b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Σχετικά έγγραφα
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Parametrized Surfaces

Answer sheet: Third Midterm for Math 2339

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Spherical Coordinates

Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Solutions to Exercise Sheet 5

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Section 7.6 Double and Half Angle Formulas

derivation of the Laplacian from rectangular to spherical coordinates

Example Sheet 3 Solutions

Section 8.3 Trigonometric Equations

Section 9.2 Polar Equations and Graphs

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Double Integrals, Iterated Integrals, Cross-sections

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Math221: HW# 1 solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Numerical Analysis FMN011

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Matrices and Determinants

Second Order Partial Differential Equations

2 Composition. Invertible Mappings

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Uniform Convergence of Fourier Series Michael Taylor

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Variational Wavefunction for the Helium Atom

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 3 Solutions

Solution to Review Problems for Midterm III

Reminders: linear functions

Tutorial Note - Week 09 - Solution

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

EE512: Error Control Coding

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

C.S. 430 Assignment 6, Sample Solutions

( ) 2 and compare to M.

CYLINDRICAL & SPHERICAL COORDINATES

Solution Series 9. i=1 x i and i=1 x i.

Statistical Inference I Locally most powerful tests

Srednicki Chapter 55

1 String with massive end-points

Approximation of distance between locations on earth given by latitude and longitude

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.2 Graphs of Polar Equations

Finite Field Problems: Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Fractional Colorings and Zykov Products of graphs

Example 1: THE ELECTRIC DIPOLE

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Orbital angular momentum and the spherical harmonics

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CRASH COURSE IN PRECALCULUS

The Pohozaev identity for the fractional Laplacian

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Geodesic Equations for the Wormhole Metric

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Exercises to Statistics of Material Fatigue No. 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

( y) Partial Differential Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Lecture 2. Soundness and completeness of propositional logic

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Chapter 7 Transformations of Stress and Strain

Derivations of Useful Trigonometric Identities

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

F19MC2 Solutions 9 Complex Analysis

Durbin-Levinson recursive method

D Alembert s Solution to the Wave Equation

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

MathCity.org Merging man and maths

Second Order RLC Filters

The challenges of non-stable predicates

Differentiation exercise show differential equation

Tutorial problem set 6,

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lifting Entry (continued)

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Concrete Mathematics Exercises from 30 September 2016

Transcript:

MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize. r(φ, θ) <a sin φ cos θ, a sin φ sin θ, a cos φ>. b. Use the parametrization from (a) to compute the area of as d. Be sure to substitute for d! ecall that d r φ r θ. so r φ <a cos φ cos θ, a cos φ sin θ, a sin φ> r θ < a sin φ sin θ, a sin φ cos θ, >, i j k r φ r θ a cos φ cos θ a cos φ sin θ a sin φ a sin φ sin θ a sin φ cos θ a 2 sin 2 φ cos θi + a 2 sin 2 φ sin θj + a 2 cos φ sin φ k a 2 sin φ<sin φ cos θ, sin φ sin θ, cos φ>. r φ r θ a 2 sin φ<sin φ cos θ, sin φ sin θ, cos φ> a 2 sin φ <sin φ cos θ, sin φ sin θ, cos φ> a 2 sin φ sin 2 φ cos 2 θ + sin 2 φ sin 2 θ + cos 2 φ a 2 sin φ sin 2 φ(cos 2 θ + sin 2 θ) + cos 2 φ a 2 sin φ sin 2 φ + cos 2 φ a 2 sin φ. We can now compute the integral: d 2π π 2π 2π 2π a 2 sin φ dφ dθ a 2 cos φ π, dθ a 2 (cos(π) cos()), dθ 2a 2 dθ 4πa 2. 2. Let be the surface z x 2 + 3y 2, x 2, y 3. a. Parametrize using the standard parametrization of a graph. r(x, y) <x, y, x 2 + 3y 2 > 1

that is, x x, y y, z x 2 + 3y 2. b. Let r(x, y) be the parametrization from (a). Compute the unit normal explicitly. What is n(, )? n(x, y) 1 r x r y r x r y r x <1,, 2x>, r y <, 1, 6y> and i j k r x r y 1 2x 1 6y < 2x, 6y, 1>. and < 2x, 6y, 1> 4x 2 + 36y 2 + 1 n(x, y) 1 < 2x, 6y, 1> 4x2 + 36y 2 + 1 n(, ) <,, 1>. c. Let F be the vector field F (x, y, z) yi + x 2 j + (4z + y 2 x 2 ) k. Compute F d, where is oriented using the unit normal from (b). F d where is the rectangle x 2, y 3. Also F (r(x, y)) r x r y da F (r(x, y)) <y, x 2, 4(x 2 + 3y 2 ) + y 2 x 2 > <y, x 2, 3x 2 + 13y 2 >, so from (2b) we get F (r(x, y)) r x r y da 2 2 <y, x 2, 3x 2 + 13y 2 > < 2x, 6y, 1> dx dy 2xy 6x 2 y + 3x 2 + 13y 2 dx dy [ x 2 y 2x 3 y + x 3 + 13y 2 x 2 dy 26y 2 2y + 8 dy (26/3)y 3 1y 2 + 8y 3 168. d. Let C be the boundary of, with orientation induced from the orientation n of given in (b). Check tokes theorem by computing C F dr and curl F d nd seeing that you get the same number for both. Hint: You can parametrize C by using the parametrization of in (a). If is the plane region corresponding to by this parametrization, then C is parametrized by the boundary of.

First compute the flux integral. curl F i j k / x / y / z y x 2 4z + y 2 x 2 ( (4z + y 2 x 2 )/ y (x 2 )/ z)i ( (4z + y 2 x 2 )/ x (y)/ z)j + ( (x 2 )/ x (y)/ y) k <2y, 2x, 2x 1>. Let be the rectangle x 2, y 3. From (2b) we get curlf d curlf (r(x, y)) r x r y da <2y, 2x, 2x 1> < 2x, 6y, 1> da 2 4xy 12xy + 2x 1 dx dy 8x 2 y + x 2 x x2 x dy 32y + 2 dy 16y 2 + 2y 3 138. Now, we compute the line integral. ince is parametrized by the rectangle using the function r(x, y), the boundary is parametrized by, using the restriction of r(x, y) to the edges of. This gives 4 separate pieces to s we go counter-clockwise around, starting at (, ): C 1, parametrized by r 1 (x) r(x, ) < x,, x 2 >, x goes from to 2 C 2, parametrized by r 2 (y) r(2, y) < 2, y, 4 + 3y 2 >, y goes from to 3 C 3, parametrized by r 3 (x) r(x, 3) <x, 3, x 2 + 12>, x goes from 2 to C 4, parametrized by r 4 (y) r(, y) <, y, 3y 2 >, y goes from 3 to We do the integrals one at a time and add the results: 2 F dr F (r 1 (x)) r 1(x) dx C 1 2 2 <, x 2, 3x 2 > <1,, 2x> dx 6x 3 dx (6/4)x 4 2 24.

F dr C 2 F (r 2 (y)) r 2(y) dy <y, 4, 12 + 13y 2 > <, 1, 6y> dy 4 + 72y + 78y 3 dy 4y + 36y 2 + (39/2)y 4 3 1915.5. C 3 F dr 2 2 2 F (r 3 (x)) r 3(x) dx <3, x 2, 3x 2 + 117> <1,, 2x> dx 3 + 6x 3 + 234x dx 3x + (6/4)x 4 + 117x 2 2 498. F dr C 4 3 3 3 F (r 4 (y)) r 4(y) dy <y,, 13y 2 > <, 1, 6y> dy 78y 3 dy (39/2)y 4 3 1579.5. F dr 24 + 1915.5 498 1579.5 138. 3. Let F be the vector field F (x) x x 3. a. Compute div F. Explicitly, x <x, y, z>, x (x 2 + y 2 + z 2 ) 1/2., and x F (x) < (x 2 + y 2 + z 2 ), y 3/2 (x 2 + y 2 + z 2 ), z 3/2 (x 2 + y 2 + z 2 ) divf [ x x (x 2 + y 2 + z 2 ) 3/2 + [ y + [ y (x 2 + y 2 + z 2 ) 3/2 z 3/2 >, z (x 2 + y 2 + z 2 ) 3/2.

We calculate the partial derivatives using the quotient rule: [ x x (x 2 + y 2 + z 2 ) 3/2 (x2 + y 2 + z 2 ) 3/2 1 (3/2)(x 2 + y 2 + z 2 ) 1/2 2x x (x 2 + y 2 + z 2 ) 3 (x2 + y 2 + z 2 ) 3/2 3(x 2 + y 2 + z 2 ) 1/2 x 2 (x 2 + y 2 + z 2 ) 3 (x2 + y 2 + z 2 ) 1/2 ((x 2 + y 2 + z 2 ) 3x 2 ) (x 2 + y 2 + z 2 ) 3 2x2 + y 2 + z 2 (x 2 + y 2 + z 2 ) 5/2. witching x with y and x with z gives [ y y (x 2 + y 2 + z 2 ) [ 3/2 z z (x 2 + y 2 + z 2 ) 3/2 x2 2y 2 + z 2 (x 2 + y 2 + z 2 ) 5/2 x2 + y 2 2z 2 (x 2 + y 2 + z 2 ) 5/2 and thus div F x2 2y 2 + z 2 (x 2 + y 2 + z 2 ) 5/2 + x2 2y 2 + z 2 (x 2 + y 2 + z 2 ) 5/2 + x2 + y 2 2z 2 (x 2 + y 2 + z 2 ) 5/2 x2 2y 2 + z 2 + x 2 2y 2 + z 2 + x 2 + y 2 2z 2 (x 2 + y 2 + z 2 ) 5/2. b. Compute F d, where a is as in (1) the sphere of radius a, center (,, ), and with orientation the outward normal vector. ince the radial vector x is perpendicular to the sphere, we have n x x

ince x a for x in, we have F d F nd a x x x 3 x d x x x d 4 x a 2 x d 4 x a 2 x d 4 1 a d 2 1 a 2 d 1 a 2 4πa2 (from (1b)) 4π. c. (You might want to wait until after class on Monday for this one, but try it before if you are a thrill-seeker) Let be the ellipsoid 5x 2 + 11y 2 + 17z 2 123, oriented with the outward normal. Use the divergence theorem and (b) to compute F d. Hint: Take a small enough so that is inside of nd let D be the solid region between nd. Use the divergence theorem: The boundary of D is D where means the sphere of radius a with the inward pointing normal. We have F d F d F d a F d D div F dv (the divergence theorem) D (since div F ). F d F d 4π. 4.(You might want to wait until after class on Monday for this one, but try it before if you are a thrill-seeker) Let 1 be the paraboloid z 1 x 2 y 2, z, oriented with the upward normal. Let 2 be the paraboloid z 2 2x 2 2y 2, z, also oriented with the upward normal. a. Let F be a vector field on 3. Use tokes theorem to show that curlf d curlf d. 1 2

Hint: Note that 2 and 1 both have the same boundary curve, x 2 + y 2 1, z. Let C be the common boundary curve of 1 and 2. By Two applications of tokes theorem curlf d F dr curlf d. 1 C 2 b. Let F be a vector field on 3. Use the divergence theorem to show that curlf d curlf d. 1 2 Hint: div(curl F ). Note that 2 lies above 1, meeting along their boundary curve, and consider the solid region D between 1 and 2. Let 1 be the surface 1 oriented with the downward pointing normal. ince 2 is the top part of D and 1 is the bottom, we have D 2 1, because the normal vector on D pointing away from D is the upward normal on 2, but the downward one on 1. Following the hint, we use the divergence theorem, using also that div(curlf ) : curlf d curlf d curlf d 2 1 D div (curlf ) dv and thus curlf d 1 curlf d. 2 D