Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information for

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Electronic Supplementary Information

Supporting Information

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting information

Supporting Information

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting information

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Divergent synthesis of various iminocyclitols from D-ribose

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supplementary Information for

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

An Enantioselective Oxidative C H/C H Cross-Coupling Reaction: Highly Efficient Method to Prepare Planar Chiral Ferrocenes

Supporting Information. Experimental section

Electronic Supplementary Information (ESI)

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Supporting Information

Supporting Information for

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

SUPPLEMENTARY INFORMATION

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supplementary information

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

The Free Internet Journal for Organic Chemistry

Synthesis of spiropyrazoline oxindoles by a formal [4+1] annulation reaction between 3-bromooxindoles and in situ-derived 1,2-diaza-1,3- dienes

Supporting Information For

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Supporting Information

Aminofluorination of Fluorinated Alkenes

Supporting Information Table of Contents 1. General remarks...s1 2. Synthesis of catalyst L S1

Supporting Information

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Effect of uridine protecting groups on the diastereoselectivity

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Pd-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones. with Arylboronic Acids

Trienamine-Mediated Asymmetric [4+2]-Cycloaddition of α,β-unsaturated Ester Surrogates Applying 4-Nitro-5-Styrylisoxazoles

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Supporting Information

The Supporting Information for

Supporting Information. Chemoselective Acylation of 2-Amino-8-quinolinol in the Generation of C2-Amides or C8-Esters

Supporting Information

Supporting Information

Supporting Information for

Supporting Information

Supporting Information

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Transcript:

Diastereo- and Enantioselective Propargylation of Benzofuranones Catalyzed by Pybox-Copper Complex Long Zhao, Guanxin Huang, Beibei Guo, Lijun Xu, Jie Chen, Weiguo Cao, Gang Zhao, *, Xiaoyu Wu *, Department of Chemistry, College of Sciences, Shanghai University 99 Shangda Rd, Shanghai 200444, China Key Laboratory of Synthetic rganic Chemistry of Natural Substances, Shanghai Institute of rganic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China General Information ----------------------------------------------------------------------------------S1 Experimental procedure for propargylation of benzofuranones-----------------------------s1 Screening of bases and solvents---------------------------------------------------------------------s2 1 H NMR, 13 C NMR, MS, HPLC and specific rotation data of 3 ----------------------------- S2-8 Procedure for cyclization of alkyne products with 1-azido-4-bromobenzene------------- S7 xidation of the terminal alkyne into a methyl ketone --------------------------------------- S8 1 H NMR, 13 C NMR, MS, HPLC and specific rotation data of 4 ----------------------------- S8 Single-crystal X-ray analysis of 3a------------------------------------------------------------------S9 Single-crystal X-ray analysis of 3ag----------------------------------------------------------------S9 1 H NMR, 13 C NMR, MS, HPLC and specific rotation data of 8 and 9---------------------- S9-10 General procedure for preparation of 2-substituted benzofuran-3(2h)-ones 1 -----------S10 1 H NMR, 13 C NMR, MS data of 2-substituted benzofuran-3(2h)-ones 1-------------------S11-12 General Procedure for preparation of propargylic acetates 2-------------------------------- S12 1 H NMR, 13 C NMR, MS data of propargylic acetates 2----------------------------------------S13-14 1 H NMR, 13 C NMR and HPLC spectra of isolated compounds------------------------------ S15-65 General Information: Thin-layer chromatography (TLC) carried out on 0.25 mm silica gel plates visualized with UV light and/or by staining with ethanolic phosphomolybdic acid (PMA) or iodine. Flash column chromatography was performed on silica gel (100-200 mesh). NMR spectras were recorded on Bruker AM500 (500MHz). Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. ptical rotations were taken on JASC P1030. High-resolution mass spectra were recorded on Bruker ApeXIII 7.0 TESLA FTMS. Enantiomeric excesses were determined by chiral HPLC using a Shimadzu instrument. Experimental procedure for propargylation of benzofuranones: Ac CuBr (5%), ligand A (6%) CEt + Ph DIPEA (2equ), MeH 20 C 1a 2a 3a Ph CEt In a 25 ml Schlenk flask was placed CuBr (1.5 mg, 0.005 mmol) and A (3.9 mg, 0.006 mmol) under N 2. Anhydrous MeH (2 ml) was added, and the mixture was magnetically stirred at 20 C for 15 min. Then propargylic acetate 2a (0.2 mmol) and a solution of benzofuranones 1a (0.4 mmol) and diisopropylethylamine (0.07ml, 0.4mmol) in MeH (1.5 ml) were added dropwise successively. The reaction flask was kept at 20 C for 0.5 h. After complete comsumption of 2a as N N A N 1

followed by TLC the reaction was quenched with H 2. The product was then extracted three times with diethyl ether (30 ml). The combined organic layer was dried over Na 2 S 4. Solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure 3a (60 mg, 0.19 mmol) as a white solid in a yield of 94%. Screening of bases and solvents a Ac CuBr (5%), ligand A (6%) CEt + Ph Base (2equ), solvent 20 C 1a 2a 3a Ph CEt entry base solvent time yield% b ee c dr c 1 DIPEA MeH 0.5 h 94 98 98:2 2 d DBU MeH 0.25 h 91 92 94:6 3 TEA MeH 0.5 h 90 96 96:4 4 DMAP MeH 0.5 h 66 43 50:50 5 Cs 2 C 3 MeH 24 h - e - - 6 DIPEA EtH 0.5 h 91 74 72:28 7 DIPEA THF 0.5 h 70 41 50:50 8 DIPEA DCM 0.5 h 81 11 36:64 9 DIPEA DMF 24 h - e - - 10 DIPEA CH 3 CN 0.5 h 75 27 50:50 N N A N a Genreal conditions: 1a (0.4 mmol), 2a (0.2 mmol), CuBr (5 mol%), ligand A (6 mol%) and DIPEA (2 equiv) in methanol (4 ml) at 20 o C. b Yield referred to isolated 3a and its diastereoismer. c Enantiomeric excess and diastereoselectivity of 3a was determined by chiral HPLC analysis. d Reaction performed at 0 o C. e No formation of desired product was observed. Ph 3a CEt Compound 3a: white solid, actual mass 60 mg, yield 94%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.29-7.55 (m, 4H), 7.02-7.13(m, 4H), 6.87-6.90 (m, 1H), 4.90 (s, 1H), 4.06-4.38 (m, 2H), 2.42(s, 1H), 1.06-1.35 (m, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 193.0, 172.5, 164.3, 138.7, 132.5, 129.6, 128.1, 128.0, 124.5, 122.5, 119.5, 113.1, 92.7, 80.6, 72.9, 63.2, 42.8, 14.1. HRMS (ESI) calcd. for (C 20 H 16 4 Na) + 343.0941, found 343.0947. 23 [α] D +206.3 (c 1.1, CHCl 3 ). 2

HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 9 : 1, Flow rate = 1.0 ml/min, λ = 220 nm): t R = 7.46 min (minor enantiomer), t R = 6.89 min (major enantiomer). Me 3b CEt Compound 3b: light yellow oil, actual mass 61 mg, yield 91%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.46-7.81 (m, 1H), 7.33-7.38 (m, 1H), 7.14-7.23 (m, 3H), 6.85-6.95 (m, 3H), 4.87 (m, 1H), 4.04-4.39 (m, 2H), 2.39 (s, 1H), 2.13 (s, 3H), 1.09-1.35 (m, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 193.0, 172.5, 164.4, 138.5, 137.7, 129.4, 129.2, 128.7, 124.9, 124.5, 122.5, 119.6, 113.2, 92.8, 80.8, 72.7, 63.1, 42.3, 20.9, 14.0. HRMS (ESI) calcd. for (C 21 H 18 4 Na) + 357.1097, found 357.1104. [α] D 26 +190.1 (c 0.85, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 49 : 1, Flow rate = 0.5 ml/min, λ = 220 nm): t R = 23.99 min (minor enantiomer), t R = 25.84 min (major enantiomer). Me 3c CEt Compound 3c: light yellow oil liquid, actual mass 64 mg, yield 91%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.45-7.51 (m, 1H), 7.34-7.37 (m, 1H), 7.23-7.26 (m, 2H), 7.13-7.14 (m, 1H), 6.88-6.91 (m, 1H), 6.58-6.63 (m, 2H), 4.83-4.87 (m, 1H), 4.26-4.38 (m, 2H), 3.62 (s, 3H), 2.40 (s, 1H), 1.32 (t, J = 7.5 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 193.1, 172.5, 164.3, 159.2, 138.6, 130.5, 124.5, 122.6, 119.6, 113.5, 92.9, 80.9, 72.8, 63.1, 55.1, 41.9, 14.1. HRMS (ESI) calcd. for (C 21 H 18 5 Na) + 373.1046, found 373.1039. [α] D 26 +172.7 (c 0.78, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 49 : 1, Flow rate = 0.5 ml/min, λ = 220 nm): t R = 32.59 min (minor enantiomer), t R = 34.52 min (major enantiomer). Cl CEt 3d Compound 3d: light yellow oil, actual mass 64 mg, yield 90%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.48-7.55 (m, 1H), 7.36-7.40 (m, 1H), 7.27-7.31 (m, 2H), 7.11-7.17 (m, 1H), 7.03-7.09 (m, 2H), 6.92-6.95 (m, 1H), 4.86-4.90 (m, 1H), 4.28-4.39 (m, 2H), 2.40-2.44 (m, 1H), 1.33 (t, J = 7.0 Hz, 3H). 3

13 C NMR (125 MHz, CDCl 3 ) δ 192.9, 172.5, 164.2, 138.9, 134.1, 131.1, 130.9, 129.5, 128.3, 124.7, 122.8, 122.5, 119.3, 116.7, 113.2, 92.5, 80.6, 72.9, 63.3, 41.9, 14.0. HRMS (ESI) calcd. for (C 20 H 15 Cl 4 Na) + 377.0551, found 377.0560. 26 [α] D +163.3 (c 1.13, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 49 : 1, Flow rate = 0.5 ml/min, λ = 220 nm): t R = 24.21 min (minor enantiomer), t R = 26.45 min (major enantiomer). CF 3 3e CEt Compound 3e: light yellow oil liquid, actual mass 61 mg, yield 79%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.45-7.55 (m, 3H), 7.34-7.36 (m, 3H), 7.12-7.18 (m, 1H), 6.91-6.94 (m, 1H), 4.90-4.96 (m, 1H), 4.29-4.39 (m, 2H), 2.03-2.45 (m, 1H), 1.34 (t, J = 7.0 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 192.7, 172.4, 164.1, 138.9, 136.7, 130.4, 130.0, 125.0, 124.7, 122.9, 119.3, 113.1, 92.4, 79.8, 73.6, 63.3, 42.2, 14.0. HRMS (ESI) calcd. for (C 21 H 15 F 3 4 Na) + 411.0815, found 411.0821. [α] D 26 +166.7 (c 0.9, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 49 : 1, Flow rate = 0.5 ml/min, λ = 220 nm): t R = 21.35 min (minor enantiomer), t R = 23.47 min (major enantiomer). F 3 C CF 3 3f CEt Compound 3f: light yellow oil liquid, actual mass 71 mg, yield 78%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.83 (s, 2H), 7.57 (s, 1H), 7.48-7.54 (m, 1H), 7.33-7.36 (m, 1H), 7.11-7.13 (m, 1H), 6.92-6.95 (m, 1H), 5.01 (s, 1H), 4.36 (q, J = 7.0 Hz, 2H), 2.49-2.53 (m, 1H), 1.33 (t, J = 7.0 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 192.4, 172.1, 163.5, 139.1, 137.6, 135.4, 131.6, 131.4 (q, J = 33 Hz, 2C), 129.8, 124.6, 123.2, 122.8 (q, J = 272 Hz, 2C), 122.1, 119.2, 113.2, 91.8, 91.3, 78.8, 74.4, 63.4, 42.2, 14.0. HRMS (ESI) calcd. for (C 22 H 14 F 6 4 Na) + 479.0688, found 479.0691. [α] D 26 +128.5 (c 1.0, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 17 : 3, Flow rate = 1.0 ml/min, λ = 220 nm): t R = 6.77 min (minor enantiomer), t R = 12.86 min (major enantiomer). Br 3g CEt Compound 3g: light yellow solid, actual mass 72 mg, yield 90%. 1 H NMR (500 MHz, CDCl 3 ): δ 4

7.50-7.56 (m, 1H), 7.35-7.40 (m, 1H), 7.22 (s, 4H), 7.11-7.18 (m, 1H), 6.93-6.97 (m, 1H), 4.80-4.86 (m, 1H), 4.28-4.38 (m, 2H), 2.39-2.45 (m, 1H), 1.33 (t, J = 7.5 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 192.8, 172.4, 164.1, 138.9, 132.3, 131.6, 129.5, 128.1, 124.7, 122.8, 122.3, 119.7, 117.2, 113.1, 92.4, 80.0, 73.3, 63.2, 42.0, 14.0. HRMS (ESI) calcd. for (C 20 H 15 Br 4 Na) + 421.0046, found 421.0039. [α] D 26 +168.7 (c 0.78, CHCl 3 ). HPLC (Daicel CHIRALPAK D-H, Hexane : Isopropanol = 99 : 1, Flow rate = 0.3 ml/min, λ = 220 nm): t R = 50.13 min (minor enantiomer), t R = 45.22 min (major enantiomer). 3h CEt Compound 3h: light yellow solid, actual mass 69 mg, yield 93%. 1 H NMR (500 MHz, CDCl 3 ): δ 8.42 (br, 1H), 7.75-7.86 (m, 1H), 7.66-7.68 (m, 1H), 7.55-7.59 (m, 2H), 7.39-7.44 (m, 2H), 7.20-7.23 (m, 1H), 7.12-7.13 (m, 2H), 6.76-6.79 (m, 1H), 5.67-5.80 (m, 1H), 3.78-4.45 (m, 2H), 2.42 (s, 1H), 1.39 (t, J = 7.5 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 192.2, 172.4, 164.6, 138.4, 133.6, 130.8, 129.1, 128.9, 128.3, 126.4, 126.1, 125.6, 124.8, 124.6, 122.9, 122.4, 119.3, 112.9, 92.7, 81.5, 72.3, 63.3, 14.1. HRMS (ESI) calcd. for (C 24 H 18 4 Na) + 393.1097, found 393.1105. [α] D 26 +47.5 (c 0.53, CHCl 3 ). HPLC (Phenomenex cellulose-1, Hexane : Isopropanol = 24 : 1, Flow rate = 0.8 ml/min, λ = 220 nm): t R = 14.46 min (minor enantiomer), t R = 15.79 min (major enantiomer). 3i CEt Compound 3i: light yellow oil liquid, actual mass 27 mg, yield 45%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.61-7.72 (m, 2H), 7.28-7.35 (m, 1H), 7.11-7.14 (m, 1H), 4.22-4.31 (m, 2H), 3.56-3.61 (m, 1H), 2.21 (s, 1H), 1.48-1.59 (m, 1H), 1.33-1.42 (m, 2H), 1.28 (t, J = 7.08 Hz, 3H), 1.10-1.26 (m, 3H), 0.80-0.92 (m, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 193.8, 172.8, 164.5, 138.8, 124.9, 122.8, 122.6, 119.9, 113.6, 93.0, 81.2, 72.2, 62.9, 37.2, 29.3, 27.3, 22.0, 14.0, 13.8. HRMS (ESI) calcd. for (C 18 H 20 4 Na) + 323.1254, found 323.1261. [α] D 26 +170.0 (c 0.53, CHCl 3 ). HPLC (Phenomenex cellulose-1, Hexane : Isopropanol = 24 : 1, Flow rate = 0.8 ml/min, λ = 220 nm): t R = 7.69 min (minor enantiomer), t R = 7.10 min (major enantiomer). 3j CEt 5

Compound 3j: light yellow oil, actual mass 22 mg, yield 40%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.62-7.65 (m, 2H), 7.23-7.24 (m, 1H), 7.09-7.12 (m, 1H), 4.24 (q, J = 7.06 Hz, 2H), 2.08 (s, 1H), 1.49 (s, 3H), 1.53 (s, 3H), 1.25 (t, J = 7.06 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 193.8, 171.9, 164.1, 138.3, 124.6, 122.5, 120.8, 113.1, 91.7, 86.1, 70.4, 62.5, 38.3, 24.6, 23.9, 14.0. HRMS (ESI) calcd. for (C 16 H 16 4 Na) + 295.0941, found 295.0954. [α] D 26 +9.4 (c 0.48, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 49 : 1, flow rate = 0.5 ml/min, λ = 220 nm): t R = 12.78 min (minor enantiomer), t R = 13.92 min (major enantiomer). Ph CMe 3ab Compound 3ab: white solid, actual mass 56 mg, yield 91%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.46-7.53 (m, 1H), 7.30-7.35 (m, 3H), 7.02-7.16 (m, 4H), 6.88-6.91 (m, 1H), 4.90 (s, 1H), 3.87 (s, 3H), 2.42 (s, 1H). 13 C NMR (125 MHz, CDCl 3 ) δ 192.8, 172.4, 164.9, 138.6, 134.6, 132.3, 129.5, 128.2, 128.1, 124.6, 122.6, 119.4, 113.2, 92.8, 80.5, 73.0, 53.8, 42.8. HRMS (ESI) calcd. for (C 19 H 14 4 Na) + 329.0784, found 329.0791. [α] D 23 +244.7 (c 0.73, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 99 : 1, Flow rate = 0.8 ml/min, λ = 220 nm): t R = 21.40 min (minor enantiomer), t R = 31.26 min (major enantiomer). Br Ph 3ac CEt Compound 3ac: white solid, actual mass 72 mg, yield 91%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.73-7.95 (m, 1H), 7.29-7.40 (m, 4H), 7.08-7.14 (m, 3H), 4.84-4.89 (m, 1H), 4.26-4.42 (m, 2H), 2.40-2.45 (m, 1H), 1.35 (t, J = 7.0 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 191.4, 168.1, 163.1, 142.7, 134.1, 132.0, 129.4, 128.5, 128.3, 125.8, 122.1, 115.2, 107.4, 94.0, 79.9, 73.3, 63.4, 42.8, 14.0. HRMS (ESI) calcd. for (C 20 H 15 Br 4 Na) + 421.0046, found 421.0047. [α] D 26 +438.7 (c 0.93, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 19 : 1, Flow rate = 0.8 ml/min, λ = 220 nm): t R = 7.77 min (minor enantiomer), t R = 8.09 min (major enantiomer). Ph Me CEt 3ad Compound 3ad: light yellow oil liquid, actual mass 63 mg, yield 90%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.34-7.36 (m, 2H), 7.22-7.23 (m, 1H), 7.04-7.11 (m, 3H), 6.51-6.56 (m, 1H), 6.40-6.45 6

(m, 1H), 4.85-4.89 (m, 1H), 4.27-4.39 (m, 2H), 3.78 (s, 3H), 2.38-2.41 (m, 1H), 1.33 (t, J = 7.5 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 191.1, 190.3, 175.5, 175.0, 168.8, 168.6, 164.6, 163.9, 135.0, 132.6, 129.5, 129.3, 128.4, 128.0, 126.0, 125.6, 112.7, 112.5, 112.3, 96.1, 95.8, 93.5, 93.1, 80.7, 79.2, 73.2, 72.7, 63.0, 62.7, 55.9, 55.8, 42.4, 14.0, 13.8. HRMS (ESI) calcd. for (C 21 H 18 5 Na) + 373.1046, found 373.1039. [α] D 26 +195.4 (c 0.88, CHCl 3 ). HPLC (Daicel CHIRALPAK D-H, Hexane : Isopropanol = 49 : 1, Flow rate = 0.5 ml/min, λ = 220 nm): t R = 48.36 min (minor enantiomer), t R = 42.42 min (major enantiomer). Me Ph 3ae CEt Compound 3ae: light yellow oil liquid, actual mass 63 mg, yield 90%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.32-7.38 (m, 2H), 7.21-7.25 (m, 1H), 7.04-7.14 (m, 3H), 6.93 (s, 1H), 6.70-6.71 (m, 1H), 4.89 (s, 1H), 4.27-4.41 (m, 2H), 2.38-2.42 (m, 1H), 2.33 (s, 3H), 1.35 (t, J = 7.0 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 192.2, 173.0, 164.5, 150.9, 134.9, 132.6, 129.6, 128.1, 124.2, 124.1, 117.1, 113.1, 92.9, 80.7, 72.7, 63.1, 42.5, 22.5, 14.0. HRMS (ESI) calcd. for (C 21 H 18 4 Na) + 357.1097, found 357.1104. [α] D 26 +170.0 (c 0.58, CHCl 3 ). HPLC (Phenomenex cellulose-1, Hexane : Isopropanol = 99 : 1, Flow rate = 0.3 ml/min, λ = 220 nm): t R = 51.12 min (minor enantiomer), t R = 54.99 min (major enantiomer). Ph 3af CN Compound 3af: light yellow oil liquid, actual mass 41 mg, yield 75%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.31-7.75 (m, 5H), 7.00-7.25 (m, 4H), 4.47-4.55 (m, 1H), 2.18-2.60 (m, 1H). 13 C NMR (125 MHz, CDCl 3 ) δ 190.3, 171.4, 139.5, 132.6, 130.5, 129.7, 129.4, 129.1, 128.9, 128.7, 128.3, 125.2, 123.7, 118.5, 113.4, 113.0, 82.2, 78.6, 74.9, 44.2. HRMS (ESI) calcd. for (C 18 H 11 N 2 Na) + 296.0682, found 296.0689. [α] D 26 +117.6 (c 0.45, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 99 : 1, Flow rate = 0.3 ml/min, λ = 220 nm): t R = 42.09 min (minor enantiomer), t R = 49.99 min (major enantiomer). Procedure for cyclization of alkyne products with 1-azido-4-bromobenzene: Ph CH 3 crude product from propargylation reaction cyclization conditions Ph CH 3 3ag N N N Br 7

The crude product obtained from propargylation step was dissolved in DCM and H 2 (v/v = 1:1, 3 ml), Cu(Ac) 2 (0.2 equiv), L-(+)-sodium ascorbate (0.4 equiv), 1-azido-4-bromobenzene (1.5 equiv) were added successively. The mixture was stirred at room temperature for 3 h. The product was then extracted with DCM (10 ml x 2). The combined organic layer was dried over Na 2 S 4. Solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure compound (66 mg, 0.14 mmol) as a white solid in a yield of 72%. Ph CH 3 3ag N N N Br Compound 3ag: white solid, actual mass 66 mg, yield 72%. 1 H NMR (500 MHz, CDCl 3 ): δ 8.21 (s, 1H), 7.65-7.70 (m, 4H), 7.49-7.53 (m, 1H), 7.39-7.40 (m, 1H), 7.30-7.32 (m, 2H), 7.10-7.11 (m, 1H), 6.98-7.06 (m, 3H), 6.88-6.91 (m, 1H), 4.82 (s, 1H), 1.52 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 202.5, 171.4, 147.2, 138.0, 136.2, 136.0, 132.9, 129.4, 128.7, 127.3, 124.4, 122.3, 121.9, 121.7, 120.7, 120.4, 113.0, 91.2, 49.1, 21.5. HRMS (ESI) calcd. for (C 24 H 18 BrN 3 2 Na) + 482.0475, found 482.0478. [α] D 24 +137.4 (c 0.38, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 9 : 1, Flow rate = 1.0 ml/min, λ = 220 nm): t R = 29.58 min (minor enantiomer), t R = 30.59 min (major enantiomer). xidation of the terminal alkyne into a methyl ketone: Ph Ph Hg(TFA) 2 (5 mol%) C 2 Et TFA (3 equiv), C 2 Et 3a DCM, rt, 2 h 4 98% ee, 98:2 dr 84% yield >98% ee, 99:1 dr To a solution of 3a (64 mg, 0.2 mmol) in 2mL DCM, Hg(TFA) 2 (4.3 mg, 0.01 mmol) and TFA (30 μl, 0.4 mmol) was added successively while stirring. The reaction mixture was stirred for 2 h at room temperature. Then the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure 4 (57 mg, 0.17 mmol) as a white solid in a yield of 84%. 4 Ph C 2 Et Compound 4: white solid, actual mass 57 mg, yield 84%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.36-7.77 (m, 3H), 7.10-7.18 (m, 5H), 6.88-6.91 (m, 1H), 5.00 (s, 1H), 4.18-4.31 (m, 2H), 2.09 (s, 3H), 1.27 (t, J = 7.0 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 204.4, 195.0, 173.0, 165.4, 138.6, 137.7, 130.4, 130.3, 129.1, 128.7, 128.6, 128.4, 124.5, 122.4, 120.8, 119.1, 113.3, 90.7, 63.1, 62.8, 28.5, 13.9. 8

HRMS (ESI) calcd. for (C 20 H 18 5 Na) + 361.1046, found 361.1041. 24 [α] D +241.2 (c 0.61, CHCl 3 ). HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol = 9 : 1, Flow rate = 1.0 ml/min, λ = 220 nm): t R = 29.58 min (minor enantiomer), t R = 30.59 min (major enantiomer). Single-crystal X-ray analysis of 3a: Single-crystal X-ray analysis of 3ag: Ph N NN C 2 Et 8 Br Compound 8: pale yellow solid, actual mass 79 mg, yield 77%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.65-7.80 (m, 1H), 7.52-7.62 (m, 5H), 7.43-7.48 (m, 2H), 7.27-7.37 (m, 3H), 7.18-7.21 (m, 1H), 6.99-7.08 (m, 2H), 5.55-5.57 (m, 1H), 3.92-4.21 (m, 4H), 1.05 (t, J = 7.5 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 201.3, 169.5, 154.9, 149.2, 137.5, 136.0, 135.3, 134.9, 132.9, 130.0, 128.1, 127.3, 127.2, 126.0, 124.5, 122.2, 121.7, 120.5, 65.9, 61.9, 45.4, 34.1, 13.8. HRMS (ESI) calcd. for (C 27 H 22 BrN 3 3 Na) + 538.0737, found 538.0732. [α] D 25 +151.8 (c 0.55, CHCl 3 ). HPLC (Daicel CHIRALPAK IC, Hexane : Isopropanol = 95 : 5, Flow rate = 1.0 ml/min, λ = 220 nm): t R = 28.65 min (minor enantiomer), t R = 33.80 min (major enantiomer). 9

C 2 Et 9a N N N Br Compound 9a: white solid, actual mass 92 mg, yield 86%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.92 (s, 1H), 7.84-7.86 (m, 1H), 7.61-7.68 (m, 2H), 7.56-7.61 (m, 4H), 7.41-7.45 (m, 1H), 7.27-7.30 (m, 2H), 7.21-7.24 (m, 1H), 6.92-6.99 (m, 2H), 5.27 (d, J = 12 Hz, 1H), 5.11 (s, 1H), 4.84 (d, J = 12 Hz, 1H), 3.92-3.99 (m, 2H), 0.94 (t, J = 7.0 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 188.5, 168.0, 160.9, 147.7, 137.1, 136.1, 135.9, 132.8, 130.8, 128.3, 127.9, 127.6, 122.2, 121.8, 121.7, 121.6, 120.7, 117.7, 71.9, 61.9, 61.3, 44.9, 13.6. HRMS (ESI) calcd. for (C 27 H 22 BrN 3 4 Na) + 554.0686, found 554.0691. HPLC (Phenomenex cellulose-1, Hexane : Isopropanol = 9 : 1, Flow rate = 1.0 ml/min, λ = 220 nm): t R = 15.95 min (minor enantiomer), t R = 19.43 min (major enantiomer). CH 3 C 2 Et 9b N N N Br Compound 9b: a white solid, actual mass 80 mg, yield 73%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.90 (s, 1H), 7.84-7.86 (m, 1H), 7.54-7.61 (m, 6H), 7.41-7.45 (m, 1H), 7.08-7.10 (m, 2H), 6.92-6.99 (m, 2H), 5.27 (d, J = 12.5 Hz, 1H), 5.10 (s, 1H), 4.86 (d, J = 12.5 Hz, 1H), 3.91-4.01 (m, 2H), 2.28 (s, 3H), 0.94 (t, J = 7.0 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 188.5, 168.0, 160.9, 147.9, 137.3, 136.1, 135.9, 134.0, 132.8, 130.6, 129.0, 127.9, 122.2, 121.7, 121.6, 120.6, 117.7, 71.8, 61.8, 61.3, 44.4, 21.0, 13.6. HRMS (ESI) calcd. for (C 28 H 24 BrN 3 4 Na) + 568.0842, found 568.0853. [α] D 25-5.4 (c 0.44, CHCl 3 ). HPLC (Phenomenex cellulose-1, Hexane : Isopropanol = 9 : 1, Flow rate = 1.0 ml/min, λ = 220 nm): t R = 11.97 min (minor enantiomer), t R = 16.13 min (major enantiomer). General procedure for preparation of 2-substituted benzofuran-3(2h)-ones 1: H CH t-buk THF,0 C EtH,H 2 S 4 reflux 1a CEt H CEt Br K 2 C 3,acetone reflux CEt To a solution of 2-hydroxybenzoic acid (5.0 g, 36.2 mmol) in anhydrous EtH (150 ml) was added 98% H 2 S 4 (4 ml). The mixture was refluxed for 4 h and concentrated. The residue was extracted with CH 2 Cl 2 dried over Na 2 S 4 and evaporated. The residue was purified by flash chromatography on silica gel to afford pure ethyl 2-hydroxybenzoate (6 g, 36 mmol) as colorless oil in a yield of 99%. To a solution of ethyl-2-hydroxybenzoate (6 g, 36 mmol) in acetone (50 ml) was added 10

potassium carbonate (9.95 g, 72 mmol) and ethyl bromoacetate (4.78 ml, 43.2 mmol). The reaction mixture was stirred at 60 C for 3 h. The white solid was removed by filtration and the filtrate concentrated under reduced pressure, yielding the desired product as orange oil (10.5 g, 96% yield). Under the atmosphere of nitrogen, a 100 ml flask was charged with potassium tert-butoxide (3.88 g, 69 mmol), 50 ml THF was added and the resulting solution was cooled with ice bath. The mixture was stirred for 30 min. A solution of ethyl 2-(2-ethoxy-2-oxoethoxy)benzoate in 20 ml THF was added dropwise while stirring. The resulting solution was stirred for 0.5 h. After the reaction was complete, the reaction was quenched with NH 4 Cl (satd. aq.) and extracted three times with EA. The organic layer was washed with NH 4 Cl (satd. aq.) and dried over Na 2 S 4. Solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure 1a (5.1 g, 24.9 mmol) as a white solid in a yield of 75%. ethyl 3-oxo-2,3-dihydrobenzofuran-2-carboxylate: white solid, actual mass 5.1 g, yield 85%. 1 H NMR (500 MHz, CDCl 3 ): δ 8.12 (br, 1H), 7.66 (d, J = 7.88 Hz, 1H), 7.37-7.41 (m, 2H), 7.18-7.21 (m, 1H), 4.41 (q, J = 7.09 Hz, 2H), 1.39 (t, J = 7.09 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 153.5, 129.1, 126.0, 122.9, 120.4, 120.1, 112.4, 61.2, 14.4. HRMS (ESI) calcd. for (C 11 H 11 4 ) + 207.0652, found 207.0661. methyl 3-oxo-2,3-dihydrobenzofuran-2-carboxylate: white solid, actual mass 3.2g, yield 82%. 1 H NMR (500 MHz, CDCl 3 ): δ 8.07 (br, 1H), 7.71 (d, J = 7.89 Hz, 1H), 7.41-7.47 (m, 2H), 7.27-7.27 (m, 1H), 3.98 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 153.6, 129.3, 125.9, 123.1, 120.6, 120.0, 112.5, 52.0. HRMS (ESI) calcd. for (C 10 H 9 4 ) + 193.0495, found 193.0499. ethyl 5-bromo-3-oxo-2,3-dihydrobenzofuran-2-carboxylate: pale yellow solid, actual mass 2g, yield 80%. 1 H NMR (500 MHz, CDCl 3 ): δ 8.11 (br, 1H), 7.76-7.81 (m, 2H), 4.49 (q, J = 7.06 Hz, 2H), 1.45 (t, J = 7.06 Hz, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 149.3, 134.2, 127.9, 122.7, 122.3, 116.2, 106.4, 61.8, 14.4. HRMS (ESI) calcd. for (C 11 H 10 Br 4 ) + 284.9757, found 284.9751. 11

ethyl 6-methoxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate: pale yellow solid, actual mass 2.3 g, yield 85%. 1 H NMR (500 MHz, CDCl 3 ): δ 8.19 (br, 1H), 7.53-7.57 (m, 1H), 6.87-6.89 (m, 1H), 6.63-6.67 (m, 1H), 4.28-4.46 (m, 2H), 3.83-3.87 (m, 3H), 1.30-1.44 (m, 3H). HRMS (ESI) calcd. for (C 12 H 13 5 ) + 237.0757, found 237.0763. ethyl 5-methyl-3-oxo-2,3-dihydrobenzofuran-2-carboxylate: white solid, actual mass 2.8 g, yield 87%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.51-7.54 (m, 1H), 6.90-7.15 (m, 2H), 4.27-4.46 (m, 2H), 3.95 (s, 1H), 2.43 (s, 3H), 1.29-1.43 (m, 3H). HRMS (ESI) calcd. for (C 12 H 13 4 ) + 221.0808, found 221.0817. 3-oxo-2,3-dihydrobenzofuran-2-carbonitrile: prepared according to a literature procedure (J. Chem. Soc. 1965, 2361); yellow solid, actual mass 2 g, yield 76%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.70-7.80 (m, 2H), 7.49-7.52 (m, 1H), 7.40-7.41 (m, 1H), 7.30-7.33 (m, 1H), 7.20-7.25 (m, 1H). 1g CH 3 2-methylbenzofuran-3(2H)-one: prepared according to a literature procedure (Synth. Commun. 2012, 42, 989); oily liquid, actual mass 1.5 g, yield 83%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.53-7.60 (m, 2H), 6.99-7.05 (m, 2H), 4.57 (q, J = 7.24 Hz, 1H), 1.46 (d, J = 7.24 Hz, 3H). General Procedure for preparation of propargylic acetates 2: Br Mg, I2 MgBr CH H Ac 2,Et 3 N Ac THF THF,-78 C DCM, rt 2a A freshly prepared Grignard reagent (40.0 mmol) in 50 ml THF under nitrogen atomosphere in a 250 ml flask was cooled to -78 C. Propargyl aldehyde (1.5 g, 27.8 mmol) was added dropwise while stirring. The resulting solution was stirred for 10-15 min. The reaction was quenched with NH 4 Cl (satd. aq.), the organic layer was separated, and the aqueous layer was then extracted three times with EA. The combined organic layer was dried over Na 2 S 4. Solvent was removed under 12

reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure 1-phenylprop-2-yn-1-ol (3.3 g, 25 mmol) as pale yellow oil in a yield of 90%. A 100 ml flask was charged with 50 ml DCM, 1-phenylprop-2-yn-1-ol (3.3 g, 25 mmol) and Et 3 N (3.8 ml, 27.5 mmol). The solution was cooled with ice bath, followed by dropwise addition of acetic anhydride (2.83 ml, 30 mmol). The solution was gradually warmed to room temperature and stirred for 3 h at this temperature. After complete consumption of 1-phenylprop-2-yn-1-ol as followed by TLC, solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure 2a (3.7g, 21.3 mmol) as as a pale yellow oil in a yield of 85%. Ac 2a 1-phenylprop-2-ynyl acetate: known compound (J. rg. Chem. 2011, 76, 500); a pale yellow oil liquid, actual mass 3.7g, yield 85%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.52-7-54 (m, 2H), 7.36-7.41 (m, 3H), 6.45 (s, 1H), 2.65 (s, 1H), 2.11 (s, 3H). 1-p-tolylprop-2-ynyl acetate: known compound (J. rg. Chem. 2011, 76, 500); a pale yellow oil liquid, actual mass 2.3g, yield 87%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.42-7.43 (m, 2H), 7.19-7.21 (m, 2H), 6.41-6.42 (m, 1H), 2.64 (s, 1H), 2.36 (s, 3H), 2.10 (s, 3H). 1-(4-methoxyphenyl)prop-2-ynyl acetate: known compound (Chem. Eur. J. 2011, 21, 5921); a pale yellow oil liquid, actual mass 2.1g, yield 82%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.46-7.47 (m, 2H), 6.89-6.91 (m, 2H), 6.40-6.41 (m, 1H), 3.80 (s, 3H), 2.66 (s, 1H), 2.08 (s, 3H). 1-(4-chlorophenyl)prop-2-ynyl acetate: known compound (J. rg. Chem. 2011, 76, 500); a pale yellow oil liquid, actual mass 2.8g, yield 83%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.46-7.47 (m, 2H), 7.34-7.36 (m, 2H), 6.41 (m, 1H), 2.67 (s, 1H), 2.10 (s, 3H). 1-(4-(trifluoromethyl)phenyl)prop-2-ynyl acetate: known compound (Angew. Chem. Int. Ed. 2008, 47, 3777); a pale yellow oil liquid, actual mass 3.8g, yield 89%. 1 H NMR (500 MHz, CDCl 3 ): δ 13

7.65 (s, 4H), 6.48 (s, 1H), 2.69 (s, 1H), 2.12 (s, 3H). 1-(3,5-bis(trifluoromethyl)phenyl)prop-2-ynyl acetate: a pale yellow oil liquid, actual mass 3.2g, yield 86%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.99 (s, 2H), 7.89 (s, 1H), 6.52 (s, 1H), 2.74 (s, 1H), 2.15 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) δ 169.3, 139.0, 132.2 (q, J = 33.6 Hz, 2C), 127.9 (q, J = 2.75 Hz, 2C), 123.0 (q, J = 271.5 Hz, 2C), 123.01-123.10 (m, 1C), 78.7, 76.9, 68.3, 20.7. HRMS (ESI) calcd. for (C 13 H 9 F 6 2 ) + 311.0501, found 311.0508. Ac Br 2g 1-(4-bromophenyl)prop-2-ynyl acetate: known compound (J. rg. Chem. 2011, 76, 500); a pale yellow oil liquid, actual mass 1.2 g, yield 73%. 1 H NMR (500 MHz, CDCl 3 ): δ 7.50-7.52 (m, 2H), 7.39-7.41 (m, 2H), 6.39 (s, 1H), 2.67 (s, 1H), 2.10 (s, 3H). 1-(naphthalen-1-yl)prop-2-ynyl acetate: known compound (Angew. Chem. Int. Ed. 2008, 47, 3777); a pale yellow oil, actual mass 1.5 g, yield 72%. 1 H NMR (500 MHz, CDCl 3 ): δ 8.16 (d, J = 8.43 Hz, 1H), 7.83-7.90 (m, 3H), 7.47-7.59 (m, 3H), 7.08 (s, 1H), 2.71 (s, 1H), 2.13 (s, 3H). hept-1-yn-3-yl acetate: known compound (Angew. Chem. Eng. Ed. 2013, 52, 3277); a pale yellow oil, actual mass 1.5 g, yield 71%. 1 H NMR (500 MHz, CDCl 3 ): δ 5.32-5.35 (m, 1H), 2.44 (s, 1H), 2.08 (s, 3H), 1.74-1.79 (m, 2H), 1.31-1.45 (m, 4H), 0.91 (t, J = 7.15 Hz, 3H). 2-methylbut-3-yn-2-yl acetate: known compound (Adv. Synth. Catal. 2004, 346, 483); prepared from commercially available 2-methylbut-3-yn-2-ol following the general procedure; colorless oil, actual mass 1.2 g, yield 56%. 1 H NMR (500 MHz, CDCl 3 ): δ 2.50 (s, 1H), 2.00 (s, 3H), 1.64 (s, 6H). 14

Ph 3a CEt 15

Ph 3a CEt 16

Me 3b CEt 17

Me 3b CEt 18

Me 3c CEt 19

Me 3c CEt 20

Cl CEt 3d 21

Cl CEt 3d 22

CF 3 3e CEt 23

CF 3 3e CEt 24

F 3 C CF 3 CEt 3f 25

F 3 C CF 3 CEt 3f 26

Br 3g CEt 27

Br 3g CEt 28

3h CEt 29

3h CEt 30

3i CEt 31

3i CEt 32

3j CEt 33

3j CEt 34

Ph CMe 3ab 35

Ph CMe 3ab 36

Br 3ac Ph CEt 37

Br 3ac Ph CEt 38

Ph Me 3ad CEt 39

Ph Me 3ad CEt 40

Me 3ae Ph CEt 41

Me 3ae Ph CEt 42

Ph 3af CN 43

Ph 3af CN 44

Ph CH 3 3ag N N N Br 45

Ph CH 3 3ag N N N Br 46

4 Ph C 2 Et 47

4 Ph C 2 Et 48

Ph N NN C 2 Et 8 Br 49

Ph N NN C 2 Et 8 Br 50

Ph N N N C 2 Et 9a Br 51

Ph N N N C 2 Et 9a Br 52

CH 3 C 2 Et 9b N N N Br 53

CH 3 C 2 Et 9b N N N Br 54

55

56

57

58

59

60

61

62

63

64

65