Supplementary Figures Supplementary Figure 1. 1 H NMR spectrum (400 MHz, CDCl 3 ) of diester 3. Supplementary Figure 2. 13 C NMR spectrum (100 MHz, CDCl 3 ) of diester 3. 1
Supplementary Figure 3. 1 H NMR spectrum (400 MHz, CDCl 3 ) of A1/A2-dicarboxylato- DMP[5]A 4. Supplementary Figure 4. 13 C NMR spectrum (100 MHz, CDCl 3 ) of A1/A2-dicarboxylato- DMP[5]A 4. 2
Supplementary Figure 5. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1a. Supplementary Figure 6. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1a. 3
Supplementary Figure 7. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1b. Supplementary Figure 8. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1b. 4
Supplementary Figure 9. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1c. Supplementary Figure 10. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1c. 5
Supplementary Figure 11. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1d. Supplementary Figure 12. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1d. 6
Supplementary Figure 13. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1e. Supplementary Figure 14. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1e. 7
Supplementary Figure 15. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1f. Supplementary Figure 16. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1f. 8
Supplementary Figure 17. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2a. Supplementary Figure 18. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2a. 9
Supplementary Figure 19. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2 a. Supplementary Figure 20. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2 a. 10
Supplementary Figure 21. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2e. Supplementary Figure 22. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2e. 11
Supplementary Figure 23. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2 e. Supplementary Figure 24. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2 e. 12
Supplementary Figure 25. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2f. Supplementary Figure 26. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2f. 13
Supplementary Figure 27. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2 f. Supplementary Figure 28. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2 f. 14
Supplementary Figure 29. Comparison of 1 H NMR spectra of (a) 2 a, (b) 1a and (c) 2a. 15
Supplementary Figure 30. 1 H NMR spectra of (a) 20 mm 1,4-dicyanobutane in CDCl 3, (b) 2 mm 1a and 20 mm 1,4-dicyanobutane in CDCl 3, (c) 2 mm 1a in CDCl 3, (d) 1a in CD 2 Cl 2, (e) 2 mm 1a in CD 3 CN, and (f) 1a in (CD 3 ) 2 SO. The peaks with an asterisk derive from grease in CD 2 Cl 2. 16
Supplementary Figure 31. 1 H NMR spectra of (a) 20 mm 1,4-dicyanobutane in CDCl 3, (b) 2 mm 2 a and 20 mm 1,4-dicyanobutane in CDCl 3, and (c) 2 a in CDCl 3. Supplementary Figure 32. Variable-temperature 1 H NMR spectra of 1a (2 mm) in (CD 3 ) 2 SO. Measured at 40 80 C and after subsequent cooling down to 25 C. 17
Supplementary Figure 33. Variable-temperature 1 H NMR spectra of 2a (2mM) in (CD 3 ) 2 SO. Measured at 40 80 C and after subsequent cooling down to 25 C. Supplementary Figure 34. Variable-temperature 1 H NMR spectra of 2 a (2mM) in (CD 3 ) 2 SO. Measured at 40 80 C and after subsequent cooling down to 25 C. 18
Supplementary Figure 35. Comparison of 1 H NMR spectra of 1a (2 mm) in (CD 3 ) 2 SO (a) at 25 C and after heating up to (b) 100 C, (c) 120 C, (d) 140 C and (e) 160 C for 2 h at each temperature. The signal with a solid triangle ( ) appeared when the solvent (CD 3 ) 2 SO alone was heated up to 160 C for 2 h, for which the decomposition of (CH 3 ) 2 SO would be responsible. The proton signal of H 2 O marked by a solid square ( ) shifted to the downfield, which would be attributed to some interactions between H 2 O and 1a. 19
Supplementary Figure 36. Comparison of 1 H NMR spectra of 2a (2mM, (CD 3 ) 2 SO) (a) at 25 C, and after heating up to (b) 100 C, (c) 120 C, (d) 140 C and (e) 160 C for 2 h. The peaks with an asterisk derive from grease and CHCl 3. The proton signal of H 2 O marked by a solid square ( ) shifted to the downfield, which would be attributed to some interactions between H 2 O and 2a. 20
Supplementary Figure 37. Comparison of 1 H NMR spectra of 2 a (2mM) in (CD 3 ) 2 SO (a) at 25 C, and after heating at (b) 100 C, (c) 120 C, (d) 140 C and (e) 160 C for 2 h. The proton signal of H 2 O marked by a solid square ( ) shifted to the downfield, which would be attributed to some interactions between H 2 O and 2 a. The signal with a solid triangle ( ) appeared when the solvent (CD 3 ) 2 SO alone was heated up to 160 o C for 2 h, for which the decomposition of (CH 3 ) 2 SO would be responsible. 21
Supplementary Figure 38. HRMS spectrum of diester 3. Supplementary Figure 39. HRMS spectrum of A1/A2-Dicarboxylato-DMP[5]A 4. 22
Supplementary Figure 40. HRMS spectrum of pseudo[1]catenane 1a. Supplementary Figure 41. HRMS spectrum of pseudo[1]catenane 1b. 23
Supplementary Figure 42. HRMS spectrum of pseudo[1]catenane 1c. Supplementary Figure 43. HRMS spectrum of pseudo[1]catenane 1d. 24
Supplementary Figure 44. HRMS spectrum of pseudo[1]catenane 1e. Supplementary Figure 45. HRMS spectrum of pseudo[1]catenane 1f. 25
Supplementary Figure 46. HRMS spectrum of gemini-catenane 2a. Supplementary Figure 47. HRMS spectrum of gemini-catenane 2 a. 26
Supplementary Figure 48. HRMS spectrum of gemini-catenane 2e. Supplementary Figure 49. HRMS spectrum of gemini-catenane 2 e. 27
Supplementary Figure 50. HRMS spectrum of gemini-catenane 2f. Supplementary Figure 51. HRMS spectrum of gemini-catenane 2 f. 28
Supplementary Figure 52. IR spectrum (KBr) of diester 3. Supplementary Figure 53. IR spectrum (KBr) of A1/A2-Dicarboxylato-DMP[5]A 4. 29
Supplementary Figure 54. IR spectrum (KBr) of pseudo[1]catenane 1a. Supplementary Figure 55. IR spectrum (KBr) of pseudo[1]catenane 1b 30
Supplementary Figure 56. IR spectrum (KBr) of pseudo[1]catenane 1c. Supplementary Figure 57. IR spectrum (KBr) of pseudo[1]catenane 1d. 31
Supplementary Figure 58. IR spectrum (KBr) of pseudo[1]catenane 1e. Supplementary Figure 59. IR spectrum (KBr) of pseudo[1]catenane 1f. 32
Supplementary Figure 60. IR spectrum (KBr) of gemini-catenane 2a. Supplementary Figure 61. IR spectrum (KBr) of gemini-catenane 2 a. 33
Supplementary Figure 62. IR spectrum (KBr) of gemini-catenane 2e. Supplementary Figure 63. IR spectrum (KBr) of gemini-catenane 2 e. 34
Supplementary Figure 64. IR spectrum (KBr) of gemini-catenane 2f. Supplementary Figure 65. IR spectrum (KBr) of gemini-catenane 2 f. 35
Supplementary Figure 66. Crystal structure of 1a (CCDC: 1016257). 1a was crystallized by slow diffusion of hexane into a CH 2 Cl 2 solution of 1a. The thermal ellipsoids were at 50% probability. In the crystal structure, the hydrogen atoms of the pillararene moiety were omitted for clarity purpose; colour code: carbons in gray, hydrogens of the octamethylene moiety in white, oxygens in red and nitrogens in blue. Supplementary Figure 67. Crystal structure of 1d (CCDC: 1016258). 1d was crystallized by slow diffusion of hexane into the CHCl 3 solution of 1d. The thermal ellipsoids were at 50% probability. In the crystal structure, the hydrogen atoms of the pillararene moiety were omitted for clarity purpose; colour code: carbons in gray, hydrogens of the octamethylene moiety in white, oxygens in red and nitrogens in blue. 36
Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 9.414 BB 1.2086 3616.13892 45.23792 51.3035 2 12.841 BBA 1.6659 3432.28281 30.02017 48.6965 Supplementary Figure 68. Chiral HPLC trace of pseudo[1]catenane 1a. Chiral Column: DAICEL CHIRALPAK OD-H; Mobile phase: 90:10 n-hexane: isopropanol with elution speed 1.0 ml min 1 ; Detection wavelength: 295 nm; Temperature: room temperature. 37
Supplementary Figure 69. UV/Vis and CD spectra of pseudo[1]catenane 1a. CD spectra: [ps-1a] = [pr-1a] = 15 µm, CHCl 3, 25 C. 38
Supplementary Figure 70. Chiral HPLC trace of gemini-catenane 2a. Chiral Column: DAICEL CHIRALPAK AD-H; Mobile phase: 80:20 n-hexane: isopropanol with elution speed 1.0 ml min 1 ; Temperature: room temperature. Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 6.209 BB 0.5124 444.60281 12.69983 49.8476% 2 9.154 BB 0.8336 447.32190 7.75918 50.1524% Supplementary Figure 71. Chiral HPLC trace of gemini-catenane 2 a. Chiral Column: DAICEL CHIRALPAK AD-H; Mobile phase: 80:20 n-hexane: isopropanol with elution speed 1.0 ml min 1 ; Temperature: room temperature. 39
Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 6.302 BB 0.4954 171.91141 4.87468 100 Supplementary Figure 72. Chiral HPLC trace of ps gemini-catenane 2 a. The peaks at 3 4.5 min were caused by residual solvents. Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 6.225 MM 0.5023 7.84061 2.60154e-1 2.0172 2 9.139 BB 0.8213 380.84586 6.64882 97.9828 Supplementary Figure 73. Chiral HPLC trace of pr-gemini-catenane 2 a. The peaks at 3 4.5 min were caused by residual solvents. 40
Supplementary Figure 74. CD spectra (CHCl 3, 25 C) of (a) 15 µm ps-1a with 100 equiv. 1,4-dicyanobutane and (b) 10 µm ps-2 a with 100 equiv. 1,4-dicyanobutane. 41
Supplementary Table 1. Crystal Data and Structure Refinement Details for 1a and 1d Compound 1a 1d Empirical formula C 55 H 66 N 2 O 12 C 53 H 62 N 2 O 12 2CHCl 3 CDCC 1016257 1016258 Formula weight 947.10 1241.94 Crystal system Trigonal Monoclinic Space group R-3 C2/c a (Å) 32.766(4) 19.287(4) b (Å) 32.766(4) 15.094(3) c (Å) 30.655(6) 21.486(4) α ( ) 90.00 90.00 β ( ) 90.00 105.709(2) γ ( ) 120.00 90.00 V (Å 3 ) 28502(8) 6021(2) Z 18 4 λ (Å) 0.71073 0.71073 Dcalcd (g cm -3 ) 0.993 1.370 F (0,0,0) 9108 2624 µ (mm -1 ) 0.959 0.349 T (K) 113(2) 113(2) Reflections collected / unique 66198 / 11181 30419 / 7178 Data / restraints / parameters 11181 / 0 / 630 7178 / 27 / 377 R [I>2σ(I)] 0.0612 0.0543 wr[i>2σ(i)] 0.1603 0.1484 R[all data] 0.0836 0.0679 wr[all data] 0.1722 0.1593 Goodness of fit (GOF) 1.033 0.995 Largest diff. peak and hole (e Å -3 ) 0.248 and -0.258 1.580 and -0.532 42
Supplementary Methods Synthesis of A1/A2-dicarboxylato-DMP[5]A 4 CO 2 Et OH OMe BrCH 2 CO 2 Et O OMe HO H 2 C MeO H 2 C 4 K 2 CO 3 CH 3 CN reflux 88% O H 2 C MeO H 2 C 4 4DM1HQP5 EtO 2 C 3 Diester 3: Ethyl bromoacetate (243 µl, 2.2 mmol) was added to a suspension of K 2 CO 3 (345 mg, 2.5 mmol) and 4DM1HQP5 (722 mg, 1.0 mmol) in CH 3 CN (10 ml), and the mixture was heated to reflux for 12 h. The reaction mixture was poured into saturated NaHCO 3 solution and the aqueous layer was extracted with DCM. The organic layer was washed with brine, dried over Na 2 SO 4, and concentrated. The residue was purified by chromatography on silica gel (Petroleum: DCM, 4:1 to 1:1 v/v) to afford 3 as a white solid (787 mg, 88%). m.p. = 194 196 ºC; TLC (DCM): R f = 0.64; 1 H NMR (400 MHz, CDCl 3 ) δ 6.87 (s, 4H), 6.85 (s, 2H), 6.83 (s, 2H), 6.73 (s, 2H), 4.54 (s, 4H), 3.75 (s, 16H), 3.74 (s, 6H), 3.71 (s, 6H), 3.69 (s, 6H), 3.35 (q, 4H, J = 6.8 Hz), 0.04 (t, 6H, J = 6.8 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 169.2, 150.4, 150.3, 150.2, 149.2, 128.6, 128.4, 128.4, 128.3, 127.8, 114.2, 114.12, 113.4, 113.3, 113.1, 66.9, 60.9, 55.7, 55.6, 55.5, 55.5, 29.4, 29.4, 28.9, 12.6; IR (KBr) ν max 2938, 2829, 1759, 1730, 1500, 1466, 1400, 1213, 1085, 1047, 930, 880, 855, 774, 733, 702, 649 cm -1 ; HRMS (m/z): [M + NH 4 ] + calc. for C 51 H 62 NO 14, 912.4170; found, 912.4162. A1/A2-Dicarboxylato-DMP[5]A 4: NaOH (80 mg, 2.0 mmol) was added to a solution of diester 2 (447 mg, 0.50 mmol) in THF: H 2 O (10mL: 5mL). And the mixture was stirred for 4 h at room temperature, The reaction mixture was poured into 0.1 M HCl and extracted with ethyl acetate. The 43
organic layer was washed with brine, dried over Na 2 SO 4, and concentrated. The residue was purified by chromatography on silica gel (CHCl 3 : MeOH, 40:1 to 10:1 v/v) to afford 4 as a white solid (385 mg, 92%). m.p. = 190 192 ºC; TLC (CHCl 3 : MeOH, 10:1 v/v): R f = 0.49; 1 H NMR (400 MHz, CDCl 3 ) δ 6.80 (s, 2H), 6.78 (s, 2H), 6.76 (s, 2H), 6.66 (s, 2H), 6.59 (s, 2H), 4.53 (s, 4H), 3.82 (s, 4H), 3.77 (s, 6H), 3.70 (s, 6H), 3.68 (s, 6H), 3.66 (s, 12H); 13 C NMR (100 MHz, CDCl 3 ) δ 170.0, 151.8, 150.9, 150.6, 150.1, 148.8, 129.2, 128.9, 128.3, 127.8, 127.3, 116.3, 114.7, 114.4, 114.0, 113.3, 66.8, 57.4, 56.0, 55.9, 30.0, 29.7, 29.3; IR (KBr) ν max 3470, 2990, 2942, 2912, 2830, 1730, 1500, 1466, 1399, 1211, 1044, 928, 878, 856,776, 732, 711, 649 cm -1 ; HRMS (m/z): [M + NH 4 ] + calc. for C 47 H 54 NO 14, 856.3544; found, 856.3533. General Procedure for the synthesis of pseudo[1]catenanes and gemini-catenanes HOBT (101 mg, 0.75 mmol) and EDCI (144 mg, 0.75 mmol) were added to a solution of diacid 2 (251 mg, 0.30 mmol) and α, ω-diaminooctane (0.33 mmol) in chloroform (100 ml), and the mixture was stirred for 48 h at room temperature, The reaction mixture was poured into 0.1 M HCl. The organic layer was washed with water, saturated NaHCO 3 and brine, dried over Na 2 SO 4, and concentrated. The residue was purified by chromatography on silica gel (CHCl 3 : MeOH, 200:1 to 50:1 v/v). The analytical data for methyl pseudo[1]catenane 1 and gemini-catenanes 2 are listed below. pseudo[1]catenane 1a: White solid; 51% yield; m.p. = 290 292 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 6.97 (s, 2H), 6.87 (s, 2H), 6.84 (s, 4H), 6.80 (s, 2H), 5.85 (bs, 2H), 4.68, 4.48 (ABq, 4H, J = 16.4 Hz), 3.74 3.77 (m, 34H), 3.02 (bs, 2H), 2.80 (bs, 2H), 0.58 0.72 (m, 2H), 0.29 0.44 (m, 2H), 0.79 to 0.76 (m, 4H), 1.34 to 1.25 (m, 2H), 1.48 to 1.37 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.7, 150.8, 150.2, 150.1, 148.6, 129.1, 128.5, 128.0, 127.9, 127.8, 114.2, 113.4, 113.0, 112.3, 67.4, 56.1, 55.9, 55.2, 55.0, 39.3, 29.2, 28.9, 28.8, 28.5, 26.7, 26.1; 44
IR (KBr) ν max 3415, 2934, 2853, 2829, 1681, 1496, 1464, 1398, 1212, 1046, 928, 880, 856, 774, 727, 704, 646 cm -1 ; HRMS (m/z): [M + H] + calc. for C 55 H 67 N 2 O 12, 947.4694; found, 947.4670. pseudo[1]catenane 1b: White solid; 60% yield; m.p. > 360 ºC (carbonization); TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 7.19 (s, 2H), 6.99 (s, 2H), 6.88 (s, 2H), 6.86 (s, 2H), 6.80 (s, 2H), 4.79, 4.52 (ABq, 4H, J = 16.8 Hz), 3.68 3.85 (m, 34H), 1.26(s, 4H), 0.58(bs, 2H), 1.93(s, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ 167.1, 150.6, 150.1, 149.4, 149.0, 129.9, 129.4, 128.8, 128.1, 125.0, 115.9, 113.3, 113.2, 112.8, 66.4, 55.6, 55.4, 55.2, 55.0, 37.9, 29.4, 29.0, 28.4, 25.0; IR (KBr) ν max 3407, 2937, 2829, 1666, 1497, 1467, 1450, 1399, 1213, 1045, 882, 858,773, 706, 648 cm -1 ; HRMS (m/z): [M + H] + calc. for C 50 H 57 N 2 O 12, 877.3912; found, 877.3900. pseudo[1]catenane 1c: White solid; 86% yield; m.p. > 360 ºC (carbonization); TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 6.98 (s, 2H), 6.96 (s, 2H), 6.89 (s, 2H), 6.87 (s, 2H), 6.85 (s, 2H), 4.74, 4.61 (ABq, 4H, J = 16.4 Hz), 4.57 (d, 2H, J = 10.4 Hz), 3.72 3.83 (m, 34H), 2.67 (t, 2H, J = 11.6 Hz), 0.66 (t, 2H, J = 11.6 Hz), 1.94 (dt, 2H, J = 4.4 Hz, J = 13.2 Hz), 2.20 (q, 2H, J = 13.2 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 166.4, 150.8, 150.4, 150.2, 149.4, 147.8, 129.5, 128.9, 128.5, 128.5, 125.9, 114.2, 113.2, 112.8, 112.8, 112.2, 66.7, 55.5, 55.4, 55.3, 55.2, 36.7, 29.2, 28.9, 25.3; IR (KBr) ν max 3410, 2991, 2937, 2830, 1677, 1529, 1497, 1464, 1399, 1213, 1045, 929, 881, 857, 773, 729, 705, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 51 H 59 N 2 O 12, 891.4068; found, 45
891.4060. pseudo[1]catenane 1d: White solid; 96% yield; m.p. > 360 ºC (carbonization); TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 7.01 (s, 2H), 6.92 (s, 2H), 6.91 (s, 2H), 6.85 (s, 2H), 6.70 (s, 2H), 5.98 (d, 2H, J =9.4 Hz), 4.67, 4.66 (ABq, 4H, J = 16.4 Hz), 3.70 3.82 (m, 34H), 3.51 (t, 2H, J = 11.6 Hz), 1.72 (q, 2H, J = 12.4 Hz), 0.20 to 0.14 (m, 2H), 0.74 (q, 2H, J = 12.6 Hz), 2.37 to 2.25 (m, 2H), 2.49 (q, 2H, J = 12.4 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 167.4, 151.0, 150.4, 150.1, 149.6, 147.4, 129.7, 128.6, 128.3, 127.7, 126.8, 113.6, 133.5, 112.7, 112.7, 111.7, 66.7, 55.9, 55.3, 55.2, 36.9, 29.6, 29.4, 29.3, 28.0, 23.3; IR (KBr) ν max 3411, 2939, 2853, 2830, 1685, 1529, 1496, 1463, 1399, 1213, 1046, 928, 880, 857, 774, 733, 704, 646 cm -1 ; HRMS (m/z): [M + H] + calc. for C 53 H 63 N 2 O 12, 919.4381; found, 919.4369. pseudo[1]catenane 1e: White solid; 32% yield; m.p. = 248 250 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.54; 1 H NMR (400 MHz, CDCl 3 ) δ 6.94 (s, 2H), 6.93 (s, 2H), 6.87 (s, 2H), 6.84 (s, 2H), 6.78 (s, 2H), 5.91 (bs, 2H), 4.64, 4.45 (ABq, 4H, J = 16.4 Hz), 3.66 3.76 (m, 34H), 2.96 (bs, 2H), 2.54 (bs, 2H), 0.40 (bs, 4H), 0.22 (bs, 2H), 0.04 (bs, 6H), 0.43 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.2, 150.7, 150.2, 150.1, 149.6, 130.2, 129.2, 128.0, 127.8, 127.1, 116.4, 113.7, 113.2, 112.9, 112.8, 69.6, 55.8, 55.6, 55.2, 55.0, 37.9, 29.3, 28.9, 28.8, 28.6, 28.2, 25.8, 24.2; IR (KBr) ν max 3414, 2932, 2852, 2829, 1680, 1497, 1464, 1398, 1212, 1047, 928, 879, 855, 774, 729, 704, 648 cm -1 ; HRMS (m/z): [M + H] + 46
calc. for C 57 H 71 N 2 O 12, 975.5007; found, 975.5003. pseudo[1]catenane 1f: White solid; 23% yield; m.p. = 178 180 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.54; 1 H NMR (400 MHz, CDCl 3 ) δ 6.98 (bs, 2H), 6.94 (s, 2H), 6.86 (s, 4H), 6.74 (bs, 2H), 5.94 (bs, 2H), 4.48 (s, 4H), 3.66 3.76 (m, 36H), 3.16 (bs, 2H), 2.33 (bs, 2H), 1.26 (s, 2H), 0.96 (bs, 4H), 0.64 (bs, 4H), 0.00 0.20 (bs, 6H), 0.39 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 167.8, 150.7, 150.2, 150.1, 149.0, 129.8, 129.4, 128.1, 127.7, 126.8, 116.5, 113.6, 113.4, 113.0, 112.7, 68.8, 56.0, 55.2, 55.0, 37.9, 29.6, 29.3, 29.1, 28.6, 27.2, 26.6, 23.7; IR (KBr) ν max 3410, 2931, 2852, 2829, 1681, 1498, 1465, 1399, 1212, 1047, 928, 879, 855, 774, 730, 704, 648 cm -1 ; HRMS (m/z): [M + H] + calc. for C 59 H 75 N 2 O 12, 1003.5320; found, 1003.5314. Gemini-catenane 2a: White solid; 9% yield; m.p. = 294 296 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.57; 1 H NMR (400 MHz, CDCl 3 ) δ 6.86 6.97 (m, 20H), 6.73 (s, 2H), 5.08 (bs, 2H), 4.62, 4.55 (ABq, 4H, J = 16.4 Hz), 4.47, 4.39 (ABq, 4H, J = 16.4 Hz), 3.77 3.98 (m, 68H), 3.33 (bs, 2H), 3.23 (bs, 2H), 2.41 (bs, 2H), 1.69 (bs, 2H), 1.27 (bs, 4H), 0.62 (bs, 4H), 0.04 (bs, 4H), 1.01 (bs, 6H), 1.28 (bs, 2H), 1.97 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.7, 167.1, 150.9, 150.4, 150.2, 150.1, 149.1, 148.9, 130.6, 129.3, 129.1, 128.3, 128.2, 127.9, 127.7, 127.3, 126.8, 117.7, 114.3, 113.9, 113.7, 113.2, 112.9, 112.7, 112.6, 70.0, 66.3, 56.1, 55.6, 55.5, 55.4, 55.3, 55.2, 55.1, 39.4, 38.2, 47
30.4, 30.3, 30.2, 29.3, 29.0, 28.8, 28.7, 28.5, 27.2, 26.0, 24.0; IR (KBr) ν max 3412, 2933, 2853, 2829, 1680, 1533, 1498, 1465, 1399, 1212, 1047, 929, 880, 855, 774, 727, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 110 H 133 N 4 O 24, 1894.9343; found, 1894.9295. Gemini-catenane 2 a: White solid; 19% yield; m.p. = 260 262 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.52; 1 H NMR (400 MHz, CDCl 3 ) δ 6.84 7.05 (m, 20H), 6.84 (s, 2H), 5.23 (bs, 2H), 4.62 (s, 4H), 4.51 (s, 4H), 3.74 3.82 (m, 68H), 3.36 (bs, 4H), 2.67 (bs, 2H), 1.71 (bs, 2H), 1.47 (bs, 4H), 0.78 (bs, 4H), 0.08 (bs, 2H), 0.15 (bs, 2H), 1.09 (bs, 2H), 1.21 (bs, 2H), 1.45 (bs, 2H), 1.55 (bs, 2H), 2.33 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.45, 166.87, 150.8, 150.4, 150.2, 150.1, 150.1, 150.00, 148.4, 148.1, 129.6, 129.1, 128.9, 128.3, 127.9, 127.9, 127.7, 127.4, 127.2, 127.0, 115.9, 114.3, 113.4, 113.2, 112.8, 112.6, 112.4, 112.1, 68.1, 66.8, 55.7, 55.6, 55.4, 55.2, 55.1, 55.0, 39.7, 37.7, 30.4, 30.1, 29.1, 29.0, 28.7, 28.5, 28.2, 27.3, 26.6, 23.3; IR (KBr) ν max 3411, 2935, 2854, 2829, 1680, 1532, 1498, 1465, 1398, 1212, 1046, 928, 880, 855, 774, 731, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 110 H 133 N 4 O 24, 1894.9343; found, 1894.9445. Gemini-catenane 2e: White solid; 12% yield; m.p. = 296 298 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.49; 1 H NMR (400 MHz, CDCl 3 ) δ 6.84 6.96 (m, 20H), 6.67 (s, 2H), 5.04(bs, 2H), 4.61, 4.57 (ABq, 4H, J = 16.4 Hz), 4.52, 4.44 (ABq, 4H, J = 16.4 Hz), 3.73 3.89 (m, 68H), 3.44 3.51 (m, 2H), 48
3.36 3.40 (m, 2H), 2.43 (bs, 2H), 1.63 1.67 (m, 6H), 1.35 (bs, 4H), 1.18(bs, 4H), 0.76(bs, 4H), 0.08 (bs, 4H), 1.28 (bs, 8H), 2.29 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.6, 167.1, 150.9, 150.4, 150.3, 150.1, 150.1, 148.6, 130.1, 129.3, 128.9, 128.3, 128.1, 127.8, 127.5, 127.4, 127.3, 126.8, 116.51, 114.3, 113.4, 113.3, 113.2, 112.9, 112.7, 112.5, 68.6, 66.0, 55.7, 55.6, 55.5, 55.3, 55.2, 38.9, 38.1, 30.7, 30.2, 30.1, 29.8, 29.3, 28.8, 28.6, 27.2, 26.2, 23.8, 22.6; IR (KBr) ν max 3411, 2933, 2853, 2829, 1679, 1532, 1499, 1465, 1399, 1212, 1047, 928, 880, 855, 774, 733, 704, 648 cm -1 ; HRMS (m/z): [M + H] + calc. for C 114 H 140 N 4 O 24, 1950.9969; found, 1950.9964. Gemini-catenane 2 e: White solid; 17% yield; m.p. = 270 272 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.45; 1 H NMR (400 MHz, CDCl 3 ) δ 6.84 6.98 (m, 20H), 6.63 (s, 2H), 4.95 (s, 2H), 4.59 (s, 4H), 4.46 (s, 4H), 3.73 3.92 (m, 68H), 3.45 3.51 (m, 2H), 3.34 3.40 (m, 2H), 2.30 (bs, 2H), 1.63 1.66 (m, 6H), 1.36 (bs, 4H), 1.20 (bs, 4H), 0.80 (bs, 4H), 0.01 (bs, 4H), 1.19 (bs, 4H), 1.37 (bs, 2H), 1.51 (bs, 2H), 2.32 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.4, 167.0, 150.9, 150.3, 150.2, 150.1, 150.0, 148.4, 148.3, 129.7, 129.3, 129.0, 128.3, 128.3, 128.0, 128.0, 127.7, 127.4, 127.1, 126.5, 116.07, 113.9, 113.4, 113.2, 113.1, 112.8, 112.7, 112.5, 68.4, 66.0, 56.0, 55.5, 55.4, 55.3, 55.1, 55.1, 38.8, 38.2, 30.9, 30.4, 30.0, 29.9, 29.7, 29.3, 28.8, 28.6, 27.3, 26.0, 23.7; IR (KBr) ν max 3411, 2932, 2853, 2829, 1679, 1532, 1498, 1465, 1449, 1399, 1212, 1047, 928, 880, 855, 774, 729, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 114 H 140 N 4 O 24, 1950.9969; found, 1951.0004. 49
Gemini-catenane 2f: White solid; 14% yield; m.p. = 238 252 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.50; 1 H NMR (400 MHz, CDCl 3 ) δ 6.83 6.98 (m, 20H), 6.43 (s, 2H), 5.00 (bs, 2H), 4.42(s, 4H), 4.58(s, 4H), 3.66 3.92 (m, 68H), 3.53 3.57 (m, 2H), 3.35 3.38 (m, 2H), 2.36(bs, 2H),1.79 1.82 (m, 4H), 1.64 1.66 (m, 4H), 1.40 (bs, 6H), 1.29 (bs, 4H), 1.14 (bs, 4H), 0.76 (bs, 4H), 0.09 (bs, 4H), 1.30 (bs, 6H), 1.48 (bs, 2H), 2.34 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.3, 167.0, 150.9, 150.3, 150.2, 150.2, 150.1, 149.9, 148.4, 148.1, 129.4, 129.3, 129.1, 128.3, 128.0, 127.9, 127.6, 127.45, 127.0, 126.5, 116.0, 113.8, 113.4, 113.1, 113.0, 112.8, 112.6, 112.4, 68.3, 66.9, 55.8, 55.4, 55.3, 55.27, 55.1, 55.0, 39.1, 38.1, 30.9, 30.8, 30.2, 30.0, 29.3, 29.2, 28.7, 26.8, 26.1, 23.7; IR (KBr) ν max 3412, 2931, 2853, 2830, 1680, 1530 1499, 1465, 1399, 1212, 1047, 929, 880, 855, 774, 732, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 118 H 149 N 4 O 24, 2007.0595; found, 2007.0586. Gemini-catenane 2 f: White solid; 14% yield; m.p. = 192 222 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.45; 1 H NMR (400 MHz, CDCl 3 ) δ 6.83 6.98 (m, 20H), 6.60 (s, 2H), 4.99 (s, 2H), 4.60, 4.56 (ABq, 4H, J = 16.4 Hz), 4.45, 4.39 (ABq, 4H, J = 16.4 Hz), 3.73 3.91 (m, 68H), 3.28 3.33 (m, 2H), 2.36 (bs, 2H), 1.83 (bs, 4H), 1.66 (bs, 4H), 1.41 (bs, 8H), 1.28 (bs, 4H), 1.15 (bs, 4H), 0.79 (bs, 4H), 0.05 (bs, 4H), 1.24 (bs, 4H), 1.38 (bs, 2H), 1.53 (bs, 2H), 2.36 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.3, 166.9, 150.9, 150.4, 150.3, 150.1, 150.0, 148.6, 148.2, 129.8, 129.3, 129.0, 128.3, 128.2, 127.9, 127.7, 127.5, 127.1, 126.5, 116.7, 113.9, 113.4, 113.1, 113.0, 112.8, 112.8, 112.6, 112.5, 50
68.8, 66.9, 55.7, 55.4, 55.3, 55.2, 55.1, 55.1, 39.2, 38.1, 31.0, 30.9, 30.5, 30.3, 30.0, 29.5, 29.3, 28.8, 28.7, 28.6, 27.0, 26.1, 23.7; IR (KBr) ν max 3411, 2931, 2853, 2829, 1680, 1530, 1499, 1465, 1399, 1213, 1047, 928, 880, 855, 774, 730, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 118 H 149 N 4 O 24, 2007.0595; found, 2007.0630. DFT calculations of gemini-catenanes 2a and 2 a Conformational search was carried out for the gemini-catenane molecule and two most stable isomers, 2a and 2 a, were located. Geometry optimization and frequency analysis for 2a and 2 a were performed using the B3LYP/6-31G(d) method. M062X-D3 dispersion corrections 1 4 were calculated using the DFTD3 program 5 and added to the B3LYP Gibbs free energies. All calculations were carried out with Gaussian 09 6. Figures of three-dimensional molecular structures were prepared using CYLView 7. 2a 2 a G = 0.8 kcal/mol G = 0.0 kcal/mol Geometries and relative Gibbs free energies of 2a and 2 a. Energies are relative to 2 a. Supplementary References: 1 Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J.Chem. Phys. 132, 154104 (2010). 2 Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463 1473 (2004). 3 Tkatchenko, A. & Scheffler, M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009). 51
4 Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 241 (2008). 5 Grimme, S. DFTD3, V2.0 Rev 1; University Münster: Münster, Germany, 2010. 6 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima,T., Honda, Y., Kitao,O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken,V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian 09, revision B.01., Gaussian, Inc. Wallingford, CT; 2010. 7 Legault, C. Y. CYLview, 1.0b; Universitéde Sherbrooke: Sherbrooke, Québec, Canada, 2009 (http://www.cylview.org). 48