Supporting Information for

Σχετικά έγγραφα
Structural Expression of Exo-Anomeric Effect

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Accessory Publication

Supporting Information

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Electronic Supplementary Information

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Electronic Supplementary Information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Supporting Information

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Electronic Supplementary Information (ESI) for

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Electronic Supplementary Information for

IV. ANHANG 179. Anhang 178

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supporting Information

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Supporting Information for:

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Supporting Information

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

SUPPORTING INFORMATION

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Electronic Supplementary Information (ESI)

Supporting Information

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Supporting Information

Electronic Supplementary Information (ESI)

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

Table of Contents 1 Supplementary Data MCD

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Synthesis, characterization and luminescence studies of

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supplementary Information

Amplification of a metallacyclic receptor out of a dynamic combinatorial library. - Supporting Information -

Chemical Communications. Electronic Supporting Information

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Fused Bis-Benzothiadiazoles as Electron Acceptors

Chiral α-aminoxy Acid / Achiral Cyclopropane α-aminoxy Acid Unit as a Building Block for Constructing α N O Helix

Supporting Information

Supporting Information

Supporting Information

Supplementary Figures

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Disulfide-based metal free sulfanylation of ketones

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Electronic Supplementary Information (ESI)

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting Information

Electronic Supplementary Information

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Electronic Supplementary Information:

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Commiphoratones A and B, Two Sesquiterpene Dimers from Resina Commiphora

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Enhancing the Photochemical Stability of N,C-Chelate Polyboryl Compounds: C- C Bond Formation versus C=C Bond cis, trans-isomerization

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Supporting Information

Supporting Information

Supporting Information

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Transcript:

Supporting Information for Hydrogen-Bridged Digermyl and Germylsilyl Cations N. Kordts, C. Borner, R. Panisch, W. Saak, T. Müller* Contents. 1. Computational Details 2. IR Spectroscopic Results 3. NMR-Spectroscopic Results. 3.1 NMR spectra of compound 10 3.2 NMR spectra of compound 12 3.3 NMR spectra of compound 7[B(C 6 F 5 ) 4 ] 3.4 NMR spectra of compound 8[B(C 6 F 5 ) 4 ] 3.4 19 F NMR spectra of hydrodefluorination reactions. 4. Crystallographic Results for 7[B(C 6 F 5 ) 4 ] 5. References.

1. Computational Details. All calculations were done using either the Gaussian03 Rev D.02 or the Gaussian09 Rev. B.01 package of programs. 1 The molecular structures of the cations 2, 7 and 8, were optimized using the nonlocal DFT level of theory, Becke s three-parameter hybrid functional and the LYP correlation (B3LYP 2 ) along with cc-pvtz basis set 3 for all elements. Subsequent frequency calculations at this level of theory verified these structures as minima (zero imaginary frequencies) on the potential energy surface (PES). The Atoms-in-Molecules analysis was done with the AIMALL program 4 applying wavefunctions obtained from single point calculations at the B3LYP/cc-pvtz level of theory. The data are summarized in Tables S-1 (Absolute Energies) and S-3 (Cartesian Coordinates). For calculation of the NMR chemical shifts the GIAO method 5 was used. The M06L functional 6 in connection with the 6-311G(2d,p) basis set was applied on molecular structures optimized at the B3LYP/cc-pvtz level. Computed NMR chemical shieldings were transferred to the chemical shift scale using the NMR chemical shielding of tetramethylsilane (σ(si)(sime 4 ) = 362.1). J-coupling constants were computed at the same level of theory using a modified 6-311G(2d,p) basis set to ensure a better description of the Fermi Contact contribution to coupling constant J. 7 The following atomic units have been used: Elementary charge: 1 au = e = 1.60219 10-19 C Charge density ρ : 1 au = e a 0-3 = 1.0812 10 12 Cm -3 Laplacian of the charge density 2 ρ : 1 au = e a 0-5 = 3.8611 10 32 Cm -5 Energy E : 1 au = e 2 a 0-1 = 2625.5 kj mol -1 Length : 1 au = 1 bohr = 52.91772 pm Energy : 1 au = E h = 2625.498 kj mol -1 Table S1. Calculated absolute energies E, free Gibbs enthalpies G 298 (at 298K, 0.1 MPa) and wavenumbers ν of the asymmetric E-H-E vibration of hydronium ions. Cpd. E [au] G 298 [au] ν as (E-H-E) [cm -1 ] 7-5171.03775-5170.48987 1708 8-3147.52247-3147.12914 1817 2-1124.00601-1123.76904 1934 [(Et 3 Si) 2 H] + -1055.00000-1054.65502 1932 [(Et 3 Ge) 2 H] + -4630.11136-4629.77340 1782

Table S2. Calculated molecular structures of hydroniumions. Cation 7. B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 0.570835-1.690393-1.488812 2 6 0 0.847959-2.772936-2.387519 3 1 0-0.107906 0.666410 0.662382 4 6 0-0.675220-1.004307-1.634099 5 6 0 1.558201-1.372091-0.505203 6 6 0-0.074871-3.094107-3.411031 7 6 0 2.044111-3.516799-2.247612 8 6 0-1.237989-2.391018-3.556499 9 6 0 2.949975-3.218563-1.268502 10 6 0-1.538109-1.353171-2.654563 11 6 0 2.704470-2.135004-0.404106 12 1 0 0.159985-3.910646-4.081125 13 1 0 2.227426-4.333300-2.933692 14 1 0-1.935041-2.633787-4.346127 15 1 0 3.856937-3.796607-1.160721 16 1 0-2.481984-0.834898-2.777722 17 1 0 3.453423-1.904381 0.344600 18 6 0-2.701991-0.360542 0.912144 19 1 0-2.278872-1.261602 1.358224 20 1 0-2.799316 0.383572 1.704367 21 6 0-1.742222 2.097570-1.170689 22 1 0-2.487145 1.930898-1.954621 23 1 0-0.831460 2.412376-1.683017 24 6 0 2.343504 1.829201-0.165917 25 1 0 2.018257 2.688060 0.424189 26 1 0 1.939766 1.950110-1.172429 27 6 0 1.867764-0.080158 2.539926 28 1 0 2.932210-0.325061 2.611727 29 1 0 1.743314 0.882893 3.038835 30 32 0-1.396879 0.323624-0.395128 31 32 0 1.536886 0.216195 0.624663 32 6 0-4.069409-0.658900 0.277230 33 1 0-3.956983-1.393505-0.524885 34 1 0-4.475163 0.245846-0.185305 35 6 0-5.081647-1.190504 1.298600 36 1 0-4.678491-2.095828 1.760312 37 1 0-5.193985-0.459132 2.103687 38 6 0-6.445769-1.490108 0.680629 39 1 0-6.369543-2.246621-0.102374 40 1 0-7.141471-1.862436 1.432192 41 1 0-6.886144-0.595004 0.237611 42 6 0-2.226480 3.163251-0.182062 43 1 0-1.482884 3.307117 0.608067 44 1 0-3.137824 2.822958 0.317351 45 6 0-2.501601 4.511195-0.856833 46 1 0-1.590995 4.853743-1.356257 47 1 0-3.246343 4.369996-1.644920 48 6 0-2.984719 5.579310 0.122103 49 1 0-3.913926 5.279273 0.609766 50 1 0-2.244930 5.766260 0.902799 51 1 0-3.170557 6.523576-0.388904 52 6 0 1.019293-1.168011 3.205637 53 1 0-0.040703-0.905458 3.136764 54 1 0 1.136471-2.113282 2.669372 55 6 0 1.383770-1.376928 4.679292 56 1 0 1.269893-0.430237 5.214584 57 1 0 2.442288-1.642070 4.750571 58 6 0 0.537779-2.454752 5.353848 59 1 0 0.822610-2.579668 6.398161 60 1 0-0.523354-2.199303 5.329895 61 1 0 0.658939-3.420799 4.860468 62 6 0 3.878452 1.752601-0.209446 63 1 0 4.192775 0.875302-0.781811 64 1 0 4.276592 1.622646 0.801201 65 6 0 4.506484 3.004370-0.832805 66 1 0 4.109198 3.136221-1.842931 67 1 0 4.192743 3.882926-0.262378 68 6 0 6.031548 2.940003-0.882753 69 1 0 6.457353 2.840104 0.117265

70 1 0 6.373403 2.090577-1.476792 71 1 0 6.446510 3.843285-1.329240 Cation 8. B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 1.758968-0.601368-0.707584 2 6 0 2.620454-1.121660-1.726398 3 1 0-0.048275 0.725604 1.555622 4 6 0 2.297670-0.409916 0.604976 5 6 0 0.410509-0.296331-1.068406 6 6 0 3.949068-1.485613-1.403264 7 6 0 2.138308-1.267260-3.049594 8 6 0 4.430933-1.339406-0.131512 9 6 0 0.856526-0.920877-3.376277 10 6 0 3.604179-0.787642 0.863066 11 6 0-0.009969-0.442682-2.374918 12 1 0 4.581273-1.884512-2.185708 13 1 0 2.809101-1.657021-3.803926 14 1 0 5.444130-1.627259 0.110727 15 1 0 0.498753-1.024053-4.390942 16 1 0 4.028272-0.650844 1.851880 17 1 0-1.028633-0.201873-2.655774 18 6 0 2.042703 2.242251 2.271159 19 1 0 2.019823 2.810642 1.342199 20 1 0 1.440338 2.757428 3.019576 21 6 0 1.255672-0.501358 3.587270 22 1 0 2.237679-0.691425 4.026981 23 1 0 0.785691-1.466500 3.403244 24 6 0-1.863247-1.400825 1.081403 25 1 0-2.325904-1.049728 2.005544 26 1 0-1.091087-2.122861 1.351043 27 6 0-2.077458 1.719693-0.149857 28 1 0-2.704574 1.437256-1.001743 29 1 0-2.754373 1.850844 0.696255 30 32 0-0.982524 0.131955 0.220222 31 6 0-1.302963 3.006175-0.456496 32 1 0-0.705419 3.294325 0.413475 33 1 0-0.595252 2.830527-1.270854 34 6 0-2.226101 4.169725-0.832858 35 1 0-2.939651 4.338945-0.021717 36 1 0-2.819216 3.885708-1.706548 37 6 0-1.464782 5.460882-1.125644 38 1 0-2.149005 6.266148-1.391176 39 1 0-0.891128 5.789033-0.256830 40 1 0-0.768151 5.331988-1.955903 41 6 0-2.912612-2.053270 0.164759 42 1 0-2.447234-2.368075-0.773662 43 1 0-3.684580-1.324889-0.099554 44 6 0-3.578021-3.267544 0.822317 45 1 0-2.807323-3.999495 1.078491 46 1 0-4.032991-2.956746 1.766741 47 6 0-4.633549-3.919450-0.068466 48 1 0-5.436163-3.220196-0.309262 49 1 0-4.200476-4.266758-1.008173 50 1 0-5.083408-4.780188 0.425590 51 1 0 3.076405 2.228429 2.625584 52 1 0 0.666703 0.046295 4.323190 53 14 0 1.470550 0.483968 2.017603

Cation 2. B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 1.056780-0.000001-0.000012 2 6 0 2.488304-0.000003 0.000001 3 1 0-2.059112 0.000002-0.000015 4 6 0 0.382190 1.262227-0.000041 5 6 0 0.382188-1.262228 0.000027 6 6 0 3.192102 1.227601-0.000048 7 6 0 3.192100-1.227608 0.000058 8 6 0 2.527298 2.422966-0.000103 9 6 0 2.527293-2.422971 0.000104 10 6 0 1.121440 2.432523-0.000094 11 6 0 1.121435-2.432526 0.000084 12 1 0 4.273901 1.203342-0.000043 13 1 0 4.273899-1.203351 0.000066 14 1 0 3.071003 3.356927-0.000143 15 1 0 3.070996-3.356933 0.000153 16 1 0 0.624439 3.396759-0.000121 17 1 0 0.624432-3.396760 0.000113 18 6 0-2.201619 2.169610-1.575295 19 1 0-1.850187 1.622395-2.449205 20 1 0-3.291041 2.145346-1.549951 21 6 0-2.201456 2.169369 1.575608 22 1 0-1.895366 3.211743 1.696298 23 1 0-1.849933 1.622024 2.449400 24 6 0-2.201621-2.169577 1.575304 25 1 0-3.291043-2.145302 1.549966 26 1 0-1.850178-1.622352 2.449203 27 6 0-2.201467-2.169394-1.575597 28 1 0-1.895386-3.211773-1.696265 29 1 0-3.290891-2.145129-1.550362 30 1 0-1.895548 3.212004-1.695865 31 1 0-3.290881 2.145114 1.550377 32 14 0-1.458692 1.509285 0.000067 33 14 0-1.458695-1.509281-0.000072 34 1 0-1.895560-3.211972 1.695888 35 1 0-1.849943-1.622072-2.449403 [(Et 3Si) 2H] + B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 14 0-1.640563 0.000705 0.004158 2 14 0 1.640599 0.000521 0.003824 3 6 0-1.971252-0.397056-1.801291 4 1 0-1.291934-1.199646-2.100733 5 1 0-1.698152 0.474565-2.401489 6 6 0 1.973871 1.137268-1.453539 7 1 0 1.698448 0.610609-2.370768 8 1 0 1.297348 1.992693-1.377049 9 6 0 1.988276 0.692439 1.714827 10 1 0 1.717502 1.751306 1.719286 11 1 0 1.314173 0.201362 2.421727 12 6 0-1.984473-1.363298 1.248566 13 1 0-1.311103-1.223709 2.098471 14 1 0-1.710914-2.319551 0.795479 15 6 0 1.976930-1.829000-0.254590 16 1 0 1.709121-2.360791 0.661935 17 1 0 1.296148-2.192287-1.029072 18 6 0-1.983690 1.761457 0.560445 19 1 0-1.718140 1.846259 1.617259 20 1 0-1.303919 2.425677 0.020099 21 6 0-3.423049-0.818478-2.109013 22 1 0-4.141451-0.042963-1.845378 23 1 0-3.535879-1.018349-3.173997 24 1 0-3.700892-1.727705-1.576551 25 6 0 3.427333 1.645282-1.550390 26 1 0 4.142903 0.829346-1.646824

27 1 0 3.541927 2.283973-2.425498 28 1 0 3.707575 2.235621-0.678394 29 6 0-3.436454 2.231244 0.339741 30 1 0-3.557013 3.252590 0.699133 31 1 0-3.707012 2.224150-0.715774 32 1 0-4.155347 1.611054 0.874179 33 6 0 3.428651-2.162875-0.655989 34 1 0 3.545117-3.239673-0.773539 35 1 0 3.701577-1.701091-1.604515 36 1 0 4.148382-1.837551 0.094511 37 6 0-3.440431-1.414566 1.756057 38 1 0-3.561413-2.236808 2.460433 39 1 0-3.719244-0.498099 2.275427 40 1 0-4.153092-1.571379 0.946971 41 6 0 3.444208 0.515807 2.193472 42 1 0 3.567160 0.953344 3.183583 43 1 0 3.720487-0.535751 2.266405 44 1 0 4.157597 1.004521 1.530646 45 1 0 0.000017 0.001764 0.012501 [(Et 3Ge) 2H] + B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 32 0 1.717150-0.000838-0.001522 2 32 0-1.717160-0.000712-0.001145 3 6 0 2.076564-1.921874-0.266653 4 1 0 1.381453-2.281186-1.026852 5 1 0 1.829203-2.436833 0.662440 6 6 0-2.078606-0.422197-1.893684 7 1 0-1.833573 0.462333-2.482883 8 1 0-1.382512-1.207885-2.190912 9 6 0-2.073676-1.429172 1.311182 10 1 0-1.831712-2.381689 0.838176 11 1 0-1.373813-1.294803 2.137202 12 6 0 2.076792 1.190322-1.531818 13 1 0 1.378283 2.025708-1.465329 14 1 0 1.834258 0.641976-2.442898 15 6 0-2.072129 1.850138 0.580521 16 1 0-1.825338 1.917757 1.640755 17 1 0-1.374875 2.498130 0.047456 18 6 0 2.070649 0.730414 1.795817 19 1 0 1.824061 1.792658 1.775761 20 1 0 1.372676 0.252482 2.484750 21 6 0 3.523548-2.219275-0.688581 22 1 0 4.246700-1.888552 0.056603 23 1 0 3.660099-3.293148-0.818591 24 1 0 3.776730-1.743907-1.636186 25 6 0-3.525104-0.869623-2.153696 26 1 0-4.249404-0.101535-1.883385 27 1 0-3.662827-1.086569-3.213278 28 1 0-3.775528-1.776056-1.602604 29 6 0 3.515703 0.513084 2.270053 30 1 0 3.648816 0.938001 3.265279 31 1 0 3.767963-0.545373 2.333850 32 1 0 4.241613 0.992185 1.613433 33 6 0-3.517655 2.303454 0.325170 34 1 0-3.651690 3.330108 0.666864 35 1 0-3.769932 2.279772-0.734938 36 1 0-4.242983 1.687748 0.856643 37 6 0 3.521884 1.709986-1.573962 38 1 0 3.658697 2.359814-2.438687 39 1 0 3.770001 2.294125-0.687809 40 1 0 4.248396 0.902015-1.657614 41 6 0-3.517938-1.429880 1.835017 42 1 0-3.653360-2.239776 2.552307 43 1 0-3.765411-0.499834 2.346689 44 1 0-4.245776-1.578291 1.037568 45 1 0-0.000060-0.002026-0.004627

2. IR-Spectroscopic Results. For assignment of the IR bands of hydronium ions 7 and 8, their molecular structures were optimized at the B3LYP/cc-pvtz level of theory and subsequent frequency calculations were used to determine the position of the asymmetric E-H-E stretch vibration. To account for anharmonicity effects a scaling factors for the E-H-E vibration was determined from the correlation of the computed data and the experimental results for cations 2, 7, 8, [Et 3 SiHSiEt 3 ] + and [Et 3 GeHGeEt 3 ] + 8 From this correlation a scaling factor of 0.9609 was determined (see Figure S1). The global scaling factor for wavenumbers of vibrations computed at B3LYP/cc-pvtz was previously determined to be 0.9691. 9 Figure S1. Correlation between the experimental wavenumber of the ν as (E-H-E) vibration (E= Si, Ge) and computed data and calculated data obtained at B3LYP/cc-pvtz. The line of best fit (black) is given by the following equation: ν calc = 1.0408 ν exp. Figure S2. Comparison between experimental (neat, ATR) and computed IR spectra (B3LYP/cc-pvtz, line width: 4 cm -1 ) of hydronium borates 7[B(C 6 F 5 ) 4 ] (a), 8[B(C 6 F 5 ) 4 ] (b) and 2[B(C 6 F 5 ) 4 ] (c); (blue trace: experimental data, red trace: computed data for [B(C 6 F 5 ) 4 ] - ; black trace: computed data for cations 7, 8 and 2).

3. NMR-Spectroscopic Results. 3.1 NMR spectra of compound 10 Figure S3. 500 MHz 1 H NMR spectrum of 10 in C 6 D 6 at 305 K; δ 1 H = 8.3-0.0; #: C 6 D 5 H; +: impurity. Figure S4. 125 MHz 13 C{ 1 H} NMR spectrum of 10 in C 6 D 6 at 305 K; δ 13 C = 145-0; #: C 6 D 5 H; +: impurity; unknown substance at δ 13 C = 15.1, 26.7, 29.1.

3.2 NMR spectra of compound 12 Figure S5. 500 MHz 1 H NMR spectrum of 12 in C 6 D 6 at 305 K; δ 1 H = 8.5-0.0; #: δ 1 H(C 6 D 6 ) = 7.20; o: signals of 1-Dimethylsilylnaphthalene. Figure S6. 125 MHz 13 C{ 1 H} NMR spectrum of 12 in C 6 D 6 at 305 K; δ 13 C = 150-(-5); #: δ 13 C(C 6 D 6 ) = 128.0; o: signals of 1-Dimethylsilylnaphthalene.

Figure S7. 99 MHz 29 Si{ 1 H}-INEPT NMR spectrum of 12 in C 6 D 6 at 305 K; δ 29 Si = -8-(-31); o: signals of 1-Dimethylsilylnaphthalene.

3.3 NMR spectra of compound 7[B(C 6 F 5 ) 4 ] Figure S8. 500 MHz 1 H NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H = 8.0-0.0; #: C 6 D 5 H; +: decomposition. Figure S9. 125 MHz 13 C{ 1 H} NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 13 C = 151-10; #: C 6 D 5 H; o: signals of [B(C 6 F 5 ) 4 ] -.

Figure S10. Part of the 500 MHz 1 H/ 1 H COSY NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H (f2) = 1.57-1.69; δ 1 H (f1) = 0.9-1.95. Figure S11. Part of the 1 H 13 C HMBC NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H (f2) = 1.75-2.03; δ 13 C (f2) = 16.5-23.0.

3.4 NMR spectra of compound 8[B(C 6 F 5 ) 4 ] Figure S12. 500 MHz 1 H NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H = 7.8-0.0; #: C 6 D 5 H; +: impurity. Figure S13. 125 MHz 13 C{ 1 H} NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 13 C = 151- (-0.5); #: C 6 D 5 H; o: signals of [B(C 6 F 5 ) 4 ] -.

Figure S14. 99 MHz 29 Si{ 1 H} INEPT NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 29 Si = 80-(-50); +: impurity; reference against external Si(CH 3 ) 4. Insert: 99 MHz 29 Si INEPT NMR spectrum of 2[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 29 Si = 41.4-39.7. Figure S15. Part of the 500 MHz 1 H / 1 H COSY NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H (f2) = 2.70-2.27; δ 1 H(f1) = 3.0-0.0.

4. Crystallographic Results for 7[B(C 6 F 5 ) 4 ] Empirical formula C50 H43 B F20 Ge2 Formula weight 1179.83 Temperature 120(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group Cc Unit cell dimensions a = 19.4122(8) Å α= 90. b = 15.1788(6) Å β= 109.355(2). c = 17.5342(7) Å γ = 90. Volume 4874.5(3) Å 3 Z 4 Density (calculated) 1.608 Mg/m 3 Absorption coefficient 1.346 mm -1 F(000) 2368 Crystal size 0.47 x 0.26 x 0.19 mm 3 Theta range for data collection 1.91 to 30.58 Index ranges -25<=h<=27, -20<=k<=21, -25<=l<=24 Reflections collected 89774 Independent reflections 13497 (R(int) = 0.0279) Observed reflections (>2sigma(I)) 11966 Completeness to theta = 30.58 99.7 % Absorption correction Numerical Max. and min. transmission 0.7822 and 0.5680 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 13497 / 2 / 665 Goodness-of-fit on F 2 1.030 Final R indices (I>2sigma(I)) R1 = 0.0322, wr2 = 0.0774 R indices (all data) R1 = 0.0399, wr2 = 0.0804 Absolute structure parameter 0.007(4) Largest diff. peak and hole 1.864 and -0.325 e.å -3

5. References (1) a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A Gaussian Inc., 2004, Wallingford, Connecticut; (b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian Inc., 2010, Wallingford, Connecticut. (2) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-; b) Lee, C.; Yang, W.; Parr, R. G.Phys. Rev. B, 1988, 37, 785; c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett., 1989, 157, 200. (3) (a) Dunning T. H. J. Chem. Phys. 1989, 90, 1007. b) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. c) Woon, D. E.; Dunning, T. H. J. Chem. Phys., 1993, 98, 1358. (4) AIMAll (Version 11.05.16), Keith, T. A.; 2011. (5) (a) Ditchfield, R. Mol. Phys. 1974, 27, 789. b) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497. (6) (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101: 1. b) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. (7) Deng, W.; Cheesemann, J. R.; Frisch, M. J. J. Chem. Theory. Comput. 2006, 2, 1028. (8) Wright II, J. H.; Mueck, G. W.; Tham, F. S. Reed, C. A. Organometallics 2010, 29, 4066. (9) Sinha, P.; Boesch, S. E.; Gu, C.; Wheeler, R. A.; Wilson, A. K. J. Phys. Chem. A 2004, 108, 9213.