2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Σχετικά έγγραφα
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CRASH COURSE IN PRECALCULUS

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Trigonometric Formula Sheet

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

TRIGONOMETRIC FUNCTIONS

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Areas and Lengths in Polar Coordinates

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

F-TF Sum and Difference angle

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Trigonometry 1.TRIGONOMETRIC RATIOS

Areas and Lengths in Polar Coordinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1999 by CRC Press LLC

Derivations of Useful Trigonometric Identities

Inverse trigonometric functions & General Solution of Trigonometric Equations

MathCity.org Merging man and maths

Homework 3 Solutions

Math221: HW# 1 solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

Section 9.2 Polar Equations and Graphs

Section 8.2 Graphs of Polar Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

10.4 Trigonometric Identities

MATH 150 Pre-Calculus

derivation of the Laplacian from rectangular to spherical coordinates

Solutions to Exercise Sheet 5

Approximation of distance between locations on earth given by latitude and longitude

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Homework 8 Model Solution Section

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The Simply Typed Lambda Calculus

EE512: Error Control Coding

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Uniform Convergence of Fourier Series Michael Taylor

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Chapter 6 BLM Answers

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

4.6 Autoregressive Moving Average Model ARMA(1,1)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Finite Field Problems: Solutions

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

w o = R 1 p. (1) R = p =. = 1

Parametrized Surfaces

C.S. 430 Assignment 6, Sample Solutions

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Matrices and Determinants

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Trigonometry Functions (5B) Young Won Lim 7/24/14

Problem Set 3: Solutions

Notes on the Open Economy

Second Order Partial Differential Equations

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Second Order RLC Filters

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Answer sheet: Third Midterm for Math 2339

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Differentiation exercise show differential equation

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Principles of Mathematics 12 Answer Key, Contents 185

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Numerical Analysis FMN011

Chapter 7 Analytic Trigonometry

Concrete Mathematics Exercises from 30 September 2016

COMPLEX NUMBERS. 1. A number of the form.

Fractional Colorings and Zykov Products of graphs

5.4 The Poisson Distribution.

CE 530 Molecular Simulation

CORDIC Background (2A)

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Reminders: linear functions

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

EE101: Resonance in RLC circuits

Solution to Review Problems for Midterm III

TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *

Srednicki Chapter 55

Transcript:

5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric identities invlving sums r differences f tw variables Since 75 30 + 45, yu might ask whether cs 75 can be fund by calculating cs (30 + cs (45 The answer is n; cs 75 < 1, whereas 3 3 + cs (30 + cs (45 + > 1 The crrect frmula fr the csine f the sum f tw angles is given by the fllwing therem Therem 51: Csine f a Sum cs ( α + β csα cs β sin α sin β T see why the frmula in Therem 51 is crrect, cnsider the unit circles in Figure 51 (a and (b In Figure 51(a, AOB is α + β In Figure 51 (b, ΔCOD is btained by rtating ΔAOB thrugh the angle ( α In Figure 51 (a, we have A ( cs( α + β, sin( α + β and B ( 1, 0, s by the distance frmula, AB [ cs( α + β 1] + [ sin( α + β 0] cs ( α + β - cs( α + β + 1 + sin ( α + β [cs ( α + β + sin ( α + β ] cs( α + β + 1 1 cs( α + β + 1 cs( α + β Figure51 ( a A y Figure 51 ( b y C unit circle O x α + β B x unit circle O β α D 3

In Figure 51 ( b, C ( cs β, sin β and D ( cs ( α, sin ( α ( cs α, sin α, s, by the distance frmula again, CD ( cs β - csα + [sin β - ( -sinα ] ( cs β - sinα + ( sin β + sinα cs β cs β cs α + cs α + sin β + sin β sin α + sin α ( cs β + sin β + ( cs α + sin α cs β cs α + sin β sinα 1 + 1 ( cs β cs α sin β sinα ( cs α cs β sin α sin β Because Δ AOB is cngruent t Δ COD, it fllws that AB CD Hence, cs ( α + β ( cs α cs β sin α sin β cs ( α + β ( cs α cs β sin α sin β cs ( α + β csα cs β sinα sin β, which is the frmula given in Therem 51 Example 51 ---------------------------- ------------------------------------------------------------ Find the exact value f cs 75 By Therem 51, cs 75 cs( 30 + 45 cs 30 cs 45 sin 30 sin 45 3 1 ( 3 1 6, r 4 4 Therem 5: Csine f a Difference In Therem 51, replace β by β t btain cs ( α + β cs [ α + ( β ] cs α cs ( β sin α sin ( β cs α cs β sin α ( sin β cs α cs β + sinα sin β Example 5 ---------------------------- ------------------------------------------------------------ Find the exact value f cs 15 By Therem 51, cs 15 cs( 45 cs ( α β csα cs β + sin α sin β 3 30 cs 1 + 45 cs 30 + sin 45 sin 30 ( 3 + 1 6 +, r 4 4 33

Therem 53: Cfunctin Therem If θ is a real number r an angle measured in radians, then ( i cs ( θ sinθ ( ii sin ( θ csθ ( iii ct ( θ tanθ ( iv tan ( θ ctθ ( v csc ( θ secθ ( vi sec ( θ cscθ We prve ( i, ( ii, and ( iii here and leave the remaining prfs as exercises: ( i By Therem 5, cs ( θ cs csθ + sin sinθ 0 csθ + 1 sin θ sinθ ( ii In part ( i, we replace θ by ( θ t btain cs - ( -θ sin ( θ Thus, csθ sin ( θ, and therefre ( ii hlds ( iii By parts ( i and ( ii, cs( θ sinθ ct ( θ sin( θ tanθ csθ Naturally, if we measure an angle α in degrees instead f in radians, the relatinships expressed in Therem 53 are written as cs ( 90 α sin α, sin ( 90 α csα, and s frth Nw by cmbining Therem 5 and Therem 53, we can prve the fllwing imprtant therem Therem 54: Sine f a Sum sin ( α + β sin α cs β + cs α sin β By parts ( i and ( ii f Therem 53, sin( α + β cs ( α + β cs α β cs α β 34

cs α cs β + sin α sin β sin α cs β + csα sin β Example 53 ---------------------------- ------------------------------------------------------------ 7 Find the exact value f sin 1 By Therem 54 and the fact that + 7, we have 3 4 1 sin 7 sin + sin cs + cs sin 1 3 4 3 4 3 4 3 1 + ( 3 + 1, r 6 + 4 4 The fllwing therem fllws directly frm Therem 54 and the even-dd identities Therem 55: Sine f a Difference sin ( α β sin α cs β csα sin β Replacing β by β in Therem 54, we have sin ( α β sin [ α + ( β ] sin α cs( β + cs α sin( β sin α csβ csα sin β The fur identities cs ( α + β csα cs β sin α sin β sin ( α + β sin α cs β + cs α sin β cs ( α β csα cs β + sin α sin β sin ( α β sin α cs β csα sin β are used s ften that they shuld be memrized We recmmend tht yu memrize the first identity in the frm: The csine f a sum f tw angles is equal t the csine f the first times the csine f the secnd minus the sine f the first times the sine f the secnd The remaining three identities can be stated in a similar manner Example 54 ---------------------------- ------------------------------------------------------------ Simplify each expressin: (a sin( 90 + θ ( b cs + x ( a sin( 90 + θ sin 90 csθ +cs90 sinθ 1 cs θ + 0 sin θ csθ ( b cs cs cs x - sin sin x x - sinx + x 0 cs x 1 sin 35

Example 55 ---------------------------- ------------------------------------------------------------ Suppse that α and β are angles in standard psitin; α is in quadrant I, sinα 5 3, β is in quadrant II, and cs β 13 5 Find: (a csα (b sin β (c sin(α + β (d cs(α + β (e the quadrant cntaining angle α + β in standard psitin (a Since α is in quadrant I, csα is psitive, and csα 1 sin α 3 1 16 4 5 5 5 (b Since β is in quadrant I, sin β is psitive, and sin β 1 cs β 5 1 13 (c sin(α + β sinα cs β + csα sin β (d cs(α + β csα cs β - sinα sin β 144 169 13 3 5 4 1 + 5 13 5 13 65 4 5 3 1 56 5 13 5 13 65 (e Since sin(α + β is psitive and cs(α + β is negative, it fllws that (α + β is a quadrant II angle Example 56 ---------------------------- ------------------------------------------------------------ Simplify each expressin withut the use f a calculatr r tables: (a cs 5 cs 0 sin 5 sin 0 (b sin 3 3 cs + cs sin 5 5 5 5 (a Reading the frmula fr the csine f a sum frm right t left, we have cs 5 cs 0 sin 5 sin 0 cs (5 + 0 cs( 45 (b Reading the frmula fr the sine f a sum frm right t left, we have sin 3 3 3 cs + cs sin sin + sin 0 5 5 5 5 5 5 The graphs f the sine and the csine functins suggest that sin( x + sin x and cs( x + cs x Example 57 ---------------------------- ------------------------------------------------------------ Prve the identities: (a sin( x + sin x (b cs( x + cs x (c cs( x + y cs ( x y cs x sin y 36

(a sin( x + sin x cs + cs x sin sin x ( -1 + cs x 0 sin x (b cs( x + cs x cs sin x sin cs x ( 1 sin x ( 0 cs x (c Beginning with the left side and applying the frmulas fr the csine f a sum and fr the csine f a difference, we have cs( x + y cs ( x y cs x cs y sin x sin y cs x cs y + sin x sin y ( ( ( cs x cs y - ( sin x sin y cs x cs y sin x sin y cs x (1 - sin y (1 - cs x sin y cs x - cs x sin y sin y + cs cs x sin y x sin Using the frmulas fr the sine and csine f a sum, we can derive a useful frmula fr the tangent f a sum Therem 56: Tangent f a Difference y If csα 0, cs β 0, and cs ( α + β 0 then + tan β tan ( α + β tan α tan β sin( α + β sinα csβ + csα sinβ tan( α + β cs( α + β csα csβ sinα sinβ Dividing the numeratr and denminatr f the fractin n the right side f the equatin abve by csα cs β, we get sin α csβ csα sinβ sin α sinβ + + csα csβ csα csβ csα csβ + tanβ tan( α + β csα csβ sin α sinβ sin α sin β tanβ 1 csα csβ csα csβ csα cs β 37

Therem 57: Tangent f a Difference If csα 0, cs β 0, and cs ( α β 0 then tan β tan ( α β tan α tan β In Therem 56, we replace β by β t btain + tan (-β tanβ tan ( α β tan[ α + ( β ] tan α tan (-β tan α tanβ Sectin 5 Prblems--------------- ------- ----------------------------------------------------------- In prblems 1 t 1, find the exact value f the indicated trignmetric functin D nt use a calculatr t slve 1 sin 105 Hint: 105 60 + 45 cs 105 3 sin 195 Hint: 195 150 + 45 4 tan 195 17 5 cs 1 Hint: 17 5 17 + 6 ct 1 4 6 1 7 sin 11 1 Hint: 11 7 1 6 4 11 8 sec 1 13 13 3 9 tan Hint: + 1 1 4 3 10 ct 13 1 19 11 tan Hint: 1 1 19 11 6 4 19 1 csc 1 In prblems 13 t 34, simplify each expressin withut the use f a calculatr 13 sin ( 180 θ 14 cs ( + t 180 15 cs ( α 16 sin ( x 70 17 sin ( 360 s 18 cs ( γ 19 tan ( 180 t 0 sec ( + u 38

1 csc ( + β 3 tan ( θ 70 + 3 sin 17 cs 13 + sin 13 cs 17 4 cs 43 cs 17 sin 43 cs17 17 5 sin cs 36 11 36 11 17 sin cs 36 36 5 5 6 cs sin + cs sin 7 7 7 7 7 cs x cs x + sin x sin x 8 sin ( α β cs β + cs ( α β sin β 9 cs ( α + β cs β + sin ( α + β sin β 30 cs ( x + y cs ( x y tan 4 + tan18 31 tan 4 tan18 0 tan 50 tan 0 3 tan 50 tan 0 33 tan 8x tan 7x tan 8x tan 7x 34 tan +θ 35 Suppse that α and β are angles in standard psitin; α is in quadrant I, 4 1 sinα, β is in quadrant II, and sin β Find: 5 13 ( a cs α ( b cs β ( c sin (α + β ( d cs (α + β ( e sin ( α β ( f tan (α + β ( g The quadrant cntaining the angle (α + β in standard psitin 36 Suppse that < s <, ( a sin ( s t ( b cs ( t < t <, sin s 5, and tan t 13 4 Find: s ( c sin ( s + t ( d sec (s + t ( e The quadrant cntaining the angle θ in standard psitin if the radian measure f θ is s + t 3 56 5 37 If α and β are psitive acute angles, sin(α + β, and sin β, find sinα 65 13 Hint: sin α sin (( α + β β 38 Derive a frmula fr tan (α + β fr the case in which csα 0 and sin β 0 In prblems 39 t 48, shw that each equatin is an identity 39 sin( α + β sin α cs β 1 + ct α tan β 40 tan (θ + 39

41 sin t + cs t sin t 4 tan x tan x 3 6 43 cs ( x+y cs ( x y 1 sin x sin y 44 tan β 45 ct (x+y 47 tan θ 4 tan θ 4 ct x ct y 1 ct x + ct y 46 sinθ cs θ 48 tan t + sin( s + t sin( s t sec sin( α β csα cs β tan s + tan t tan s tan t t sin t csc t 1 49 Prve parts (iv, (v, and (vi f Therem 53 tan y tan 50 If x + y 4, shw that tan y x 40