ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Σχετικά έγγραφα
Answer sheet: Third Midterm for Math 2339

Parametrized Surfaces

Homework 8 Model Solution Section

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

Example Sheet 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

Math221: HW# 1 solutions

Section 7.6 Double and Half Angle Formulas

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Srednicki Chapter 55

Solutions to Exercise Sheet 5

D Alembert s Solution to the Wave Equation

1 String with massive end-points

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

CRASH COURSE IN PRECALCULUS

Second Order Partial Differential Equations

Section 8.2 Graphs of Polar Equations

Numerical Analysis FMN011

Spherical Coordinates

Matrices and Determinants

Section 9.2 Polar Equations and Graphs

Section 8.3 Trigonometric Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Second Order RLC Filters

Reminders: linear functions

2 Composition. Invertible Mappings

Note: Please use the actual date you accessed this material in your citation.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

( y) Partial Differential Equations

Lecture 26: Circular domains

ST5224: Advanced Statistical Theory II

Γe jβ 0 z Be jβz 0 < z < t t < z The associated magnetic fields are found using Maxwell s equation H = 1. e jβ 0 z = ˆx β 0


Statistical Inference I Locally most powerful tests

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.3 Forecasting ARMA processes

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Graded Refractive-Index

Derivation of Optical-Bloch Equations

The Simply Typed Lambda Calculus

Finite Field Problems: Solutions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Trigonometric Formula Sheet

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Strain gauge and rosettes

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

(As on April 16, 2002 no changes since Dec 24.)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Differentiation exercise show differential equation

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Geodesic Equations for the Wormhole Metric

Quadratic Expressions

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Variational Wavefunction for the Helium Atom

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

PARTIAL NOTES for 6.1 Trigonometric Identities

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Solution Series 9. i=1 x i and i=1 x i.

The Spiral of Theodorus, Numerical Analysis, and Special Functions

F19MC2 Solutions 9 Complex Analysis

Approximation of distance between locations on earth given by latitude and longitude

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Finite difference method for 2-D heat equation

Mean-Variance Analysis

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

A Note on Intuitionistic Fuzzy. Equivalence Relation

w o = R 1 p. (1) R = p =. = 1

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

CYLINDRICAL & SPHERICAL COORDINATES

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Geometry of the 2-sphere

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Transcript:

ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes

Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = = A ˆ ( x, y, ) F ˆ ( x, y, ) A + k A = F+ kf=

Introduce the Fourier transform: jkx ( x ky y ) A + ( k, k, ) = A ( x, y, ) e dxdy x y jkx ( x + ky y ) (,, ) = (,, ) x y x y ( π ) A x y A k k e dk dk A k A k x ky k ( π ) + = ( + + ) = A k k e dk dk jkx ( x + ky y ) ( x, y, ) x y 3

Hence A + ( k kx ky) A = Define k ( k k k ) / x y Correct choice: k k k k, k + k < k = j k + k k, k + k > k x y x y x y x y Then we have A + k A = 4

Solution: A ( k, k, ) = A ( k, k,) e x y x y jk Similarly, F ( k, k, ) = F ( k, k,) e x y x y jk 5

Hence jkx ( x + ky y + k ) (,, ) = (,,) x y x y ( π ) A x y A k k e dk dk jkx ( x + ky y + k ) (,, ) = (,,) x y x y ( π ) F x y F k k e dk dk This is a representation of the potentials as a spectrum of plane waves. 6

Derivative property: A x = ( jk ) A k k e dk dk ( π ) jkx ( x + ky y + k ) x ( x, y,) x y = ( jk ) A k k e dk dk ( π ) jkx ( x + ky y ) x ( x, y, ) x y Also A A jkx ( x + ky y ) = e dk x dk y x ( π ) F x Hence F A x = ( jk ) A ( k, k, ) x x y Similarly for the y and derivatives. 7

Apply B.C. s at = : E E x y A F = jωµε x ε y A F = + jωµε y ε x Hence: E = ( jk )( jk ) A ( jk ) F jωµε ε x x y E = ( jk )( jk ) A + ( jk ) F jωµε ε y y x 8

Hence, we have (A ero subscript denotes =.) kk jk ( ) x y E x kx, ky = A ( kx, ky) + F ( kx, ky) jωµε ε kk ( ) y jkx E y kx, ky = A ( kx, ky) + F ( kx, ky) jωµε ε The left-hand sides are known. We have two equations in two unknowns,. ( A, F ) Hence, we can solve for. ( A, F ) 9

In the space domain, jk ( ) j kxx+ kyy (,, ) = ( x, y) x y ( π ) A x y A k k e e dk dk and similarly for F( xy,, ) We can then find the fields from the TE TM equations.

Example: Radiation from Waveguide b PEC a y x ˆ π x Et ( x, y) = yecos a Find the complex power radiated by the aperture.

kk jk x y E x = A + F = jωµ ε ε E kk = A jk + F y x y jωµ ε ε Hence, from the first equation F A kk x = ωµ k y From the second equation, E kk jk k k = + A y x x y jωµ ε ε ωµ k y

Hence Therefore kk x E y = A kk y + jωµ ε k y k k x = A ky + jωµ ε k y k = A k + k ( ) y x jωµ ε k y k = A k k jωµ ε k y ( ) k y A = E y jωµ ε k k k 3

For the Fourier transform of the aperture field, we have: a b x jkx ( x ky y ) E π + ( k, k ) = E cos e dy dx a y x y a b kb y sin π a cos kx = E b a kb y π a kx 4

Complex power radiated by the aperture: b a ( * P ) c = E H ˆ dxdy b a + + = E H * y x dxdy 5

+ + + + Parseval s theorem: * * f ( x, y) g ( x, y) dxdy = f ( k, k ) g ( k, k ) dk dk ( π ) x y x y x y Hence + + * c = y x x y ( π ) P E H dk dk Also, recall: k y A = E y jωµ ε k k k 6

Now find H : H x x A F = + µ y jωµ ε x H = ( jk ) A + ( jk )( jk ) F x y x µ jωµ ε Hence, or kk x H = ( jk ) + ( jk )( jk ) A x y x µ jωµ ε ωµ ky kk k H = ( jk ) + ( jk )( jk ) jωµ ε E x y x y x y µ jωµ ε ωµ k y k k k 7

Simplifying, kk x H ωε x = E y k y + k k k k Hence, + + * = c ( π ) y x x y P E H dk dk ωε kk P E k k k dk dk + * x c = y( x, y) * * y x y ( π ) + k k k k Notes: k = k * * k = k ( k isreal) * 8

k y Polar coordinates: k ρ φ dk dk x y = k dk d ρ ρ φ k x k k x y = = k k ρ ρ cosφ sinφ k = ρ k + k x y New notation: E ( k, k ) E ( k ρ, φ) y x y y 9

k = k k k =real x y * ( k = k ) k k = k k = k + k = k ρ * x y Hence Also, + + π () dk dk = () k dk d x y ρ ρ φ π ωε k ρ k Pc = Ey ( kρ, φ) sin φ cos φ k dk d * ρ ρ φ π + k k ρ k

π P ( ) c = E y( kρ, φ) F kρ, φ dkρdφ π where ωε k, φ = k sin cos * ρ φ + φ k k ( ρ ) F k ( ) / k = k k ρ k = real, k < k k = imaginary, k > k ρ ρ ( ) ρ φ F k, = real, k < k ( ) ρ φ F k, = imaginary, k > k ρ ρ

k y Imaginary power (vars) Visible-space circle k Real power (watts) k x

Equivalent Circuit y Original problem b E E y s H = Z x Inc Ref E Z s Equivalent problem (Impedance surface) * Pc = ( E H ) ˆ ds S 3

Equivalent Circuit (cont.) so P b a * c = y x b a = + b a * b a s b a cos * s b a E a = ( b) * Zs E H dx dy Z E y E π x = dx dy Z a dx dy Hence Z s ab E = * 4 P c 4

TEN Model I () TEN equivalent circuit Z + V() - Z L TEN modeling equations: π x Ey ( xy,, ) = V ( )cos a π x Hx ( xy,, ) = I ( )cos a 5

TEN Model (cont.) Z + + V ( ) Ey ( xy,, ) = = + + I ( ) H ( xy,, ) ωµ = Z = TE k x where k π = k a Hence Z TE = k ωµ π a 6

TEN Model Therefore Z = Z = TE η π ka Also, Z L V () I() E = = y = H x Z s 7

TEN Model (cont.) Z Z L = / Y L Z = Z = TE η π ka Y L * 4 P c = = = ZL Zs ab E 8

TEN Model (cont.) 4 π Y ( ) L = E y( kρ, φ) f kρ, φ dkρdφ ab E π where ( ) *( ) ωε k f kρ, φ = F kρ, φ = kρ sin φ+ cos φ k k YL = GL + jbl Visible-space region Invisible-space region 9

TEN Model (cont.) Hence 4 π k G ( ) L = E y( kρ, φ) f kρ, φ dkρdφ ab E π 4 π jb ( ) L = E y( kρ, φ) f kρ, φ dkρdφ ab E π k where ωε k, = k sin + cos ( ) ρ f k φ ρ φ φ k k 3

TEN Model (cont.) Explicitly writing out the k term, the result can be written as k 4 π ( ) GL = E y( kρ, φ) F kρ, φ dk d ρ φ ab E π k k ρ 4 π ( ) BL = E y( kρ, φ) F kρ, φ dk d ρ φ ab E π k k k ρ Note: There is a square-root branch-point singularity at k ρ = k. where F ( k ) = k ( f k ) = ( ) k k + ρ, φ ρ, φ ωε ρ sin φ cos φ k 3