1999 by CRC Press LLC
|
|
- Σταματία Ουζουνίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Plarikas A. D. Trignmetric and Hyperblic Fnctins The Handbk f Frmlas and Tables fr Signal Prcessing. Ed. Aleander D. Plarikas Bca Ratn: CRC Press LLC, by CRC Press LLC
2 43 Trignmetry and Hyperblic Trignmetry 43. Trignmetry Angle Relatins f the Fnctins Fndamental Identities 43. Hyperblic Trignmetry Hyperblic Fnctins 43. Trignmetry 43.. Angle Radian π π radians; radians; radian degrees 80 π Right Angle An angle f Trignmetric fnctins f an arbitary angle (see Figre 43.) sin y/ r csc r/ y cs / r sec r/ tan y / ct ctn / y esec sec cvers sin vers cs hav vers ia cis cs + isin e, in radians, i 999 by CRC Press LLC
3 y y r FIGURE Relatins f the Fnctins Relatins sin csc csc sin cs sec sec cs sin tan sin + cs ct cs cs ct + tan sec tan sin *sin ± cs + ct csc *tan ± sec *cs ± sin *ct ± csc * sec ± tan + sin cs( 90 ) sin( 80 ) *csc ± ct + cs sin( 90 ) cs( 80 ) tan ct( 90 ) tan( 80 ) ct tan( 90 ) ct( 80 ) csc ct ct * The sign in frnt f the radical depends n the qadrant in which falls Fndamental Identities Fndamental Identities Where a dble sign appears in the fllwing, the chice f sign depends pn the qadrant in which the angle terminates. 999 by CRC Press LLC
4 Reciprcal Relatins Prdct Relatins Qtient Relatins sin, cs, tan csc sec ct csc sin, sec, ct cs tan sin tan cs, cs ct sin tan sin sec, ct cs csc sec csc tan, csc sec ct tan ct sin sin, cs, tan sec csc cs sec csc tan, sec csc cs, ct ct sin Pythagrian Relatins sin + cs, + tan sec, + ct csc Angle-Sm and Angle-Difference Relatins sin( + β) sincs β+ cssinβ sin( β) sincsβ cssinβ cs( + β) cscsβ sinsinβ cs( β) cscsβ+ sinsinβ tan+ tanβ tan( + β) tantanβ tan tanβ tan( β) + tantanβ ctβct ct( + β) ctβ+ ct ctβct+ ct( β) ctβ ct 999 by CRC Press LLC
5 sin( + β)sin( β) sin sin β cs β cs cs( + β)cs( β cs sin β cs β sin Dble-Angle Relatins sin sincs Mltiple-Angle Relatins tan tan tan cs cs sin cs sin + tan tan ct tan, ct tan ct 3 sin3 3sin 4sin 3 cs3 4cs 3cs 3 sin 4 4sincs 8sin cs 4 cs4 8cs 8cs sin5 5sin 0sin + 6sin 5 3 cs5 6cs 0cs + 5cs 5 3 sin6 3cs sin 3cs sin+ 6cssin 6 4 cs6 3cs 48cs + 8cs sinn sin( n ) cs sin( n ) csn cs( n ) cs cs( n ) 3 3tan tan tan3 3tan 3 4tan 4tan tan 4 4 6tan + tan tan( n ) + tan tann tan( n ) tan Fnctin-Prdct Relatins sinsinβ cs( β) cs( + β) cscsβ cs( β) + cs( + β) 999 by CRC Press LLC
6 sincsβ sin( + β) + sin( β) cssinβ sin( + β) sin( β) Fnctin-Sm and Fnctin-Difference Relatins sin + sin sin β ( + β)cs ( β) sin sinβ cs ( + β)sin ( β) cs+ csβ cs ( + β)cs ( β) cs csβ sin ( + β)sin ( β) sin( + β) tan tan cs cs, tan tan sin( β) + β β β cscsβ sin( + β) sin( β ) ct+ ctβ, ct ctβ sinsinβ sinsinβ tan ( + β) sin+ sinβ sin sinβ tan ( β) sin+ sinβ tan ( + β). cs+ csβ sin+ sinβ ct ( β ) cs csβ sin sinβ tan ( β) cs+ csβ Half-Angle Relatins cs + cs sin ±, cs ± tan ± ct ± cs cs sin + cs sin + cs + cs + cs sin cs sin cs Pwer Relatins sin 3 ( cs ), sin ( 4 3 sin sin 3 ) 4 sin ( cs cs 4 ) 999 by CRC Press LLC
7 cs ( + cs ), cs ( cs+ cs ) cs 4 ( + cs + cs ) tan cs, ct + cs cs + cs Epnential Relatins (a in radians) e ia cs+ isin, i e e e + e sin a, csa i e tan a i e ia ia ia ia ia ia e + e ia ia e i e ia ia Relatins f Trignmetric Fnctins Fnctin sin cs tan ct sec csc sin sin ± cs tan ± + tan ± +ct ± sec a sec csc cs ± sin cs ± +tan ct ± + ct sec ± csc csc tan sin ± sin ± cs cs tan ct ± sec ± csc ct ± sin sin cs ± cs tan ct ± sec ± csc sec ± sin cs ± + tan ± + ct ct sec csc ± csc csc sin ± cs ± + tan tan ± + ct sec ± sec csc Nte: The chice f sign depends pn the qadrant in which the angle terminates Identities Invlving Principal Vales If Arcsin, then Arcsin + Arccs π/ Arctan + Arcct π/ sin, cs, tan csc, sec, ct 999 by CRC Press LLC
8 If Arccs, then sin, cs, tan csc, sec, ct If Arctan, then sin, cs + +, tan csc + sec +, ct Plane Triangle Frmlae In the fllwing, A, B, and C dente the angles f any plane triangle, a, b, c, the crrespnding ppsite sides, and s a+ b+ c ( ). Radis f inscribed circle: r ( s a)( s b)( s c) s Radis f circmscribed circle: a b c R sin Α sin B sinc Law f sines: a b c sin A sin B sin C Law f csines: a b c bc A A b + c + cs, cs a bc b c a ca B B c + a + cs, cs b ca c a b ab C C a + b + cs, cs c ab 999 by CRC Press LLC
9 Law f tangents: tan ( B C) b c, b+ c tan ( B+ C) tan ( C A) c a c+ a tan ( C+ A) tan ( A B) a b a+ b tan ( A+ B) Half-angle frmlae: tan A r r B s a, tan r C s b, tan s c sin A sin B sin C ( s b)( s c) ss ( a), cs A bc bc ( s c)( s a) ss ( b), cs B ca ca ( s a)( s b) ss ( c), cs C ab ab Area: K bcsin A casin B absinc K a B C sin sin b sincsin A c sin Asin B sin A sin B sinc abc K s( s a)( s b)( s c) rs 4R Mllweide s frmlae: sin ( B C) b c, a cs A sin ( C A) c a b cs B sin ( A B) a b c cs C 999 by CRC Press LLC
10 Newtn s frmlae: cs ( B C) b+ c, a sin A cs ( C A) c+ a b sin B cs ( A B) a+ b c sin C Sltin f Right Triangles a) Given acte angle A and ppsite leg a. B 90 A, b a/ tan A act A, c a/ sin A acsc A b) Given acte angle A and adjacent leg b. B 90 A, a b tan A, c b/ cs A bsec A c) Given acte angle A and hyptense c. B 90 A, a csin A, b c cs A d) Given legs a and b. c a + b, tan A a/ b, B 90 A e) Given hyptense c and leg a. b ( c+ a)( c a), sin A a/ c, B 90 A Sltin f Obliqe Triangles a) Given sides b and c and inclded angle A. Nnlgarithmic sltin a b + c bccs A, cs B ( c + a b )/ ca, Lgarithmic sltin cs C ( a + b c )/ ab ( B C) A, tan ( B C) b c + b c tan 90 ( B C + ). B ( B+ C) + ( B C), C ( B+ C) ( B C). 999 by CRC Press LLC
11 a ( bsin A)/ sin B, K bcsin A Check. A + B + C 80, r se Newtn s frmla r law f sines. b) Given angles B and C and inclded side a. A 80 ( B+ C), b ( asin B)/ sin A, c a C A K a sin B sin ( sin )/ sin, C sin A Check. a bcsc + ccsb, r se Newtn s frmla r law f tangents. c) Given sides a and c and ppsite angle A. Check. a bcsc + ccsb, r se Newtn s frmla r law f tangents. Nte. In this case there may be tw sltins, fr C may have tw vales: C < 90 and C 80 C > 90. If A + C > 80, se nly C. d) Given the three sides a,b,c. Nnlgarithmic sltin Lgarithmic sltin sin C ( csin A)/ a, B 80 - (A + C), b (asinb)/sina, K acsinb cs A ( b + c a )/ bc, cs B ( c + a b )/ ca, cs C ( a + b c )/ ab Check. A + B + C 80. s ( a+ b+ c), r 43. Hyperblic Trignmetry 43.. Hyperblic Fnctins Gemetrical Defintins (see Figre 43.) ( s a)( s b)( s c), s r r r tan A, tan B, tan C, s a s b s c K s( s a)( s b)( s c) Let O be the center, A the verte, and P any pint f the branch B AB f a rectanglar hyperbla. Set OM, MP y, OA a, and 999 by CRC Press LLC
12 FIGURE 43. area OPAP a. Then hyperblic sine f sinh y/a, hyperblic csine f csh /a Epnential Defintins hyperblic sine f sinh ( e e ) hyperblic csine f csh ( e + e ) hyperblic tangent f sinh e tanh csh e e + e csch h sinh csh tanh Fndamental Identities sinh( ) sinh, csc h( ) csch csh( ) csh, sec h( ) sech tanh( ) tanh, cth( ) cth csh sinh tanh + sech cth csch csch sech csch sech 999 by CRC Press LLC
13 sinh( + v) sinhcshv+ cshsinhv sinh( v) sinhcshv cshsinhv csh( + v) cshcshv+ sinhsinhv csh( v) cshcshv sinhsinhv tanh+ tanhv tanh( + v) + tanhtanhv tanh tanhv tanh( v) tanhtanhv sinh( + v)sinh( v) sinh sinh v csh csh v csh( + v)csh( v) sinh + csh v csh + sinh v sinhcshv sinh( + v) + sinh( v) cshsinhv sinh( + v) sinh( v) cshcshv csh( + v) + sinh( v) sinhsinhv csh( + v) csh( v) sinh+ sinhv sinh ( + v)csh ( v) sinh sinhv csh ( + v)sinh ( v) cshh + cshv csh ( + v)csh ( v) cshh cshv sinh ( + v)sinh ( v) tanh sinh tanh + tanh csh tanh tanh tanh tanh 999 by CRC Press LLC
14 + tanh sinh+ cs tanh ( ) sinh + v tanh+ tanhv cshcshv ( ) sinh v tanh tanhv cshcshv ( ) sinh + v cth+ cthv sinhsinhv ( ) sinh v cth cthv sinhsinhv sinh sihcsh csh csh + sinh csh + sinh tanh tanh + tanh 3 sinh3 3sinh+ 4sinh 3 csh3 4csh 3csh 3 3tanh+ tanh tanh3 + 3tanh sinh ± (csh ) csh (csh + ) csh sinh tan sinh csh Inverse Hyperblic Fnctins * sinh lg ( + + ) e csh lg e( ± ),. The pls sign is sed fr the principal vale. 999 by CRC Press LLC
15 tanh + lg,, < ± + csch lg e. The pls sign is sed if > 0, the mins sign if < 0. ± sech lg e, 0 <. The pls sign is sed fr the principal vales. lg + cth e, > * sinh, csh. etc., are smetimes replaced by arg sinh, arg csh, etc., i.e., sinh arg sinh Relatins with Circlar Fnctins sinhi isin, sinh isini cshi cs, csh csi tanhi i tan, tanh i tani sinh( + iv) sinhcsv+ icshsinv sinh( iv) sinhcsv icshsinv csh( + iv) cshcsv+ isinhsinv csh( iv) cshcsv isinhsinv tanh( + iv) sinh + i sin v csh+ csv sinh isinv tanh( iv) csh+ csv sinh isinv cth( + iv) csh csv sinh+ isinv cth( iv) csh csv sinh + i icsh, csh i isinh + π π sinh( + πi) sinh, csh( + πi) csh sinh( + πi) sinh, csh( + πi) csh e csh+ sinh, e csh sinh i e cs+ isin, i e cs isin 999 by CRC Press LLC
16 Special Vales f Hyperblic Fnctins π 3π 0 i πi i sinh 0 i 0 i csh 0 0 tanh 0 i 0 i csch i i 0 sech 0 cth by CRC Press LLC
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.
5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.
5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
1 Elementary Functions
Elementary Functions. Power of Binomials. Power series.0 + q =+q + qq + +! qq...q + + =! q If q is neither a natural number nor zero, the series converges absolutely for < and diverges for >. For =, the
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
Radians/Arc+Length+++! Converting++Between++Radians++and++Degrees+
Radians/ArcLength ConvertingBetweenRadiansandDegrees Anglemeasurementcanbeexpressedinboth & Dependingonthecircumstance,itmaybenecessarytoconvertbetweenthetwounits ofangularmeasurement. Since2#=360,thefollowingequationscanbedetermined:
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Trigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
TRIGONOMETRIC FUNCTIONS
Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
MATH 150 Pre-Calculus
MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Formulario di Trigonometria
Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Chap 8 Mapping by Elementary Functions
Chap 8 Mapping b Elementar Fntions 68. Linear Transformations A, where A is a nonero onstant and iα iθ Let A= ae, = re i( α+ θ) ( ar) e rotate b α = arg A. epand or ontrat radis b a = A + B Let + iv =
Derivations of Useful Trigonometric Identities
Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
10.4 Trigonometric Identities
770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Class 03 Systems modelling
Class 03 Systems mdelling Systems mdelling input utput spring / mass / damper Systems mdelling spring / mass / damper Systems mdelling spring / mass / damper applied frce displacement input utput Systems
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *
TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions: 1degree/ 1radian s s FORMULA: θ = radians;wheres=arclength,r=radius r θ r IMPLICATIONOFFORMULA:Ifs=rthen θ =1radian EXAMPLE1:Whatistheradianmeasureofacentralanglesubtendedbyanarcof32cminacircleofradius8cm.?
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Formula for Success a Mathematics Resource
A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =
Chapter 5 Chapter 5 Exercise 5. minor arc = 50 60.4 0.8cm. major arc = 5 60 4.7 60.cm. minor arc = 60 90 60 6.7 8.cm 4. major arc = 60 0 60 8 = 6 = cm 5. minor arc = 50 5 60 0 = cm 6. major arc = 80 8
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)
7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS. INTRODUCTION The equations involving trigonometric functions of unknown angles are known as Trigonometric equations e.g. cos 0,cos cos,sin + sin cos sin..
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Statics and Strength of Materials
Instructor s Solutions Manual to accompany Statics and Strength of Materials Seventh Edition H.W. Morrow Robert P. Kokernak Upper Saddle River, New Jersey Columbus, Ohio Copyright 2011, 2007, 2004, 2001,
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
ECON 381 SC ASSIGNMENT 2
ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
1 Σύντομη επανάληψη βασικών εννοιών
Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Chapter 7 Analytic Trigonometry
Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Περισσότερα+για+τις+στροφές+
ΤεχνολογικόEκπαιδευτικόΊδρυμαKρήτης Ρομποτική «Τοπικήπαραμετροποίησηπινάκωνστροφής,γωνίεςEuler, πίνακαςστροφήςγύρωαπόισοδύναμοάξονα» Δρ.ΦασουλάςΓιάννης 1 Περισσότεραγιατιςστροφές ΗστροφήενόςΣΣμπορείνααντιστοιχηθείσεένα
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
CHAPTER 8. CONICS, PARAMETRIC CURVES, AND POLAR CURVES
SECTION 8. PAGE 3 R. A. ADAMS: CALCULUS CHAPTER 8. CONICS, PARAMETRIC CURVES, AND POLAR CURVES Section 8. Conics page 3. The ellipse with foci, ± has major ais along the -ais and c. If a 3, then b 9 5.