Contemporary Mathematcs arxv:1709.08572v2 [math.qa] 19 Jan 2018 Kostant-Lusztg A-bases of Multparameter Quantum Groups Nahuan Jng, Kalash C. Msra, and Hroyuk Yamane Abstract. We study the Kostant-Lusztg A-base of the multparameter quantum groups. To smplfy calculatons, especally for G 2 -type, we utlze the dualty of the parng of the unversal R-matrx. 1. Introducton Quantum envelopng algebras U q (g) [3, 13] of the Kac-Moody algebras g are one of the mportant classes of quantum groups. Quantum envelopng algebras and ther ntegrable hghest weght representatons enjoy favorable propertes, among whch the canoncal bases of Lusztg [18] or global crystal bases of Kashwara [15] are the most promnent ones. Exstence of such canoncal bases has also been establshed for quantum envelopng algebras U q (g) of Borcherds generalzed Kac- Moody algebras g [14]. On the other hand, quantum envelopng algebras have been extended to Nchols algebras of dagonal types, whch nclude multparameter quantum envelopng algebras as examples, n partcular, one-parameter quantum envelopng algebras U q (g) n Kac-Moody types. In[1] Andruskuwtch and Schneder proved that fnte dmensonal ponted Hopf algebras wth fnte abelan group (wth order > 7) of group-lke elements are essentally Lusztg s small quantum groups and ther varants. Furthermore, Heckenberger classfed the Ncholas algebras wth arthmetc root data [7] and proved results smlar to quantum envelopng algebras (see also [8]). Lusztg [17] ntroduced the Kostant-Lusztg A-base of the quantum groups. The A-base and the fnte dmensonal Hopf algbebra of the quantum group at root of unty have been key fgures n study of Lusztg conjectures, (see [12] for hstory). In ths paper we establsh the Kostant-Lusztg A-forms for the multparameter quantum groups and construct nvarant bases for each factor of the trangular decomposton. Our general result s based on the structure theory for multparameter quantum groups and nformaton on the lower rank cases, most notably the case of G 2. The recent work of Fan and L [4] on two-parameter quantum algebras has made us beleve that one should be able to use our A-forms to construct canoncal bases for the multparameter quantum groups. 2010 Mathematcs Subject Classfcaton. Prmary 17B37,17B10; Secondary 81R50. NJ s partally supported by Natonal Natural Scence Foundaton of Chna grant # 11531004 and Smons Foundaton grant # 523868. KCM s partally supported by Smons Foundaton grant # 307555. HY s partally supported by JSPS Grand-n-Ad for Scentfc Research (C), 16K05095. 1 c 0000 (copyrght holder)
2 N. JING, K.C. MISRA, AND H. YAMANE 2. Generalzed quantum groups In ths secton we recall defntons and known results about multparameter quantum groups. We wll use the followng notatons throughout ths paper. The rng of real numbers and ntegers wll be denoted by R and respectvely. For x, y R, let J x,y := {z x z y} and J x, := {z x z}. Then N = J 1, and 0 := J 0,. Let K be a feld of characterstc zero and K := K \ {0}. For x, y K and r 0, we denote (r) x := r 1 k=0 xk, (r) x! := r k=1 (k) x, (r;x,y) := 1 x r 1 y and (r;x,y)! := r k=1 (k;x,y). 2.1. Defnton of generalzed quantum groups. Let θ N and I := J 1,θ. Let V be a θ-dmensonal R-lnear space wth a bass {v I}. Let V := I v, so V s a rank-θ free -module (or a free abelan group). Let χ : V V K be a map such that χ(x+y,z) = χ(x,z)χ(y,z) and χ(x,y +z) = χ(x,y)χ(x,z) hold for all x, y, z V. We call such χ a b-character. Defnton 2.1. Let π : I V be a map such that π(i) s a -base of V. The generalzed quantum group U = U(χ, π) s the unque assocatve K-algebra (wth 1) satsfyng the followng condtons ()-(v). () As a K-algebra, U(χ,π) s generated by K λ, L λ, (λ V ), E, F ( I). () The followng equatons hold. Let q := χ(π(),π(j)). K 0 = 1, K λ K µ = K λ+µ, L 0 = 1, L λ L µ = L λ+µ, K λ L µ = L µ K λ, K π() E j K 1 π() = q E j, K π() F j K 1 π() = q 1 L π() E j L 1 π() = q 1 j E j, L π() F j L 1 [E,F j ] = δ ( K π() +L π() ) F j, π() = q jf j, () There are subspaces U λ (λ V ) such that U = λ V U λ, U λ U µ U λ+µ, K ±1 π() U 0, L ±1 π() U 0, E U π(), F U π() (v) Let U 0 be the K-subalgebra of U generated by K λ L µ (λ, µ V ). Let U + (resp. U ) be the K-subalgebra of U generated by E (resp. F ) ( I). Then the elements K λ L µ (λ, µ V ) form a K-bass of U 0 and we have the K-lnear somorphsm m : U + U 0 U U defned by X Y XY. (v) There exsts no X U + \ {K} (resp. Y U \ {K}) such that [X,F ] = 0 ([E,Y] = 0) for all I. V π,+ Note that U 0 U 0. For λ V, let U + λ := U+ U λ and U λ := U U λ. Let := I 0 π(). Then U + = λ V π,+ U + λ and U = λ V π,+ U λ. Lemma 2.2. Let Ù be a K-algebra (wth 1) generated by `K λ, `L λ, È and `F satsfyng condtons ()-(v) above (n Defnton 2.1). Then there exsts a K-algebra epmorphsm ξ : Ù U such that ξ( `K λ ) = K λ, ξ(`l λ ) = L λ (λ V ), ξ(è) = E, ξ(`f ) = F ( I). Proof. Let λ V π,+. Assume that there exsts X Ù+ λ \ {0} such that [X, `F ] = 0 for all I. Let I (resp. I + ) be the two-sded deal of Ù (resp. Ù+ ) generated by X. Then I = Span K (Ù Ù 0 I + ). Let Ù be the quotent K-algebra Ù/I. Then Ù also satsfes the same condtons as Defnton 2.1 ()-(v). Let g : Ù Ù be the canoncal map. Then g Ù : Ù (Ù ) and g Ù : 0 Ù (Ù ) 0 are the K-algebra somorphsms. We see that dm(ù ) + µ 1 = dmù+ µ 1 for µ 1 V π,+ wth µ 1 λ / V π,+, that dm(ù ) + λ = dmù+ λ 1, and that dm(ù ) + µ 2 dmù+ µ 2
KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 3 for µ 2 V π,+ wth µ 2 λ V π,+. We also have a smlar property for Ù. Then we can see the clam of ths theorem by a standard argument usng a drect lmt. By Lemma 2.2, we have the K-algebra automorphsm Ω χ,π : U(χ,π) U(χ,π) wth Ω χ,π (K λ L µ ) = K λ L µ (λ,µ V ), Ω χ,π (E ) = F L π(), Ω χ,π (F ) = K π() E ( I). Defne the bcharacter χ op : V V K by χ op (x,y) := χ(y,x) (x, y V ). By Lemma 2.2, we have the K-algebra somorphsm Υ χop,π : U(χ op,π) U(χ,π) wth (2.1) (2.2) Υ χop,π (K λ L µ ) = K µ L λ, (λ,µ V ), Υ χop,π (E ) = F, Υ χop,π (F ) = E ( I), whch wll be referred as the Chevalley nvoluton. We also have the K-algebra ant-automorphsm Γ χop,π : U(χ op,π) U(χ,π) wth Γ χop,π (K λ L µ ) = K µ L λ, (λ,µ V ), Γ χop,π (E ) = E, Γ χop,π (F ) = F ( I). ( For U = U(χ,π), we have the followng equatons. See [5] for the notaton m r)q and ( ) k r whence E k Fm q. = mn{k,m} r=0 (r) q! ( ) ( m k r q r ( r 1 q )q r( 2k+r+1) 2 s=0 ( K π() +q m+k+s [E,F m ] = (m) q ( K π() +q m+1 L π() )F m 1 [F,E m] = (m) q ( L π() +q m+1 K π() )E m 1 L π() ))F m r E k r,,. For m 0 and, j I wth j, defne E m,,j, E m,,j U+ π(j)+mπ(), F m,,j F m,,j U π(j) mπ() nductvely by E 0,,j := E 0,,j := E j, F 0,,j := E 0,,j := F j, and (2.3) E m+1,,j := E E m,,j q m q E m,,j E, E m+1,,j := E m,,j E q m q je E m,,j, F m+1,,j := F F m,,j q m q jf m,,j F, F m+1,,j := F m,,j F q m q F F m,,j. We have (2.4) We have (2.5) We have Υ χop,π (E m,,j ) = F m,,j, Υ χop,π (F m,,j ) = E m,,j, Υ χop,π (E m,,j ) = F m,,j, Υχop,π (F m,,j ) = E m,,j. [E,F m,,j ] = (m) q (m;q,q q j )K π() F m 1,,j, [F,E m,,j ] = (m) q (m;q,q q j )L π() E m 1,,j, [E j,f m,,j ] = (m;q,q q j )!F m L π(j), [F j,e m,,j ] = (m;q,q q j )!E mk π(j), [E m,,j,f m,,j ] = (m) q!(m;q,q q j )!( K π(j)+mπ() +L π(j)+mπ() ), [E m,,j,f m,,k] = 0 (m 0,k I \{,j}). (2.6) Ω χ,π (E r,,j ) = q r(r 1) 2 q r j F r,,jl π(j) rπ(), Ω χ,π (Er,,j ) = q r(r 1) 2 q r F r,,j L π(j) rπ(), Ω χ,π (F r,,j ) = q r(r 1) 2 qj r K π(j) rπ()e r,,j, Ω χ,π (Fr,,j ) = q r(r 1) 2 q r K π(j) rπ()er,,j.
4 N. JING, K.C. MISRA, AND H. YAMANE We have (2.7) Γ χop,π Γ χ,π = d U(χ,π), Γ χ,π Γ χop,π = d U(χ op,π), Γ χop,π (E r,,j ) = E r,,j, Γχop,π (F r,,j ) = F r,,j. 2.2. Kharchenko s Poncaré-Brkohoff-Wtt theorem and Heckenberger s Lusztg somorphsms. We recall the followng theorem by Kharchenko. We also ntroduce some notatons. Theorem 2.3. ([16]) Let χ be a bcharacter and U = U(χ,π) be the generalzed quantum group. Then there exsts a unque par (Rχ π,+,ϕ π,+ χ ) of a subset Rχ π,+ of V π,+ and a map ϕ π,+ χ : Rχ π,+ N satsfyng the followng: Let X := {(α,t) Rχ π,+ N t J 1,ϕ π,+ χ (α)}. Defne the map z : X Rπ,+ χ by z(α,t) := α. Let Y be the set of maps y : X 0 such that {x X y(x) 1} < and (y(x)) χ(z(x),z(x))! 0 for all x X. Then ( ) λ V π,+, dmu + λ = {y Y x X y(x)z(x) = λ}. Moreover, lettng q j := χ(π( ),π(j )) (,j I), for, j I wth j, we have (2.8) {t 0 π(j)+tπ() R π,+ χ } = {t 0 (t) q!(t;q,q q j )! 0}. := Rπ,+ χ Let Rχ π ϕ π χ(α) := ϕ π,+ χ (α)(α R π,+ that for every j I\{}, there exsts N χ,π ( Rχ π,+ ). Defne the map ϕπ χ : Rπ χ N by ϕπ χ ( α) := χ ). Wesaythatχs(π,)-goodftsatsfesthecondton 0 such that π(j)+n χ,π π() Rχ π,+ := 2. and π(j)+(n χ,π +1)π() / Rχ π,+. Let N χ,π Let I and χ be a (π,)-good bcharacter. Defne the map τ χ π : I V by τ χ bcharacter, and π(j) := π(j) + Nχ,π π() (j I). By (2.8), we see that τ χ (2.9) N χ,τχ π whence (τ χ )2 π = π. = N χ,π (j I), π s a (π,)-good Theorem 2.4. ([5]) Let a : I K be a map. Let I. Let χ be a (π,)-good bcharacter. Then there exsts a K-algebra somorphsm T χ,τχ π,a : U(χ,τ χ π) U(χ,π) such that (2.10) where T := T χ,τχ π,a (2.11) R τχ π χ T (K λ ) = K λ, T (L λ ) = L λ (λ V ), T (E ) = a()f L π(), T (F ) = 1 a() K π()e, T (E j ) = a(j)e N χ,π,,j (j I \{}) 1 T (F j ) = a(j)(n χ,π ) q!(n χ,π ;q F,q q j)! N χ,π,,j (j I \{}), and q j := χ(π( ),π(j )) (, j I). Moreover we have = R π χ, R τχ π,+ χ = (R π,+ χ \{π()}) { π()}, ϕ π χ = ϕ τχ π χ. Let, j I be such that j. Let χ be a (π,)-good and (π,j)-good bcharacters. We say that χ s a (π,,j)-good bcharacter f τ χ 1 τ χ m π can be defned for all m N and all t {,j} (t J 1,m ). (2.12) Let m χ,π := Rχ π,+ (π() π(j)) ( J 2, { }). By (2.11), usng the same argument as that for [6, Lemma 4], we have the followng result.
KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 5 Lemma 2.5. Let χ be a (π,,j)-good bcharacter. Let X := π() π(j). Let m := m χ,π. Let 2y 1 :=, 2y := j (y N). Let π t := τ χ t τ χ t 1 τ χ 1 π (t N). Then for k J 1,m, we have R π,+ χ Moreover f m <, we have ( R π k,+ χ ) = Rχ π,+ ( R π k,+ χ ) X = k. π m = τ χ m+1 τ χ m τ χ 2 π, and Rχ π,+ X = {π( 1 ) =,π 1 ( 2 ),...,π m 2 ( m 1 ),π m 1 ( m ) = j}. Furthermore {π t ( t+1 ) t N} = f m =. Let χ be a (π,,j)-good bcharacter. We say that χ s a (π,,j)-good fnte bcharacter f m n Lemma 2.5 s fnte. Theorem 2.6. ([5]) Let,j I, j and χ be a (π,,j)-good fnte bcharacter wth m := m χ,π <. For t N, let π t := τχ t+1 τ χ t τ χ 2 π ( k = (resp. j) f k s odd (resp. even)), a t, a t : I K be maps, T (t) := T χ,π1,a1 1 T χ,πt,at t and T (t) := T χ,π 1,a 1 2 T χ,π t,a t t+1. Then there exsts a map b : I K such that T (m) (E k ) = b(k) T (m) (E k ), T (m) (F k ) = 1 b(k) T (m) (F k ) (k I). Moreover there exsts z K such that T (m 1) (E m ) = ze j, T (m 1) (F m ) = z 1 F j. 2.3. Strct Heckenberger s Lusztg somorphsms. Lemma 2.7. Let,j I, j and χ be a (π,,j)-good fnte bcharacter wth m := m χ,π <. Also b : I K be the map and z K n Theorem 2.6. Then the followng statements hold. (1) If Ω χ,π T (m) = T (m) Ω χ,πm, then b(k) {1, 1} for all k I. (2) If Ω χ,π T (m 1) = T (m 1) Ω χ,πm 1, then z {1, 1}. (2.13) Proof. (1) Let k I. We have F k = b(k) T 1 T (m) (F k ) = b(k) T 1 T (m) Ω χ,πm (E k L π(k) ) χ,π = b(k)ω T 1 T (m) (E k L π(k) ) = b(k) 2 Ω χ,π (E k L π(k) ) = b(k) 2 F k, (m) (m) whence b(k) 2 = 1, so b(k) {1, 1}. (m) (2) Ths can be proved smlarly to (1).. Lemma 2.8. Let a : I K be a map. Let I and χ be a (π,)-good bcharacter. Then Ω χ,π T χ,τχ π,a = T χ,τχ π,a Ω χ,τχ π f and only f (2.14) a() 2 = 1 and a(j) 2 = q N χ,π (N χ,π 1) 2 q Nχ,π j (N χ,π ) q!(n χ,π ;q,q q j )! Proof. The clam follows from Theorem 2.4 and (2.6) (j I \{}). Lemma 2.9. Let G be the K-algebra (wth 1) defned wth the generators X, Y, and the relatons [,X] = 2X, [,Y] = 2Y, [X,Y] =. (Namely G s somorphc to the unversal envelopng algebra of sl 2 (K).) Let k 0. Let Γ be the (k + 1)-dmensonal left G-module wth the K-bass {γ r r J 0,k } such that γ r := (k 2x)γ r, Yγ r := γ r+1, Xγ r := x(k r+1)γ r 1, where γ 1 := γ k+1 := 0.
6 N. JING, K.C. MISRA, AND H. YAMANE Let a K. Defne ξ End K (Γ) by ξ(v) := exp(ax)exp( a 1 Y)exp(aX) v (v Γ). Then ξ(y r γ 0 ) = ( 1)k r a 2r k r! (k r)! Y k r γ 0, ξ(x r γ k ) = ( 1)r a k 2r r! X k r γ k. (k r)! Proof. Let Γ, γ y (y J 0,1 ), ξ be Γ, γy, ξ respectvely for k = 1. Then ξ( γ 0 ) = ( a 1 ) γ 1 and ξ( γ 1 ) = a γ 0. Regard Γ k as the (k-fold tensor) G-module n a standard way. Let g : M M k k be the G-module monomorphsm g : M Γ such that g(γ 0 ) = γ 0 k. Then g(γ x ) = g(y x γ 0 ) = Y x g(γ 0 ) = r! {x J 1,k x=1} =x γ 1 γ 1. Note g(ξ(v)) = ξ k (g(v)) (v Γ). Then g(ξ(γ r )) = g(t(y r γ 0 )) = ξ k (g(y r γ 0 )) = ( a 1 ) k r a r r! (k r)! g(y k r γ 0 ) = g( ( 1)k r a 2r k r! (k r)! γ k r ). Thus we can see the clam. Lemma 2.10. Let a 11 := a 22 := 2( K). Let a 12, a 21 K be such that (a 12,a 21 ) {(0,0),( 1, 1),( 2, 1),( 3, 1)}. Let m 0 be 2 (resp. 3, resp. 4, resp. 6) f a 12 s 0 (resp. 1, resp. 2, resp. 3). Let 2x 1 := 1, 2x := 2 (x N). Let G be a K-algebra (wth 1) satsfyng the followng condtons () and (). () There exst X, Y, G ( J 1,2 ) such that [ 1, 2 ] = 0, [,X j ] = a X j, [,Y j ] = a Y j, [X,Y j ] = δ, (adx ) 1 a j (X j ) = (ady ) 1 a j (Y j ) = 0 ( j ). () For R G and I {X,Y J 1,2 }, there exsts r N suchthat (adi) r (R) = 0. For J 1,2, let b K ( J 1,2 ), and defne the K-algebra automorphsm ξ by ξ (R) := exp(b adx )exp( b 1 ady )exp(b adx )(R) (R G). Then we have (2.15) ξ (X ) = b 2 Y, ξ (Y ) = b 2 X, ξ (X j ) = b a ( a (adx )! ) a (X j ), ξ (Y j ) = ( b)a ( a (ady )! ) a (Y j ) ( j), (2.16) ξ t ξ t+1 ξ t+m 2 (X t+m 1 ) = X t 1, ξ t ξ t+1 ξ t+m 2 (Y t+m 1 ) = Y t 1 (t ), and (2.17) ξ 1 ξ 2 ξ m = ξ 2 ξ 3 ξ m+1.
KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 7 Proof. We can see (2.15) by Lemma 2.9. As for (2.16), for example, f a 12 = 3, by Lemma 2.9, we have ξ 1 ξ 2 ξ 1 ξ 2 ξ 1 (X 2 ) = ξ 1 ξ 2 ξ 1 ξ 2 ( b3 1 3! [X 1,[X 1,[X 1,X 2 ]]]) = b3 1 3! ξ 1 ξ 2 ξ 1 ξ 2 ([X 1,[X 1,[X 2,X 1 ]]]) = b3 1 3! ξ 1 ξ 2 ξ 1 ([b 2 [X 2,X 1 ],[b 2 [X 2,X 1 ],( 1)b 1 2 X 1]]) = b3 1 b2 3! ξ 1 ξ 2 ([( 1) b1 2! [X 1,[X 1,X 2 ]], 2! b 1 [X 1,X 2 ]]) = b3 1 b2 3! ξ 1 ξ 2 ([[X 1,[X 2,X 1 ]],[X 2,X 1 ]]) = b3 1 b2 3! ξ 1 ([[b 2 [X 2,X 1 ],( 1)b 1 2 X 1],( 1)b 1 2 X 1]) = b3 1 3! ξ 1 ([X 1,[X 1,[X 1,X 2 ]]]) = ( 1) b3 1 3! ( 1) 3! b 3 1X 2 = X 2. Now we show (2.17). Let ξ := ξ 1 ξ 2 ξ m 1. By (2.16), for R G, we see ξ ξ m (ξ ) 1 (R) = exp(b adξ (X m ))exp( b 1 adξ (Y m ))exp(b adξ (X m ))(R) = ξ 2 (R). Ths completes the proof. Defnton 2.11. Let χ : V V K be a b-character, π : I V be a map such that π(i) s a -base of V and q := χ(π(),π(j)) for all,j I. Let A = [a ] I be a symmetrzable generalzed Cartan matrx. Let d N be such that d a = d j a j. (, j I). Let q K be such that q r 1 for all r N. Let χ : V V K be a bcharacter and q := χ(π(),π(j)) (, j I). Assume that q = q 2d ( I), q q j = q 2da (,j I), q := q 2 for all, j I. Also assume that for every k I, there exsts Θ(q kk 1) K such that Θ(q kk 1) 2 = q kk 1. Then we say that such χ s a (π,a)-admssble bcharacter. If A s the Cartan matrx of a fnte-dmensonal complex Le algebra (.e., A s a symmetrzable generalzed Cartan matrx of fnte-type), we call U(χ, π) a fnte-type multparameter quantum group. For a (π,a)-admssble bcharacter χ, U(χ,π) s presented by the generators gven by Defnton 2.1 () and the relatons composed of those of Defnton 2.1 () and E 1 a,,j = F 1 a,,j = 0 (,j I, j), whch s well-known and can be proved by a standard argument along wth Theorem 3.1 below. Lemma 2.12. Let χ be a (π,a = [a ] I )-admssble bcharacter. (1) Then χ s (π,)-good b-character for every I and N χ,π = a for all, j I. (2) For I let q jk := χ(τ χ π(j),τχ π(k)) (j,k I). Then we have (2.18) m χ,π = q jj = q jj (j I), q jk q kj = q jk q kj (j,k I). In partcular, χ s (τ χ π,a)-admssble. (3) For, j I wth j, χ s (π,,j)-fnte f and only f a a j J 0,3. Moreover 2 f a a j = 0, 3 f a a j = 1, 4 f a a j = 2, 6 f a a j = 3.
8 N. JING, K.C. MISRA, AND H. YAMANE Proof. Clam(1) follows from (2.8). Clam (2) can be proved drectly. Clam (3) follows from Clams (1) and (2) and Lemma 2.5. Let χ be a (π,a = [a ] I )-admssble bcharacter. Let q jk be as n Defnton 2.11. Defne the map : I K by { 1 (j = ), Let (j) = q a ( a ) q!θ(q 1) a T χ,τχ π := T χ,τχ π,. (j I \{}). We see drectly that satsfes (2.14). As for (2.10), lettng T := T χ,τχ π, we have T (K λ L µ ) = K λ L µ (λ,µ V ), T (E ) = F L π(), T (F ) = K π() E, T (Er,,j ) = (r)q +2r! qa T (Fr,,j ) = (r)q (j I \{}, r J 0, a ). We also have Θ(q 1) a +2r ( a r) q! q a 2r! q(a +2r)(a 1) E a r,,j, Θ(q 1) a +2r ( a r) q! F a r,,j (2.19) (T χ,π ) 1 = Γ χop,π T χop,τ χ π Γ χ,τχ π. For I, defne the K-algebra automorphsm ζ χ,π : U(χ,π) U(χ,π) by Then we have For I, let Note that and ζ χ,π (K λ L µ ) := K λ L µ (λ,µ V ), ζ χ,π (E j ) := 1 q q j E j, ζ χ,π (F j ) := q q j F j (j I). T χ,τχ π E Υ χop,τ χ π = ζ χ,π Υ χop,π T χop,τ χ π ( I). Ē := Θ(q 1), F := Θ(q 1), H := K π() L π(). q 1 F [Ē, F ] = δ H, H Ē j = q Ē j H +q 1 q q j 1 q 1 ĒjL π(). Let O be the Q-subalgebra of K generated by q ±1, 1 ( a ) q! for all,j I. Let U O (resp. UO 0, resp. U+ O, resp. U O ) be the O-subalgebra (wth 1) of U = U(χ,π) (resp. U 0, resp. U +, resp. U ) generated by K ±1 π(), L±1 π(), H, Ē, F (resp. K ±1 π(), L ±1 π(), H, resp. Ē, resp. F ) for all I. We can see U O = U O OUO 0 OU + O. We also see that the elements I K x() π() (K y() π()l π() ) Hz() (x() {0,1}, z() 0, y() ) form O-bass of U 0 O. Theorem 2.13. Let,j I, j and χ be a (π,,j)-good fnte bcharacter wth m := m χ,π <. Assume that χ s (π,a)-admssble. Let b : I K and z K be as n Theorem 2.6. Assume that T χ,πt,at t (t N). Then we have (2.20) b(k) = 1 (k I) and z = 1. = T χ,πt t and T χ,π t,a t t+1 = T χ,π t t+1
KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 9 Proof. We dvde the proof nto steps. Step 1. Assume that q s transcendental over Q and that q j = 1 for all, j I wth < j. Then O s the Q-subalgebra of K generated by q ±1 1, ( a j ) q! for all, j I wth j. So O s a prncpal ntegral doman. Consder the Q-algebra (U O ) 1 := U O /( q 1)U O. Let f : U O (U O ) 1 be the canoncal map. Note that for k I, we have f(l π(k) ) = f(k π(k) ), and we see that f(k π(k) ) s a central element of (U O ) 1. So we can consder the quotent Q-algebra (U O ) 1 /(f(k π(k) ) 1). By Lemmas 2.7, 2.8 and 2.10, we have (2.20). Step 2. Let U denote the U of Step 1, and let q denote q for U. Then q s transcendental over Q. Assume that that q j = 1 for all, j I wth < j. We use a specalzaton argument wth q q; ths q s the one for U of ths step. We can obtan (2.20) from Step 1 by consderng the O-subalgebra of U generatng by K ±1 π(t), L±1 π(t), E t, F t (t I) and usng Lemma 2.2. Step 3. General cases. Repeat the same arguments as n Step 2. 2.4. Drnfeld parng. Let U = U(χ,π) be the generalzed quantum group. We regard U = U(χ,π) as a Hopf algebra (U,,S,ε) wth (K λ ) = K λ K λ, (L λ ) = L λ L λ, (E ) = E 1 + K π() E, (F ) = F L π() + 1 F, S(K λ ) = K λ, S(L λ ) = L λ, S(E ) = K π() E, S(F ) = F L π(), ε(k λ ) = ε(l λ ) = 1, and ε(e ) = ε(e ) = 0. For, j I wth j and r 0, f E r,,j 0, we have r (r) q!(k;q,q r k q q j )! (E r,,j ) = E r,,j 1+ E k (k) q!(r k) q! K (r k)π()+π(j) E r k,,j. k=0 Let U +, = U +, (χ,π) := λ V U + K λ, and U, = U, (χ,π) := λ V U L λ. Then U = Span K (U, U +, ) = Span K (U +, U, ) and n a standard way (see [3]), we have a blnear form ϑ = ϑ χ,π : U +, U, K wth the followng propertes: (2.21) ϑ(k λ,l µ ) = χ(λ,µ),ϑ(e,f j ) = δ,ϑ(k λ,f j ) = ϑ(e,l λ ) = 0, ϑ(x + Y +,X ) = k ϑ(x+,(x ) (2) k )ϑ(y +,(X ) (1) k ), ϑ(x +,X Y ) = k + ϑ((x+ ) (1) k,x )ϑ((x + ) (2) + k,y ), + ϑ(s(x + ),X ) = ϑ(x +,S 1 (X )), ϑ(x +,1) = ε(x + ),ϑ(1,x ) = ε(x ), X X + = r +,r ϑ((x + ),(1) r +,S((X ),(1) r ))ϑ((x + ),(3) r +,(X ),(3) r ) (X + ),(2) r + (X ),(2) r, X + X = r +,r ϑ((x+ ),(3) r +,S((X ),(3) r ))ϑ((x + ),(1) r +,(X ),(1) r ) (X ),(2) r (X + ),(2) r + for λ, µ V,, j I, and X +, Y + U +,, X, Y U,, where (X + ) (x) k and + (X ) (x) k wth x J 1,2 (resp. (X + ),(y) r and (X ),(y) + r wth y J 1,3 ) are any elements of U +, and U, respectvely satsfyng (X ± ) = k (X ± ) (1) ± k (X ± ) (2) ± k, (resp. ± ((d U ) )(X ± ) = r (X ± ),(1) ± r (X ± ),(2) ± r (X ± ),(3) ± r ). ± We have ϑ χ,π (X + K λ,x L µ ) = ϑ χ,π (X +,X )χ(λ,µ) (X + U +, X U, λ,µ V ). It follows that ϑ χ,π U + U s non-degenerate. We have ϑ χ,π (X +,X ) = 0 for λ,µ V π,+ wth λ µ and X + U + λ, X U µ. 3. Kostant-Lusztg A-form In ths secton we establsh the Kostant-Lusztg A-forms for the fnte-type multparameter quantum group U = U(χ, π) (see Defntons 2.1 and 2.11) and construct nvarant bases for each factor of the trangular decomposton. Let A =
10 N. JING, K.C. MISRA, AND H. YAMANE [a ] I be a Cartan matrx assocated wth a fnte dmensonal complex smple Le algebra,.e., A s a symmetrzable generalzed Cartan matrx of fnte-type. We assume that χ s a (π, A)-admssble bcharacter (see Defnton 2.11). Recall the symbols q, q and Θ(q 1). Let W be the Weyl group assocated to the Cartan matrx A and generated by the smple reflectons s ( I) wth relatons s 2 = e ( I) and (s s j ) mχ,π = e, (e s the dentty element of W). Note that W s the fnte Weyl group. 3.1. Some standard notatons and results. Defne the map l : W 0 by l(e) := 0 and l(w) := mn{r N t I(t J 1,r ),w = s 1 s r }. In fact l s the length map of the Coxeter system (W,{s I}). It s well-known that l(ws ) l(w) = 1 for w W and I. Let W act on V by s π(j) := π(j) a π(j) (,j I). Use the conventon as follows Let s 1 s t (resp. τ χ t 1 τ χ 1 π) mean e (resp. π) f t = 0. We have s 1 s t 1 π( t ) = τ χ t 1 τ χ 1 π( t ) (t N, x I(x J 1,t )). For w = s k1...s kr W, f r = l(w), the expresson s k1...s kl(w) s called reduced. For w = s k1...s kl(w) W, let d χ,π T w := T χ,π1 k 1 T χ,π l(w) k l(w) (d χ,π T e := d U(χ,π) ), where π t := τ χ k t τ χ k 1 π (t J 1,l(w) ). By Theorem 2.13, d χ,π T w s ndependent of the choce of reduced expressons for w. It s well-known that there exsts a unque w W such that l(w) l(w ) for all w W; w s called the longest element. We also know that l(w ) = Rχ π,+ and (3.1) w W, l(w ) = l(w)+l(w 1 w ). Let n = (n 1,...,n l(w )) I l(w ) be such that s n1 s nl(w ) = w (reduced expresson of w ). For t J 1,l(w ), let β n;t := s n1 s nt 1 π(n t ). By (2.11) and Lemma 2.12, we have (see [10, 1.7]) R π,+ χ = {β n;t t J 1,l(w )}. Thus R π χ can be dentfed wth the root system of W. For t J 1,l(w ), let E n;t := d χ,π T sn1...s nt 1 (E nt ), F n;t := d χ,π T sn1...s nt 1 (F nt ), Ē n;t := d χ,π T sn1...s nt 1 (Ēn t ), Fn;t := d χ,π T sn1...s nt 1 ( F nt ), (E n;1 := E n1, F n;1 := F n1, Ē n;1 := Ēn 1, Fn;1 := F n1 ), that s, Ē n;t = E n;t Θ(q ntn t 1) = E n;t Θ(χ(β n;t,β n;t ) 1). Let n 0 I be such that s n0 w s nl(w ) = w. By Theorem 2.13, usng a standard argument (see [11, Proposton 8.20]), we have (3.2) E n;l(w ) = E n0, F n;l(w ) = F n0, Ē n;l(w ) = Ēn 0, Fn;l(w ) = F n0. The followng result can be proved by a standard argument (see [2], [9] for example). Theorem 3.1. Let k := l(w ), J := J 1,k and β t := s n1 s nt 1 π(n t ) (t J). (1) Let σ : J J be a becton. Then the elements E x1 n;σ(1) Ex k n;σ(k) (x t 0 (t J)))
KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 11 form a K-bass of U +. (2) Let y, z J be such that y < z. Let X be a K-subalgebra of U generated by the elements E n;x (x J y+1,z 1 ). Then (3.3) E n;y E n;z χ(β y,β z )E n;z E n;y X. (3) We have k ϑ χ,π (E x n;k Ex1 k n;1,fy n;k Fy1 k n;1 ) = δ xt,y t (x t ) χ(βt,β t)!, where x t, y t 0 (t J). 3.2. Type G 2. In ths subsecton we assume θ = 2 (so I = J 1,2 ), and A = [a ] I s the Cartan matrx of type G 2. So a 12 = 3 and a 21 = 1. Consder the generalzed quantum group U = U(χ,π). Let q be as n Defnton 2.1 and χ be a (π,a)-admssble bcharacter. Let q := q 11 and a := q 12. Then q 22 = q 3 and q 21 = q 3 a 1. Snce E 4,1,2 = E 2,2,1 = 0, we have Let Then we have E 4 1 E 2 (1+q)(1+q 2 )ae 3 1 E 2E 1 +q(1+q 2 )(1+q +q 2 )a 2 E 2 1 E 2E 2 1 q 3 (1+q)(1+q 2 )a 3 E 2 1E 2 E 2 1 +q 6 a 4 E 2 E 4 1 = 0, E 2 1 E 2 (1+q)(1 q +q 2 )ae 2 E 1 E 2 +q 3 a 2 E 2 2 E 1 = 0. t=1 K 1 ;= K π(1), K 2 ;= K π(2), E 12 := E 1,1,2, E 112 := E 2,1,2, E 1112 := E 3,1,2, E 11212 := E 112 E 12 aq 2 E 12 E 112. E 12 E 2 = aq 3 E 2 E 12, E 1112 E 2 = a 3 q 6 E 2 E 1112 +a 2 q 3 (q 2 1)(q 1)E12 3, E 112 E 2 = a 2 q 3 E 2 E 112 +aq(q 2 1)E12, 2 E 1112 E 2 = a 3 q 3 E 2 E 1112 +aq(q 2 q 1)E 11212 +a 2 q 2 (q 3 1)E 12 E 112, E 1 E 2 = ae 2 E 1 +E 12, E 11212 E 12 = aq 3 E 12 E 11212, E 112 E 12 = aq 2 E 12 E 112 +E 11212, E 1112 E 12 = a 2 q 3 E 12 E 1112 + aq(q3 1) q+1 E112 2, E 1 E 12 = aqe 12 E 1 +E 112, E 112 E 11212 = aq 3 E 112 E 11212, E 1112 E 11212 = a 3 q 6 E 11212 E 1112 + a2 q 3 (q 3 1)(q 1) q+1 E112, 3 E 1 E 11212 = a 2 q 3 E 11212 E 1 + aq(q3 1) q+1 E112, 2 E 1112 E 112 = aq 3 E 112 E 1112, E 1 E 112 = aq 2 E 112 E 1 +E 1112, E 1 E 1112 = aq 3 E 1112 E 1. We have and (E 12 ) = E 12 1+(1 q 3 )E 1 K 2 E 2 +K 1 K 2 E 12, (E 112 ) = E 112 1+(1 q 3 )(1 q 2 )E 3 1 K 2 E 2 +(1 q 2 )(1+q)E 1 K 1 K 2 E 12 +K 2 1K 2 E 112, (E 1112 ) = E 1112 1+(1 q 3 )(1 q 2 )(1 q 1 )E 3 1 K 2 E 2 +(q 2 1)(1 q 3 )E 2 1K 1 K 2 E 12, +q 1 (q 3 1)E 1 K 2 1K 2 E 112 +K 3 1K 2 E 1112, (E 11212 ) = E 11212 1+ (q3 1) 2 q E 4 112 E 1 K 2 E 2 + (q3 1)(q 2 q 1) aq E 5 1112 K 2 E 2 + q3 1 q E 112 K 1 K 2 E 12 + (q3 1) 2 (q 2 1)(q 1) aq E 3 12 1 K2 1 E2 2 + (q3 1) 2 (q 2 1) q E 2 6 1 K 1K 2 E 2 E 12 + (q3 1)(q 2 1) q E 3 1 K1 2K2 2 E2 12 +K1K 3 2 2 E 11212. Let Ê 1 := E 1, Ê 2 := E 2, Ê 12 := q3 q 3 1 E 12, Ê 112 := q Ê 1112 := 6 (q 3 1)(q 2 1)(q 1) E 1112, Ê 11212 := q 5 (q 3 1)(q 2 1) E 112, q 9 (q 3 1) 2 (q 2 1)(q 1) E 11212.
12 N. JING, K.C. MISRA, AND H. YAMANE Then we have Ê 1112 Ê 2 = a 3 q 6 Ê 2 Ê 1112 +a 2 q 3 (q 3 1)Ê3 12, Ê 112 Ê 2 = a 2 q 3 Ê 2 Ê 112 +a(q 3 1)Ê2 12, Ê 1112 Ê 2 = a 3 q 3 Ê 2 Ê 1112 +aq 2 (q 2 q 1)(q 3 1)Ê 11212 +a 2 (q 3 1)(q 2 +q +1)Ê12Ê112, Ê 1 Ê 2 = aê2ê1 +q 3 (q 3 1)Ê12, Ê 112 Ê 12 = aq 2 Ê 12 Ê 112 +q 1 (q 1)Ê11212, Ê 1112 E 12 = a 2 q 3 Ê 12 Ê 1112 +a(q 3 1)Ê2 112, Ê 1 E 12 = aqê12ê1 +q 2 (q 2 1)Ê112, Ê 1112 Ê 11212 = a 3 q 6 Ê 11212 Ê 1112 +a 2 q 3 (q 3 1)Ê3 112, Ê 1 Ê 11212 = a 2 q 3 Ê 11212 Ê 1 +a(q 3 1)Ê2 112, Ê 1 Ê 112 = aq 2 Ê 112 Ê 1 +q 1 (q 1)Ê1112. and (Ê12) = Ê12 1+Ê1K 2 Ê2 +K 1 K 2 Ê12, (Ê112) = Ê112 1+Ê3 1 K 2 Ê2 +(q +1)Ê1K 1 K 2 Ê12 +K 2 1 K 2 E 112, (Ê1112) = Ê1112 1+Ê3 1K 2 Ê2 +(q 2 +q +1)Ê2 1K 1 K 2 Ê12, +(q 2 +q +1)Ê1K 2 1 K 2 Ê112 +K 3 1 K 2 Ê1112, (Ê11212) = Ê11212 1+(q 2 +q +1)Ê112Ê1K 2 Ê2 +a 1 q 2 (q 2 q 1)Ê1112K 2 Ê2 +(q 2 +q +1)Ê112K 1 K 2 Ê12 +a 1 q 3 Ê 3 1K 2 1 Ê2 2 +(q 2 +q +1)Ê2 1 K 1K 2 Ê2Ê12 +(q 2 +q +1)Ê1K 2 1 K2 2 Ê2 12 +K 3 1K 2 2 Ê11212. For a = (a 1,...,a 6 ) 6 0, let Then we have Q 1 (a) := Ea 1 2 Ea 2 12 ((3) 1 q!e11212)a 3((2) 1 q E112)a 4((3) 1 q!e1112)a 5E a 6 1 (a 1) q 3!(a 2) q!(a 3) q 3!(a 4) q!(a 5) q 3!(a 6) q!, Q 2 (a) := Êa1 2 Êa2 12Êa3 11212Êa4 112Êa5 1112Êa6 1. (3.4) ϑ χ,π (Q 1 (a),υ χop,π (Q 2 (b))) = δ a,b (a, b 6 0 ). By (3.4), {Q 1 (a) a 6 0 } and {Q 2(a) a 6 0 } are K-bases of U(χ,π). Let Á be the -subalgebra of K generated by q ±1 and a ±1,.e., Á = [q±1,a ±1 ]. For t J 1,2, let g t be the Á-submodules of U+, wth the Á-bases {Q t(a)k λ a 6 0, λ V }. Clearly g 2 s a Á-subalgebra of U wth (g 2) g 2 Á g 2. By (2.21) and (3.4), we see the followng. (3.5) As a Á-subalgebra of U, g 1 s generated by Ex (x) q! ( I(= J 1,2 ), x 0 ) and K λ (λ V ). g 1 s a Hopf Á-subalgebra of U. Then g 2 s also a Hopf Á-algebra. Let n := (1,2,1,2,1,2) I l(w ). Then we have (3.6) Ē n;1 = Ē1, q 3 12 Fn;1 = F 1 (= Υ χop,π (Ēn;1)), Ē n;2 = (3) q!θ(q 1) 3 Θ(q 3 1) E 1112, Fn;2 = q 11Υ 3 χop,π (Ēn;2), q Ē n;3 = 12 (2) q!θ(q 3 1)Θ(q 1) E 2 112, Fn;3 = q 11 4,π Υχop (Ēn;3), q Ē n;4 = 12 (3) q!θ(q 3 1) 2 Θ(q 1) E 3 11212, Fn;4 = q 11 6,π Υχop (Ēn;4), q Ē n;5 = 12 Θ(q 1)Θ(q 3 1) E 12, Fn;5 = q 11Υ 3 χop,π (Ēn;5), Ē n;6 = Ē2, Fn;6 = F 2 (= Υ χop,π (Ēn;6)), where recall that q 2 = a. Let n := (2,1,2,1,2,1) I l(w ). By (2.19) and (3.2), we have (3.7) Ē n ;t = Γ χop,π (Ēn;7 t), Fn ;t = Γ χop,π ( F n;7 t ) (t J 1,6 ).
KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 13 Let ḡ + be the Á-subalgebra of U generated by Ē x (x) q! ( I(= J 1,2 ), x 0 ) and K λ (λ V ). Let y 2t 1 := q, y 2t := q 3 for t J 1,3. Let y t := y 7 t for t J 1,6. By (3.3), (3.5), (3.6) and (3.7), we see the followng. (3.8) For a becton σ : J 1,6 J 1,6, the elements Ē x 1 x n;σ(1) (x 1) yσ(1)! Ē 6 n;σ(6) (x 6) yσ(6)! K Ē x 1 x n λ (resp. ;σ(1) (x 1) y! Ē 6 n ;σ(6) (x 6) y! K λ) σ(1) σ(6) (x t 0 (t J 1,6 ), λ V ) form a Á-base of ḡ+. ḡ + s a Hopf Á-subalgebra of U. Let ḡ be the Á-subalgebra of U generated by Fx (x) q! ( I(= J 1,2 ), x 0 ) and L λ (λ V ). By (3.6), (3.7) and (3.8), we see the followng. (3.9) For a becton σ : J 1,6 J 1,6, the elements F x 1 x n;σ(1) (x 1) yσ(1)! F 6 n;σ(6) (x 6) yσ(6)! L F x 1 x n λ (resp. ;σ(1) (x 1) y! F 6 n ;σ(6) (x 6) y! L λ) σ(1) σ(6) (x t 0 (t J 1,6 ), λ V ) form a Á-base of ḡ. ḡ s a Hopf Á-subalgebra of U. 3.3. General case. Let A be the -subalgebra of K generated by q ±1 for all, j I. n = (n 1,...,n l(w )) I l(w ) be as n Subsecton 3.1. Let π 0 := π and π t := τ χ n t τ χ n 1 π (t J 1,l(w )). For t J 1,κ and x 0, let Ē (x) n;t := Ē x n;t (x) χ(πt 1(n t),π t 1(n t))!, F(x) n;t := Fx n;t (x) χ(πt 1(n t),π t 1(n t))!. Let U + A (resp. U A ) be the A-subalgebra of U+ (resp. U ) generated by (resp. F x (x) q! ) wth I and x 0. Theorem 3.2. Let σ : J 1,l(w ) J 1,l(w ) be a becton. (1) The elements (3.10) Ē (x1) n;σ(1) Ē(x l(w )) n:σ(l(w )) wth x t 0 (t J 1,l(w )) form an A-base for U + A. (2) The elements (3.11) F(x 1) n;σ(1) F (x l(w )) n:σ(l(w )) wth x t 0 (t J 1,l(w )) form an A-base for U A. Ē x (x) q! Proof. We only prove (1), as (2) can be proved smlarly or obtaned from (1) va Chevalley somorphsm. If I = 1, the clam s clear. If I = 2 and A s of type G 2, the result s obtaned n (3.8) and (3.9). For other rank two types, the clam can be proved n a smlar and n fact easer way. Let us consder the hgher rank cases. Let be the free A-submodule of U + wth the free A-bass formed by the elements of (3.10) (for σ := d J1,l(w ), see Theorem 3.1 (1)). By an argument smlar to [11, Proposton 8.20] and by the clam for rank-two cases, we see that Ē(x) n;t U+ A, so U+ A. Now by (3.1), we have = U + A. Thus the clam follows from (3.3). For k, r 0 and x K wth (k+r) x! 0, let ( k (k+r)x! r := )x (k) x!(r) x!. For x K wth x b 1 for all b N and for X, Y U 0, l and p 0, let [ X,Y,l p ] x := p t=1 x l t+1 X Y x t 1.
14 N. JING, K.C. MISRA, AND H. YAMANE Then we have [ ] [ ] [ ] X,Y,l X,Y,l+1 X,Y,l = x p p l p+1 X, [ ] p 1 x [ ] x x X,Y,0 X,Y, l = ( [ ] ) p+l X,Y,0 l p p. x p+l x x x [ ] LetUA 0 bethea-subalgebrageneratedbyk Kπ(),L λl µ (λ, µ V )and π(),l p q ( I, l, p 0 ). By a standardargument, we havethe followngtwolemmas. Lemma 3.3. The elements [ ] K x π() (K Kπ(),L π()l π() ) y π(),0 z I form an A-base of U 0 A. q (x 0,1, y, z 0 ) Let U A be the A-subalgebra of U generated by U + A and U A. Lemma 3.4. We have U 0 A U A, and we have the A-module somorphsm gven by m A (X Y ) := XY. m A : U A A U 0 A A U + A U A Acknowledgments We thank the referee for careful readng and knd comments. The thrd author would lke to express hs heartfelt thanks to Professor Nahong Hu for valuable communcaton. References [1] N. Andruskewtsch, H.-J. Schneder, On the classfcaton of fnte-dmensonal ponted Hopf algebras, Ann. Math. 171 (2010), 375-417. [2] I. Angono and H. Yamane, The R-matrx of quantum doubles of Nchols algebras of dagonal type, J. Math. Phys. 56 (2015), 021702. [3] V. G. Drnfel d, Quantum groups, Proceedngs of the Internatonal Congress of Mathematcans, Vol. 1, 2 (Berkeley, Calf., 1986), pp. 798-820, Amer. Math. Soc., Provdence, RI, 1987. [4]. Fan and Y. L, Two-parameter quantum algebras, canoncal bases and categorfcatons, Int. Math. Res. Not. no. 16 (2015), 7016-7062. [5] I. Heckenberger, Lusztg somorphsms for Drnfel d doubles of bosonzatons of Nchols algebras of dagonal type, J. Algebra, 323 (2010), 2130-2182. [6] I. Heckenberger and H. Yamane, A generalzaton of Coxeter groups, root systems, and Matsumoto s theorem, Math.. 259 (2008), 255-276. [7] I. Heckenberger, Classfcaton of arthmetc root systems, Adv. Math. 220 (2009), 59-124. [8] I. Heckenberger, The Weyl groupod of a Nchols algebra of dagonal type, Invent. Math. 164 (2006), 175-188. [9] I. Heckenberger and H. Yamane, Drnfel d doubles and Shapovalov determnants, Revsta de la Unon Matematca Argentna vol. 51-2 (2010), 107-146. [10] J. E. Humphreys, Reflecton groups and Coxeter groups, Cambrdge Stud. Adv. Math, 29, Cmabrdge Unv. Press, 1990. [11] J. C. Jantzen, Lectures on quantum groups, Graduate Studes of Mathematcs, Vol. 6, Amer. Math. Soc., Provdence, RI, 1996. [12] J. C. Jantzen, Representatons of Algebrac Groups, Second Edton, Mathematcal Surveys and Monographs, Vol. 107, Amercan Mathematcal Socety 2003. [13] M. Jmbo, A q-dfference analogue of U(g) and the Yang-Baxter equaton, Lett. Math. Phys. 10 (1985), 63-69. [14] K. Jeong, S.-J. Kang, M. Kashwara, Crystal bases for quantum generalzed Kac-Moody algebras, Proc. London Math. Soc. 90 (2005), 395-438. [15] M. Kashwara, On crystal bases of the q-analogue of unversal envelopng algebras, Duke Math. J. 63 (1991), 465-516. [16] V. Kharchenko, A quantum analogue of the Poncaré-Brkhoff-Wtt theorem, Algebra Logc 38 (1999), 259-276. [17] G. Lusztg, Quantum groups at roots of 1, Geom. Dedcata, 35 (1990), 89-113.
KOSTANT-LUSTIG A-BASES OF MULTIPARAMETER QUANTUM GROUPS 15 [18] G. Lusztg, Canoncal bases arsng from quantzed envelopng algebras, J. Amer. Math. Soc. 3 (1990), 447-498. Department of Mathematcs, North Carolna State Unversty, Ralegh, NC 27695-8205, USA E-mal address: jng@ncsu.edu Department of Mathematcs, North Carolna State Unversty, Ralegh, NC 27695-8205, USA E-mal address: msra@ncsu.edu Department of Mathematcs, Faculty of Scence, Unversty of Toyama, Gofuku, Toyama 930-8555, Japan E-mal address: hroyuk@sc.u-toyama.ac.jp