκίνησε να λειτουργεί τον Μάιο του 2016 και το δεύτερο το LUX, που είναι εγκατεστημένο σε ένα υπόγειο ορυχίο στη Νότια Ντακότα των ΗΠΑ. Υπάρχουν και άλλα παρεμφερή πειράματα σε εξέλιξη, όπως τα CRESST-II και

DAMA/LIBRA επίσης κάτω από το Γκραν Σάσο, το XMASS-I σε ορυχείο της Ιαπωνίας, το CoGeNT στη Μινεσότα και το PICO-60 σε ορυχείο του Καναδά. Παρά τις επίμονες προσπάθειες, μέχρι σήμερα κανένας από τους ανιχνευτές αυτών των πειραμάτων δεν έχει μετρήσει κάποιο χαρακτηριστικό σήμα. Ωστόσο, χάρη στις μετρήσεις αυτών των πειραμάτων έχουμε αποκλίσει ένα εύρος πιθανών μαζών για τα WIMPs και ξέρουμε καλύτερα τι να περιμένουμε. Το πείραμα LUX λαμβάνει χώρα σε ένα ορυχείο 1.500 μέτρα κάτω από την επιφάνεια του εδάφους στη Νότια Ντακότα. Credit: Matt Kapust, Sanford Underground Research Facility. Τέλος, επιταχυντές που μπορούν να συγκρούουν σωματίδια σε πολύ υψηλές ενέργειες, μπορούν επίσης να αποτελέσουν εργαστήριο παραγωγής υπερσυµµετρικών σωµατιδίων. Μελετώντας με τους ανιχνευτές τα προϊόντα της σύγκρουσης δυο σωματιδίων, θα μπορέσουμε να επιβεβαιώσουμε την ύπαρξη (ή όχι) WIMPs ή άλλων υπερσυμμετρικών σωματιδίων που είναι υποψήφια σωματίδια σκοτεινής ύλης. Ένα από τα χαρακτηριστικότερα σήματα της παραγωγής σκοτεινής ύλης στον LHC είναι η καταγραφή γεγονότων που χαρακτηρίζονται από ένα αντικείμενο υψηλής ορμής (όπως για παράδειγμα ένα jet), σε συνδυασμό με την απουσία ορισμένης ποσότητας ενέργειας, η οποία δεν καταγράφεται στον ανιχνευτή. Εκτός όμως από την άμεση ανίχνευση σκοτεινής ύλης, υπάρχουν και πειράματα που στηρίζονται στην έμμεση ανίχνευσή της. Αν η σκοτεινή ύλη αποτελείται από WIMPs τότε τα WIMPs και τα αντι-wimps θα εξαϋλώνονται ενώ ταυτόχρονα θα εκλύουν ενέργεια με τη μορφή ακτίνων γάμμα, ποζιτρονίων και αντιπρωτονίων. Η ανίχνευση τέτοιων γεγονότων είναι ο στόχος του πειράματος Alpha Magnetic Spectrometer, που είναι εγκατεστημένο στον Διεθνή Διαστημικό Σταθμό ενώ το κέντρο ελέγχου του βρίσκεται στο CERN. Αντίστοιχα πειράματα είναι το FERMI που ψάχνει για WIMPs με μάζες 20-300 GeV και το PAMELA.

Το πείραμα AMS που χτίστηκε και αναπτύχθηκε στο CERN(a) και σήμερα βρίσκεται εγκατεστημένο στον διεθνή διαστημικό σταθμό (β) ψάχνοντας για ακτίνες γάμμα μεγάλης ενέργειας που μπορεί να προέρχονται από τη εξαύλωση σωματιδίων σκοτεινής ύλης (Credits@CERN). Τέλος, μια δεύτερη κατηγορία πειραμάτων στηρίζονται στην έμμεση ανίχνευση WIMPs μέσω της ανίχνευσης ηλιακών νετρίνο υψηλής ενέργειας, που παράγονται καθώς τα WIMPs αλληλεπιδρούν με την ύλη. Η αναμενόμενη ενέργεια των νετρίνων, που δημιουργούνται από την εξαύλωση των WIMPs, κυμαίνεται από το 1/3 ως το 1/2 της μάζας του, δηλαδή από 5 GeV ως 5 TeV. Έρευνες έχουν γίνει για τον εντοπισμό σήματος συμβατού με την ύπαρξη και εξαΰλωση νετρίνων στα κέντρα των κοντινότερων ουρανίων

σωμάτων. Το σήμα που αναμένεται σε περίπτωση ύπαρξης WIMPs είναι ένα πλεόνασμα γεγονότων ανίχνευσης νετρίνων, που καταφθάνουν από το κέντρο της Γης, του Ήλιου ή του Γαλαξία. Τέτοιου είδους πειράματα είναι το IceCube που είναι εγκατεστημένο στην Ανταρκτική, το Antares σε βάθος 2000m και το Super-K στην Ιαπωνία. Η μεγάλη πρόκληση για πειράματα, που στηρίζονται στην έμμεση ανίχνευση WIMPs μέσω της καταγραφής ακτίνων γάμμα πολύ υψηλής ενέργειας, είναι να διαχωρίσουν πιθανά σήματα σκοτεινής ύλης από εκείνα που μπορεί να προέρχονται από άλλα βίαια γεγονότα που συμβαίνουν στον γαλαξία μας (όπως από συγκρούσεις μελανών οπών ή συστήματα αστέρων νετρονίων). Επίλογος... Η σκοτεινή ύλη αντιπροσωπεύει το 84,5% της συνολικής ύλης του σύμπαντος, ενώ όσον αφορά στις ιδιότητές της, το μόνο που γνωρίζουν με βεβαιότητα οι επιστήμονες είναι πως δεν ανακλά ούτε απορροφά ακτινοβολία, με συνέπεια να μην μπορούν να την ανιχνεύσουν ή να τη μετρήσουν. Η ύπαρξη και ο τρόπος δράσης της προκύπτει μόνο από τον τρόπο που με τη βαρύτητά της επιδρά στη συμβατική ύλη και το φως. Μέχρι σήμερα τα στοιχεία για την ύπαρξη σκοτεινής ύλης προέρχονται από την ερμηνεία των αστροφυσικών παρατηρήσεων, με βάση την θεωρία που έχουμε για την βαρύτητα. Αν η θεωρία της βαρύτητας ήταν λάθος, τότε ίσως και το συμπέρασμα πως πρέπει να υπάρχει σκοτεινή ύλη θα μπορούσε να είναι λάθος. Ωστόσο, μετά την ανίχνευση βαρυτικών κυμάτων έχουμε περισσότερους λόγους να πιστεύουμε πως η υπόθεση της σκοτεινής ύλης είναι σωστή. Επομένως, δεν έχουμε παρα να συνεχίσουμε να προσπαθούμε να κατανοήσουμε την σκοτεινή ύλη, η οποία φαίνεται πως έχει κεντρικό ρόλο στην κατανόηση της διαδικασίας σχηματισμού των γαλαξιών και των δομών στις οποίες αυτοί ανήκουν, όπως τα σμήνη και τα υπερσμήνη. Η ανίχνευση της σκοτεινής ύλης στηρίζεται σε τρεις τρόπους: Πρώτον με την παραγωγή σωματιδίων σκοτεινής ύλης από σωματίδια της συνηθισμένης ορατής ύλης. Αυτό έχει δοκιμαστεί σε επιταχυντές σωματιδίων υψηλής ενέργειας, όπως ο μεγάλος αδρονικός επιταχυντής (LHC), χωρίς μέχρι σήμερα να έχει ανιχνευτεί κάποιο τέτοιο σωματίδιο. Δεύτερον με την άμεση ανίχνευση σωματιδίων που μπορεί να φτάνουν σε εμάς από το διάστημα και τέλος έμμεσα, μέσω της αλληλεπίδρασης της σκοτεινής ύλης με τη συνηθισμένη ύλη και τη χαρακτηριστική υπογραφή που αφήνουν τέτοια γεγονότα. Μέχρι στιγμής, η σκοτεινή ύλη συνεχίζει να διαφεύγει των προσπαθειών μας για πειραματική ανίνχευση. Ωστόσο, τα πειραματικά δεδομένα καθόρισαν σε μεγάλο βαθμό το φάσμα των πιθανών μαζών των WIMPs. Σε λίγα χρόνια, νέοι εξαιρετικά ευαίσθητοι ανιχνευτές θα μπορούν να μας δώσουν περισσότερες πληροφορίες σχετικά με τα υποψήφια σκοτεινής ύλης. Τα μαθήματα που πήραμε σε συνδυασμό με την ανάπτυξη νέων τεχνολογιών εγγυώνται ένα «λαμπρό» μέλλον στη μελέτη και κατανόηση της σκοτεινής ύλης. Kάθε μια από τις διαφορετικές μεθόδους μας λέει κάτι διαφορετικό για την πιθανή φύση της σκοτεινής ύλης. Έχοντας δεδομένα από δύο ή τρεις μεθόδους, θα μπορούμε να πούμε πολύ περισσότερα για τη φύση της σκοτεινής ύλης, αξιοποιώντας τη συμπληρωματικότητα μεταξύ των πειραμάτων. Η κατανόησή της είναι αποφαστική για την κατανόηση της δημιουργίας και της μοίρας του Σύμπαντος και για αυτό συνιστά μια από τις μεγαλύτερες πειραματικές προκλήσεις του 21ου αιώνα. ''Περί Γνώσεως''-Φροντιστήριο Μ.Ε.