Supporting Information for Hydrogen-Bridged Digermyl and Germylsilyl Cations N. Kordts, C. Borner, R. Panisch, W. Saak, T. Müller* Contents. 1. Computational Details 2. IR Spectroscopic Results 3. NMR-Spectroscopic Results. 3.1 NMR spectra of compound 10 3.2 NMR spectra of compound 12 3.3 NMR spectra of compound 7[B(C 6 F 5 ) 4 ] 3.4 NMR spectra of compound 8[B(C 6 F 5 ) 4 ] 3.4 19 F NMR spectra of hydrodefluorination reactions. 4. Crystallographic Results for 7[B(C 6 F 5 ) 4 ] 5. References.
1. Computational Details. All calculations were done using either the Gaussian03 Rev D.02 or the Gaussian09 Rev. B.01 package of programs. 1 The molecular structures of the cations 2, 7 and 8, were optimized using the nonlocal DFT level of theory, Becke s three-parameter hybrid functional and the LYP correlation (B3LYP 2 ) along with cc-pvtz basis set 3 for all elements. Subsequent frequency calculations at this level of theory verified these structures as minima (zero imaginary frequencies) on the potential energy surface (PES). The Atoms-in-Molecules analysis was done with the AIMALL program 4 applying wavefunctions obtained from single point calculations at the B3LYP/cc-pvtz level of theory. The data are summarized in Tables S-1 (Absolute Energies) and S-3 (Cartesian Coordinates). For calculation of the NMR chemical shifts the GIAO method 5 was used. The M06L functional 6 in connection with the 6-311G(2d,p) basis set was applied on molecular structures optimized at the B3LYP/cc-pvtz level. Computed NMR chemical shieldings were transferred to the chemical shift scale using the NMR chemical shielding of tetramethylsilane (σ(si)(sime 4 ) = 362.1). J-coupling constants were computed at the same level of theory using a modified 6-311G(2d,p) basis set to ensure a better description of the Fermi Contact contribution to coupling constant J. 7 The following atomic units have been used: Elementary charge: 1 au = e = 1.60219 10-19 C Charge density ρ : 1 au = e a 0-3 = 1.0812 10 12 Cm -3 Laplacian of the charge density 2 ρ : 1 au = e a 0-5 = 3.8611 10 32 Cm -5 Energy E : 1 au = e 2 a 0-1 = 2625.5 kj mol -1 Length : 1 au = 1 bohr = 52.91772 pm Energy : 1 au = E h = 2625.498 kj mol -1 Table S1. Calculated absolute energies E, free Gibbs enthalpies G 298 (at 298K, 0.1 MPa) and wavenumbers ν of the asymmetric E-H-E vibration of hydronium ions. Cpd. E [au] G 298 [au] ν as (E-H-E) [cm -1 ] 7-5171.03775-5170.48987 1708 8-3147.52247-3147.12914 1817 2-1124.00601-1123.76904 1934 [(Et 3 Si) 2 H] + -1055.00000-1054.65502 1932 [(Et 3 Ge) 2 H] + -4630.11136-4629.77340 1782
Table S2. Calculated molecular structures of hydroniumions. Cation 7. B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 0.570835-1.690393-1.488812 2 6 0 0.847959-2.772936-2.387519 3 1 0-0.107906 0.666410 0.662382 4 6 0-0.675220-1.004307-1.634099 5 6 0 1.558201-1.372091-0.505203 6 6 0-0.074871-3.094107-3.411031 7 6 0 2.044111-3.516799-2.247612 8 6 0-1.237989-2.391018-3.556499 9 6 0 2.949975-3.218563-1.268502 10 6 0-1.538109-1.353171-2.654563 11 6 0 2.704470-2.135004-0.404106 12 1 0 0.159985-3.910646-4.081125 13 1 0 2.227426-4.333300-2.933692 14 1 0-1.935041-2.633787-4.346127 15 1 0 3.856937-3.796607-1.160721 16 1 0-2.481984-0.834898-2.777722 17 1 0 3.453423-1.904381 0.344600 18 6 0-2.701991-0.360542 0.912144 19 1 0-2.278872-1.261602 1.358224 20 1 0-2.799316 0.383572 1.704367 21 6 0-1.742222 2.097570-1.170689 22 1 0-2.487145 1.930898-1.954621 23 1 0-0.831460 2.412376-1.683017 24 6 0 2.343504 1.829201-0.165917 25 1 0 2.018257 2.688060 0.424189 26 1 0 1.939766 1.950110-1.172429 27 6 0 1.867764-0.080158 2.539926 28 1 0 2.932210-0.325061 2.611727 29 1 0 1.743314 0.882893 3.038835 30 32 0-1.396879 0.323624-0.395128 31 32 0 1.536886 0.216195 0.624663 32 6 0-4.069409-0.658900 0.277230 33 1 0-3.956983-1.393505-0.524885 34 1 0-4.475163 0.245846-0.185305 35 6 0-5.081647-1.190504 1.298600 36 1 0-4.678491-2.095828 1.760312 37 1 0-5.193985-0.459132 2.103687 38 6 0-6.445769-1.490108 0.680629 39 1 0-6.369543-2.246621-0.102374 40 1 0-7.141471-1.862436 1.432192 41 1 0-6.886144-0.595004 0.237611 42 6 0-2.226480 3.163251-0.182062 43 1 0-1.482884 3.307117 0.608067 44 1 0-3.137824 2.822958 0.317351 45 6 0-2.501601 4.511195-0.856833 46 1 0-1.590995 4.853743-1.356257 47 1 0-3.246343 4.369996-1.644920 48 6 0-2.984719 5.579310 0.122103 49 1 0-3.913926 5.279273 0.609766 50 1 0-2.244930 5.766260 0.902799 51 1 0-3.170557 6.523576-0.388904 52 6 0 1.019293-1.168011 3.205637 53 1 0-0.040703-0.905458 3.136764 54 1 0 1.136471-2.113282 2.669372 55 6 0 1.383770-1.376928 4.679292 56 1 0 1.269893-0.430237 5.214584 57 1 0 2.442288-1.642070 4.750571 58 6 0 0.537779-2.454752 5.353848 59 1 0 0.822610-2.579668 6.398161 60 1 0-0.523354-2.199303 5.329895 61 1 0 0.658939-3.420799 4.860468 62 6 0 3.878452 1.752601-0.209446 63 1 0 4.192775 0.875302-0.781811 64 1 0 4.276592 1.622646 0.801201 65 6 0 4.506484 3.004370-0.832805 66 1 0 4.109198 3.136221-1.842931 67 1 0 4.192743 3.882926-0.262378 68 6 0 6.031548 2.940003-0.882753 69 1 0 6.457353 2.840104 0.117265
70 1 0 6.373403 2.090577-1.476792 71 1 0 6.446510 3.843285-1.329240 Cation 8. B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 1.758968-0.601368-0.707584 2 6 0 2.620454-1.121660-1.726398 3 1 0-0.048275 0.725604 1.555622 4 6 0 2.297670-0.409916 0.604976 5 6 0 0.410509-0.296331-1.068406 6 6 0 3.949068-1.485613-1.403264 7 6 0 2.138308-1.267260-3.049594 8 6 0 4.430933-1.339406-0.131512 9 6 0 0.856526-0.920877-3.376277 10 6 0 3.604179-0.787642 0.863066 11 6 0-0.009969-0.442682-2.374918 12 1 0 4.581273-1.884512-2.185708 13 1 0 2.809101-1.657021-3.803926 14 1 0 5.444130-1.627259 0.110727 15 1 0 0.498753-1.024053-4.390942 16 1 0 4.028272-0.650844 1.851880 17 1 0-1.028633-0.201873-2.655774 18 6 0 2.042703 2.242251 2.271159 19 1 0 2.019823 2.810642 1.342199 20 1 0 1.440338 2.757428 3.019576 21 6 0 1.255672-0.501358 3.587270 22 1 0 2.237679-0.691425 4.026981 23 1 0 0.785691-1.466500 3.403244 24 6 0-1.863247-1.400825 1.081403 25 1 0-2.325904-1.049728 2.005544 26 1 0-1.091087-2.122861 1.351043 27 6 0-2.077458 1.719693-0.149857 28 1 0-2.704574 1.437256-1.001743 29 1 0-2.754373 1.850844 0.696255 30 32 0-0.982524 0.131955 0.220222 31 6 0-1.302963 3.006175-0.456496 32 1 0-0.705419 3.294325 0.413475 33 1 0-0.595252 2.830527-1.270854 34 6 0-2.226101 4.169725-0.832858 35 1 0-2.939651 4.338945-0.021717 36 1 0-2.819216 3.885708-1.706548 37 6 0-1.464782 5.460882-1.125644 38 1 0-2.149005 6.266148-1.391176 39 1 0-0.891128 5.789033-0.256830 40 1 0-0.768151 5.331988-1.955903 41 6 0-2.912612-2.053270 0.164759 42 1 0-2.447234-2.368075-0.773662 43 1 0-3.684580-1.324889-0.099554 44 6 0-3.578021-3.267544 0.822317 45 1 0-2.807323-3.999495 1.078491 46 1 0-4.032991-2.956746 1.766741 47 6 0-4.633549-3.919450-0.068466 48 1 0-5.436163-3.220196-0.309262 49 1 0-4.200476-4.266758-1.008173 50 1 0-5.083408-4.780188 0.425590 51 1 0 3.076405 2.228429 2.625584 52 1 0 0.666703 0.046295 4.323190 53 14 0 1.470550 0.483968 2.017603
Cation 2. B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 1.056780-0.000001-0.000012 2 6 0 2.488304-0.000003 0.000001 3 1 0-2.059112 0.000002-0.000015 4 6 0 0.382190 1.262227-0.000041 5 6 0 0.382188-1.262228 0.000027 6 6 0 3.192102 1.227601-0.000048 7 6 0 3.192100-1.227608 0.000058 8 6 0 2.527298 2.422966-0.000103 9 6 0 2.527293-2.422971 0.000104 10 6 0 1.121440 2.432523-0.000094 11 6 0 1.121435-2.432526 0.000084 12 1 0 4.273901 1.203342-0.000043 13 1 0 4.273899-1.203351 0.000066 14 1 0 3.071003 3.356927-0.000143 15 1 0 3.070996-3.356933 0.000153 16 1 0 0.624439 3.396759-0.000121 17 1 0 0.624432-3.396760 0.000113 18 6 0-2.201619 2.169610-1.575295 19 1 0-1.850187 1.622395-2.449205 20 1 0-3.291041 2.145346-1.549951 21 6 0-2.201456 2.169369 1.575608 22 1 0-1.895366 3.211743 1.696298 23 1 0-1.849933 1.622024 2.449400 24 6 0-2.201621-2.169577 1.575304 25 1 0-3.291043-2.145302 1.549966 26 1 0-1.850178-1.622352 2.449203 27 6 0-2.201467-2.169394-1.575597 28 1 0-1.895386-3.211773-1.696265 29 1 0-3.290891-2.145129-1.550362 30 1 0-1.895548 3.212004-1.695865 31 1 0-3.290881 2.145114 1.550377 32 14 0-1.458692 1.509285 0.000067 33 14 0-1.458695-1.509281-0.000072 34 1 0-1.895560-3.211972 1.695888 35 1 0-1.849943-1.622072-2.449403 [(Et 3Si) 2H] + B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 14 0-1.640563 0.000705 0.004158 2 14 0 1.640599 0.000521 0.003824 3 6 0-1.971252-0.397056-1.801291 4 1 0-1.291934-1.199646-2.100733 5 1 0-1.698152 0.474565-2.401489 6 6 0 1.973871 1.137268-1.453539 7 1 0 1.698448 0.610609-2.370768 8 1 0 1.297348 1.992693-1.377049 9 6 0 1.988276 0.692439 1.714827 10 1 0 1.717502 1.751306 1.719286 11 1 0 1.314173 0.201362 2.421727 12 6 0-1.984473-1.363298 1.248566 13 1 0-1.311103-1.223709 2.098471 14 1 0-1.710914-2.319551 0.795479 15 6 0 1.976930-1.829000-0.254590 16 1 0 1.709121-2.360791 0.661935 17 1 0 1.296148-2.192287-1.029072 18 6 0-1.983690 1.761457 0.560445 19 1 0-1.718140 1.846259 1.617259 20 1 0-1.303919 2.425677 0.020099 21 6 0-3.423049-0.818478-2.109013 22 1 0-4.141451-0.042963-1.845378 23 1 0-3.535879-1.018349-3.173997 24 1 0-3.700892-1.727705-1.576551 25 6 0 3.427333 1.645282-1.550390 26 1 0 4.142903 0.829346-1.646824
27 1 0 3.541927 2.283973-2.425498 28 1 0 3.707575 2.235621-0.678394 29 6 0-3.436454 2.231244 0.339741 30 1 0-3.557013 3.252590 0.699133 31 1 0-3.707012 2.224150-0.715774 32 1 0-4.155347 1.611054 0.874179 33 6 0 3.428651-2.162875-0.655989 34 1 0 3.545117-3.239673-0.773539 35 1 0 3.701577-1.701091-1.604515 36 1 0 4.148382-1.837551 0.094511 37 6 0-3.440431-1.414566 1.756057 38 1 0-3.561413-2.236808 2.460433 39 1 0-3.719244-0.498099 2.275427 40 1 0-4.153092-1.571379 0.946971 41 6 0 3.444208 0.515807 2.193472 42 1 0 3.567160 0.953344 3.183583 43 1 0 3.720487-0.535751 2.266405 44 1 0 4.157597 1.004521 1.530646 45 1 0 0.000017 0.001764 0.012501 [(Et 3Ge) 2H] + B3LYP/cc-pvtz Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 32 0 1.717150-0.000838-0.001522 2 32 0-1.717160-0.000712-0.001145 3 6 0 2.076564-1.921874-0.266653 4 1 0 1.381453-2.281186-1.026852 5 1 0 1.829203-2.436833 0.662440 6 6 0-2.078606-0.422197-1.893684 7 1 0-1.833573 0.462333-2.482883 8 1 0-1.382512-1.207885-2.190912 9 6 0-2.073676-1.429172 1.311182 10 1 0-1.831712-2.381689 0.838176 11 1 0-1.373813-1.294803 2.137202 12 6 0 2.076792 1.190322-1.531818 13 1 0 1.378283 2.025708-1.465329 14 1 0 1.834258 0.641976-2.442898 15 6 0-2.072129 1.850138 0.580521 16 1 0-1.825338 1.917757 1.640755 17 1 0-1.374875 2.498130 0.047456 18 6 0 2.070649 0.730414 1.795817 19 1 0 1.824061 1.792658 1.775761 20 1 0 1.372676 0.252482 2.484750 21 6 0 3.523548-2.219275-0.688581 22 1 0 4.246700-1.888552 0.056603 23 1 0 3.660099-3.293148-0.818591 24 1 0 3.776730-1.743907-1.636186 25 6 0-3.525104-0.869623-2.153696 26 1 0-4.249404-0.101535-1.883385 27 1 0-3.662827-1.086569-3.213278 28 1 0-3.775528-1.776056-1.602604 29 6 0 3.515703 0.513084 2.270053 30 1 0 3.648816 0.938001 3.265279 31 1 0 3.767963-0.545373 2.333850 32 1 0 4.241613 0.992185 1.613433 33 6 0-3.517655 2.303454 0.325170 34 1 0-3.651690 3.330108 0.666864 35 1 0-3.769932 2.279772-0.734938 36 1 0-4.242983 1.687748 0.856643 37 6 0 3.521884 1.709986-1.573962 38 1 0 3.658697 2.359814-2.438687 39 1 0 3.770001 2.294125-0.687809 40 1 0 4.248396 0.902015-1.657614 41 6 0-3.517938-1.429880 1.835017 42 1 0-3.653360-2.239776 2.552307 43 1 0-3.765411-0.499834 2.346689 44 1 0-4.245776-1.578291 1.037568 45 1 0-0.000060-0.002026-0.004627
2. IR-Spectroscopic Results. For assignment of the IR bands of hydronium ions 7 and 8, their molecular structures were optimized at the B3LYP/cc-pvtz level of theory and subsequent frequency calculations were used to determine the position of the asymmetric E-H-E stretch vibration. To account for anharmonicity effects a scaling factors for the E-H-E vibration was determined from the correlation of the computed data and the experimental results for cations 2, 7, 8, [Et 3 SiHSiEt 3 ] + and [Et 3 GeHGeEt 3 ] + 8 From this correlation a scaling factor of 0.9609 was determined (see Figure S1). The global scaling factor for wavenumbers of vibrations computed at B3LYP/cc-pvtz was previously determined to be 0.9691. 9 Figure S1. Correlation between the experimental wavenumber of the ν as (E-H-E) vibration (E= Si, Ge) and computed data and calculated data obtained at B3LYP/cc-pvtz. The line of best fit (black) is given by the following equation: ν calc = 1.0408 ν exp. Figure S2. Comparison between experimental (neat, ATR) and computed IR spectra (B3LYP/cc-pvtz, line width: 4 cm -1 ) of hydronium borates 7[B(C 6 F 5 ) 4 ] (a), 8[B(C 6 F 5 ) 4 ] (b) and 2[B(C 6 F 5 ) 4 ] (c); (blue trace: experimental data, red trace: computed data for [B(C 6 F 5 ) 4 ] - ; black trace: computed data for cations 7, 8 and 2).
3. NMR-Spectroscopic Results. 3.1 NMR spectra of compound 10 Figure S3. 500 MHz 1 H NMR spectrum of 10 in C 6 D 6 at 305 K; δ 1 H = 8.3-0.0; #: C 6 D 5 H; +: impurity. Figure S4. 125 MHz 13 C{ 1 H} NMR spectrum of 10 in C 6 D 6 at 305 K; δ 13 C = 145-0; #: C 6 D 5 H; +: impurity; unknown substance at δ 13 C = 15.1, 26.7, 29.1.
3.2 NMR spectra of compound 12 Figure S5. 500 MHz 1 H NMR spectrum of 12 in C 6 D 6 at 305 K; δ 1 H = 8.5-0.0; #: δ 1 H(C 6 D 6 ) = 7.20; o: signals of 1-Dimethylsilylnaphthalene. Figure S6. 125 MHz 13 C{ 1 H} NMR spectrum of 12 in C 6 D 6 at 305 K; δ 13 C = 150-(-5); #: δ 13 C(C 6 D 6 ) = 128.0; o: signals of 1-Dimethylsilylnaphthalene.
Figure S7. 99 MHz 29 Si{ 1 H}-INEPT NMR spectrum of 12 in C 6 D 6 at 305 K; δ 29 Si = -8-(-31); o: signals of 1-Dimethylsilylnaphthalene.
3.3 NMR spectra of compound 7[B(C 6 F 5 ) 4 ] Figure S8. 500 MHz 1 H NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H = 8.0-0.0; #: C 6 D 5 H; +: decomposition. Figure S9. 125 MHz 13 C{ 1 H} NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 13 C = 151-10; #: C 6 D 5 H; o: signals of [B(C 6 F 5 ) 4 ] -.
Figure S10. Part of the 500 MHz 1 H/ 1 H COSY NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H (f2) = 1.57-1.69; δ 1 H (f1) = 0.9-1.95. Figure S11. Part of the 1 H 13 C HMBC NMR spectrum of 7[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H (f2) = 1.75-2.03; δ 13 C (f2) = 16.5-23.0.
3.4 NMR spectra of compound 8[B(C 6 F 5 ) 4 ] Figure S12. 500 MHz 1 H NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H = 7.8-0.0; #: C 6 D 5 H; +: impurity. Figure S13. 125 MHz 13 C{ 1 H} NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 13 C = 151- (-0.5); #: C 6 D 5 H; o: signals of [B(C 6 F 5 ) 4 ] -.
Figure S14. 99 MHz 29 Si{ 1 H} INEPT NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 29 Si = 80-(-50); +: impurity; reference against external Si(CH 3 ) 4. Insert: 99 MHz 29 Si INEPT NMR spectrum of 2[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 29 Si = 41.4-39.7. Figure S15. Part of the 500 MHz 1 H / 1 H COSY NMR spectrum of 8[B(C 6 F 5 ) 4 ] in C 6 D 6 at 305 K; δ 1 H (f2) = 2.70-2.27; δ 1 H(f1) = 3.0-0.0.
4. Crystallographic Results for 7[B(C 6 F 5 ) 4 ] Empirical formula C50 H43 B F20 Ge2 Formula weight 1179.83 Temperature 120(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group Cc Unit cell dimensions a = 19.4122(8) Å α= 90. b = 15.1788(6) Å β= 109.355(2). c = 17.5342(7) Å γ = 90. Volume 4874.5(3) Å 3 Z 4 Density (calculated) 1.608 Mg/m 3 Absorption coefficient 1.346 mm -1 F(000) 2368 Crystal size 0.47 x 0.26 x 0.19 mm 3 Theta range for data collection 1.91 to 30.58 Index ranges -25<=h<=27, -20<=k<=21, -25<=l<=24 Reflections collected 89774 Independent reflections 13497 (R(int) = 0.0279) Observed reflections (>2sigma(I)) 11966 Completeness to theta = 30.58 99.7 % Absorption correction Numerical Max. and min. transmission 0.7822 and 0.5680 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 13497 / 2 / 665 Goodness-of-fit on F 2 1.030 Final R indices (I>2sigma(I)) R1 = 0.0322, wr2 = 0.0774 R indices (all data) R1 = 0.0399, wr2 = 0.0804 Absolute structure parameter 0.007(4) Largest diff. peak and hole 1.864 and -0.325 e.å -3
5. References (1) a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A Gaussian Inc., 2004, Wallingford, Connecticut; (b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian Inc., 2010, Wallingford, Connecticut. (2) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-; b) Lee, C.; Yang, W.; Parr, R. G.Phys. Rev. B, 1988, 37, 785; c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett., 1989, 157, 200. (3) (a) Dunning T. H. J. Chem. Phys. 1989, 90, 1007. b) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. c) Woon, D. E.; Dunning, T. H. J. Chem. Phys., 1993, 98, 1358. (4) AIMAll (Version 11.05.16), Keith, T. A.; 2011. (5) (a) Ditchfield, R. Mol. Phys. 1974, 27, 789. b) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497. (6) (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101: 1. b) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. (7) Deng, W.; Cheesemann, J. R.; Frisch, M. J. J. Chem. Theory. Comput. 2006, 2, 1028. (8) Wright II, J. H.; Mueck, G. W.; Tham, F. S. Reed, C. A. Organometallics 2010, 29, 4066. (9) Sinha, P.; Boesch, S. E.; Gu, C.; Wheeler, R. A.; Wilson, A. K. J. Phys. Chem. A 2004, 108, 9213.