Formal Semantics. 1 Type Logic

Σχετικά έγγραφα
About these lecture notes. Simply Typed λ-calculus. Types

A Lambda Model Characterizing Computational Behaviours of Terms

Lecture 2. Soundness and completeness of propositional logic

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Other Test Constructions: Likelihood Ratio & Bayes Tests

From the finite to the transfinite: Λµ-terms and streams

EE512: Error Control Coding

derivation of the Laplacian from rectangular to spherical coordinates

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Every set of first-order formulas is equivalent to an independent set

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

C.S. 430 Assignment 6, Sample Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

The Simply Typed Lambda Calculus

CRASH COURSE IN PRECALCULUS

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Reminders: linear functions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

4.6 Autoregressive Moving Average Model ARMA(1,1)

Parametrized Surfaces

A Conception of Inductive Logic: Example

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Assalamu `alaikum wr. wb.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Example Sheet 3 Solutions

D Alembert s Solution to the Wave Equation

Areas and Lengths in Polar Coordinates

14 Lesson 2: The Omega Verb - Present Tense

If we restrict the domain of y = sin x to [ π 2, π 2

Syntax Analysis Part IV

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Proving with Computer Assistance Lecture 2. Herman Geuvers

Strain gauge and rosettes

2 Composition. Invertible Mappings

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Module 5. February 14, h 0min

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Divergence for log concave functions

Matrices and Determinants

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Areas and Lengths in Polar Coordinates

Trigonometric Formula Sheet

Bounding Nonsplitting Enumeration Degrees

Chap. 6 Pushdown Automata

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Notes on the Open Economy

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Strukturalna poprawność argumentu.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Homework 8 Model Solution Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Space-Time Symmetries

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Srednicki Chapter 55

Solutions to Exercise Sheet 5

PARTIAL NOTES for 6.1 Trigonometric Identities

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Approximation of distance between locations on earth given by latitude and longitude

The λ-calculus. Lecturer: John Wickerson. Phil Wadler

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Commutative Monoids in Intuitionistic Fuzzy Sets

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Differential equations

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

5. Choice under Uncertainty

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Section 9.2 Polar Equations and Graphs

Uniform Convergence of Fourier Series Michael Taylor

Tridiagonal matrices. Gérard MEURANT. October, 2008

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ECON 381 SC ASSIGNMENT 2

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

Section 7.6 Double and Half Angle Formulas

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Transcript:

Formal Semantics Principle of Compositionality The meaning of a sentence is determined by the meanings of its parts and the way they are put together. 1 Type Logic Types (a measure on expressions) The smallest set T ype such that: Basic types: e T ype (entities), t T ype (truth values) Functional types: If σ T ype and τ T ype, then σ, τ T ype. Vocabulary (the set of primitive symbols) Connectives:,,,, Quantifiers:, The mighty lambda: λ Brackets: (, ), [, ] Typed variables and constants: V ar σ, Con σ, for any type σ Syntax/Meaningful Expressions (the set ME) Variables and constants: V ar σ, Con σ ME σ, for any type σ Functional terms: If A ME σ,τ and B ME σ, then A(B) ME τ. Lambda terms: If u V ar σ and A ME τ, then λu[a] ME σ,τ. Sentential terms: If ϕ, ψ ME t, then ϕ, (ϕ ψ), (ϕ ψ), (ϕ ψ), (ϕ ψ) ME t. Quantified terms: If u V ar and ϕ ME t, then u ϕ, u ϕ ME t. Domains (the set of all meanings) 1

Domain of entities: D e Domain of truth-values: D t = {0, 1} Functional domains: D σ,τ, the set of all functions from D σ to D τ Full domain: D = D σ σ T ype Models, Assignment functions Models: M = D M, I M, where D M is the full domain I M : Con σ D σ is an interpretation function Assignment functions: g : V ar σ D σ If u V ar σ and d D σ (for some type σ), then g[u/d](u) = d. Semantics Variables and constants: [[α]] M,g = { g(α) I M (α) if α V ar if α Con Functional terms: [[A(B)]] M,g = [[A]] M,g ([[B]] M,g ) Lambda terms: [[λu[a]]] M,g (d) = [[A]] M,g[u/d], where u V ar σ, d D σ (for some type σ) Sentential terms: [[ ϕ]] M,g = 1 iff [[ϕ]] M,g = 0 [[ϕ ψ]] M,g = 1 iff [[ϕ]] M,g = [[ψ]] M,g = 1 [[ϕ ψ]] M,g = 1 iff [[ϕ]] M,g = 1 or [[ψ]] M,g = 1 [[ϕ ψ]] M,g = 1 iff [[ϕ]] M,g = 0 or [[ψ]] M,g = 1 [[ϕ ψ]] M,g = 1 iff [[ϕ]] M,g = [[ψ]] M,g Quantified terms: [[ u ϕ]] M,g = 1 iff for some d D σ : [[ϕ]] M,g[u/d] = 1, where u V ar σ [[ u ϕ]] M,g = 1 iff for all d D σ : [[ϕ]] M,g[u/d] = 1, where u V ar σ Translation Rule If A ME σ,τ and B ME σ, then [A B] = [B A] = A (B ) ME τ, where X is the translation of the lexical item X into Type Logic. 2

Example (1) [ S P aris [ V P is-bigger-than D-Dorf ]] Lexical translations: P aris = p ME e D-Dorf = d ME e is-bigger-than = λy e [λx e [B(y)(x)]] ME e, e,t Translating the entire sentence: [ P aris [ is-bigger-than D-Dorf ]] = [ is-bigger-than D-Dorf ] (P aris ) (TR) = is-bigger-than (D-Dorf )(P aris ) (TR) = λy e [λx e [B(y)(x)]](d)(p) (Lex) Interpretation of constants in some model M: I M (p) = Paris D e I M (d) = Düsseldorf [ D e ] Paris 0 Paris I M (B) = Düsseldorf 0 [ ] Paris 1 D e, e,t Düsseldorf Düsseldorf 0 Interpretation of the translation of the entire sentence: [[[ P aris [ is-bigger-than D-Dorf ]] ]] M,g = [[λy e [λx e [B(y)(x)]](d)(p)]] M,g (above) = [[λy e [λx e [B(y)(x)]](d)]] M,g ([[p]] M,g ) (functional terms) = [[λy e [λx e [B(y)(x)]]]] M,g ([[d]] M,g )([[p]] M,g ) (functional terms) = [[λy e [λx e [B(y)(x)]]]] M,g (I M (d))(i M (p)) (constants 2) = [[λy e [λx e [B(y)(x)]]]] M,g (Düsseldorf)(Paris) (model 2) = [[λx e [B(y)(x)]]] M,g[y/Düsseldorf] (Paris) (lambda terms) = [[B(y)(x)]] M,g[y/Düsseldorf][x/Paris] (lambda terms) = [[B]] M,g[y/Düsseldorf][x/Paris] ([[y]] M,g[y/Düsseldorf][x/Paris] )([[x]] M,g[y/Düsseldorf][x/Paris] ) (functional terms) = I M (B)([[y]] M,g[y/Düsseldorf][x/Paris] )([[x]] M,g[y/Düsseldorf][x/Paris] ) (constants) = I M (B)(g[y/Düsseldorf][x/Paris](y))(g[y/Düsseldorf][x/Paris](x)) (variables) = I M (B)(Düsseldorf)(Paris) (g) = 1 (model) 3

2 Semantics: Using Type Logic in the metalanguage Sample lexicon lexical meaning logical type [[John]] = John e [[left]] = λy e [y left] e, t [[likes]] = λy e [λx e [x likes y]] e, e, t [[student]] = λy e [y is a student] e, t [[every]] = λp e,t [λq e,t [ x e (P (x) Q(x))]] e, t, e, t, t [[some]] = λp e,t [λq e,t [ x e (P (x) Q(x))]] e, t, e, t, t...... Function Application (Composition Rule) If [[A]] is of type σ, τ and [[B]] is of type σ, then [[A B]] = [[B A]] = [[A]]([[B]]), which is of type τ. Lambda Conversion λx σ,τ [...x...](a) =...a..., where a is of type σ. Example (2) Every student lef t. (surface string) a. [ S [ DP [ D every] [ NP student]][ V P left]] (parsed structure) b. [every student] lef t (simplified parse) Bottom-up derivation: [[every student]] = [[every]]([[student]]) = λp e,t [λq e,t [ x e (P (x) Q(x))]]([[student]]) (Lex) = λp e,t [λq e,t [ x e (P (x) Q(x))]](λy e [y is a student ]) (Lex) = λq e,t [ x e (λy e [y is a student](x) Q(x))] (LC) = λq e,t [ x e (x is a student Q(x))] (LC) [[[every student] left]] = [[every student]]([[left]]) = λq e,t [ x e (x is a student Q(x))]([[left]]) (above) = λq e,t [ x e (x is a student Q(x))](λy e [y left]) (Lex) = x e (x is a student λy e [y left](x)) (LC) = x e (x is a student x left) (LC) Top-down derivation: [[[every student] left]] = [[every student]]([[left]]) = [[every]]([[student]])([[left]]) 4

= λp e,t [λq e,t [ x e (P (x) Q(x))]](λy e [y is a student])(λy e [y left]) (Lex 3) = λq e,t [ x e (λy e [y is a student](x) Q(x))](λy e [y left]) (LC) = λq e,t [ x e (x is a student Q(x))](λy e [y left]) (LC) = x e (x is a student λy e [y left](x)) (LC) = x e (x is a student x left) (LC) Exercise fashion. Derive the meaning for John [ likes Mary ] in both a bottom-up and top-down 5