Supplementary Figures

Σχετικά έγγραφα
Structural Expression of Exo-Anomeric Effect

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Electronic Supplementary Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Electronic Supplementary Information

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Supporting Information

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Supporting Information for

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Supporting Information

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Electronic Supplementary Information (ESI) for

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

SUPPORTING INFORMATION

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting Information for

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Supporting Information for:

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Supporting Information

Supporting Information

Electronic Supplementary Information

Supporting Information

Electronic Supplementary Information

Accessory Publication

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Divergent synthesis of various iminocyclitols from D-ribose

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Synthesis, characterization and luminescence studies of

Supporting Information

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Table of Contents 1 Supplementary Data MCD

Disulfide-based metal free sulfanylation of ketones

Electronic Supplementary Information (ESI)

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Electronic Supplementary Information (ESI)

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Electronic Supplementary Information for

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information. for

Supporting Information

Supplementary Information for

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supplementary information

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supplementary!Information!

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

Chemical Communications. Electronic Supporting Information

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Supporting Information

Transcript:

Supplementary Figures Supplementary Figure 1. 1 H NMR spectrum (400 MHz, CDCl 3 ) of diester 3. Supplementary Figure 2. 13 C NMR spectrum (100 MHz, CDCl 3 ) of diester 3. 1

Supplementary Figure 3. 1 H NMR spectrum (400 MHz, CDCl 3 ) of A1/A2-dicarboxylato- DMP[5]A 4. Supplementary Figure 4. 13 C NMR spectrum (100 MHz, CDCl 3 ) of A1/A2-dicarboxylato- DMP[5]A 4. 2

Supplementary Figure 5. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1a. Supplementary Figure 6. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1a. 3

Supplementary Figure 7. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1b. Supplementary Figure 8. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1b. 4

Supplementary Figure 9. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1c. Supplementary Figure 10. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1c. 5

Supplementary Figure 11. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1d. Supplementary Figure 12. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1d. 6

Supplementary Figure 13. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1e. Supplementary Figure 14. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1e. 7

Supplementary Figure 15. 1 H NMR spectrum (400 MHz, CDCl 3 ) of pseudo[1]catenane 1f. Supplementary Figure 16. 13 C NMR spectrum (100 MHz, CDCl 3 ) of pseudo[1]catenane 1f. 8

Supplementary Figure 17. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2a. Supplementary Figure 18. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2a. 9

Supplementary Figure 19. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2 a. Supplementary Figure 20. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2 a. 10

Supplementary Figure 21. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2e. Supplementary Figure 22. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2e. 11

Supplementary Figure 23. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2 e. Supplementary Figure 24. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2 e. 12

Supplementary Figure 25. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2f. Supplementary Figure 26. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2f. 13

Supplementary Figure 27. 1 H NMR spectrum (400 MHz, CDCl 3 ) of gemini-catenane 2 f. Supplementary Figure 28. 13 C NMR spectrum (100 MHz, CDCl 3 ) of gemini-catenane 2 f. 14

Supplementary Figure 29. Comparison of 1 H NMR spectra of (a) 2 a, (b) 1a and (c) 2a. 15

Supplementary Figure 30. 1 H NMR spectra of (a) 20 mm 1,4-dicyanobutane in CDCl 3, (b) 2 mm 1a and 20 mm 1,4-dicyanobutane in CDCl 3, (c) 2 mm 1a in CDCl 3, (d) 1a in CD 2 Cl 2, (e) 2 mm 1a in CD 3 CN, and (f) 1a in (CD 3 ) 2 SO. The peaks with an asterisk derive from grease in CD 2 Cl 2. 16

Supplementary Figure 31. 1 H NMR spectra of (a) 20 mm 1,4-dicyanobutane in CDCl 3, (b) 2 mm 2 a and 20 mm 1,4-dicyanobutane in CDCl 3, and (c) 2 a in CDCl 3. Supplementary Figure 32. Variable-temperature 1 H NMR spectra of 1a (2 mm) in (CD 3 ) 2 SO. Measured at 40 80 C and after subsequent cooling down to 25 C. 17

Supplementary Figure 33. Variable-temperature 1 H NMR spectra of 2a (2mM) in (CD 3 ) 2 SO. Measured at 40 80 C and after subsequent cooling down to 25 C. Supplementary Figure 34. Variable-temperature 1 H NMR spectra of 2 a (2mM) in (CD 3 ) 2 SO. Measured at 40 80 C and after subsequent cooling down to 25 C. 18

Supplementary Figure 35. Comparison of 1 H NMR spectra of 1a (2 mm) in (CD 3 ) 2 SO (a) at 25 C and after heating up to (b) 100 C, (c) 120 C, (d) 140 C and (e) 160 C for 2 h at each temperature. The signal with a solid triangle ( ) appeared when the solvent (CD 3 ) 2 SO alone was heated up to 160 C for 2 h, for which the decomposition of (CH 3 ) 2 SO would be responsible. The proton signal of H 2 O marked by a solid square ( ) shifted to the downfield, which would be attributed to some interactions between H 2 O and 1a. 19

Supplementary Figure 36. Comparison of 1 H NMR spectra of 2a (2mM, (CD 3 ) 2 SO) (a) at 25 C, and after heating up to (b) 100 C, (c) 120 C, (d) 140 C and (e) 160 C for 2 h. The peaks with an asterisk derive from grease and CHCl 3. The proton signal of H 2 O marked by a solid square ( ) shifted to the downfield, which would be attributed to some interactions between H 2 O and 2a. 20

Supplementary Figure 37. Comparison of 1 H NMR spectra of 2 a (2mM) in (CD 3 ) 2 SO (a) at 25 C, and after heating at (b) 100 C, (c) 120 C, (d) 140 C and (e) 160 C for 2 h. The proton signal of H 2 O marked by a solid square ( ) shifted to the downfield, which would be attributed to some interactions between H 2 O and 2 a. The signal with a solid triangle ( ) appeared when the solvent (CD 3 ) 2 SO alone was heated up to 160 o C for 2 h, for which the decomposition of (CH 3 ) 2 SO would be responsible. 21

Supplementary Figure 38. HRMS spectrum of diester 3. Supplementary Figure 39. HRMS spectrum of A1/A2-Dicarboxylato-DMP[5]A 4. 22

Supplementary Figure 40. HRMS spectrum of pseudo[1]catenane 1a. Supplementary Figure 41. HRMS spectrum of pseudo[1]catenane 1b. 23

Supplementary Figure 42. HRMS spectrum of pseudo[1]catenane 1c. Supplementary Figure 43. HRMS spectrum of pseudo[1]catenane 1d. 24

Supplementary Figure 44. HRMS spectrum of pseudo[1]catenane 1e. Supplementary Figure 45. HRMS spectrum of pseudo[1]catenane 1f. 25

Supplementary Figure 46. HRMS spectrum of gemini-catenane 2a. Supplementary Figure 47. HRMS spectrum of gemini-catenane 2 a. 26

Supplementary Figure 48. HRMS spectrum of gemini-catenane 2e. Supplementary Figure 49. HRMS spectrum of gemini-catenane 2 e. 27

Supplementary Figure 50. HRMS spectrum of gemini-catenane 2f. Supplementary Figure 51. HRMS spectrum of gemini-catenane 2 f. 28

Supplementary Figure 52. IR spectrum (KBr) of diester 3. Supplementary Figure 53. IR spectrum (KBr) of A1/A2-Dicarboxylato-DMP[5]A 4. 29

Supplementary Figure 54. IR spectrum (KBr) of pseudo[1]catenane 1a. Supplementary Figure 55. IR spectrum (KBr) of pseudo[1]catenane 1b 30

Supplementary Figure 56. IR spectrum (KBr) of pseudo[1]catenane 1c. Supplementary Figure 57. IR spectrum (KBr) of pseudo[1]catenane 1d. 31

Supplementary Figure 58. IR spectrum (KBr) of pseudo[1]catenane 1e. Supplementary Figure 59. IR spectrum (KBr) of pseudo[1]catenane 1f. 32

Supplementary Figure 60. IR spectrum (KBr) of gemini-catenane 2a. Supplementary Figure 61. IR spectrum (KBr) of gemini-catenane 2 a. 33

Supplementary Figure 62. IR spectrum (KBr) of gemini-catenane 2e. Supplementary Figure 63. IR spectrum (KBr) of gemini-catenane 2 e. 34

Supplementary Figure 64. IR spectrum (KBr) of gemini-catenane 2f. Supplementary Figure 65. IR spectrum (KBr) of gemini-catenane 2 f. 35

Supplementary Figure 66. Crystal structure of 1a (CCDC: 1016257). 1a was crystallized by slow diffusion of hexane into a CH 2 Cl 2 solution of 1a. The thermal ellipsoids were at 50% probability. In the crystal structure, the hydrogen atoms of the pillararene moiety were omitted for clarity purpose; colour code: carbons in gray, hydrogens of the octamethylene moiety in white, oxygens in red and nitrogens in blue. Supplementary Figure 67. Crystal structure of 1d (CCDC: 1016258). 1d was crystallized by slow diffusion of hexane into the CHCl 3 solution of 1d. The thermal ellipsoids were at 50% probability. In the crystal structure, the hydrogen atoms of the pillararene moiety were omitted for clarity purpose; colour code: carbons in gray, hydrogens of the octamethylene moiety in white, oxygens in red and nitrogens in blue. 36

Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 9.414 BB 1.2086 3616.13892 45.23792 51.3035 2 12.841 BBA 1.6659 3432.28281 30.02017 48.6965 Supplementary Figure 68. Chiral HPLC trace of pseudo[1]catenane 1a. Chiral Column: DAICEL CHIRALPAK OD-H; Mobile phase: 90:10 n-hexane: isopropanol with elution speed 1.0 ml min 1 ; Detection wavelength: 295 nm; Temperature: room temperature. 37

Supplementary Figure 69. UV/Vis and CD spectra of pseudo[1]catenane 1a. CD spectra: [ps-1a] = [pr-1a] = 15 µm, CHCl 3, 25 C. 38

Supplementary Figure 70. Chiral HPLC trace of gemini-catenane 2a. Chiral Column: DAICEL CHIRALPAK AD-H; Mobile phase: 80:20 n-hexane: isopropanol with elution speed 1.0 ml min 1 ; Temperature: room temperature. Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 6.209 BB 0.5124 444.60281 12.69983 49.8476% 2 9.154 BB 0.8336 447.32190 7.75918 50.1524% Supplementary Figure 71. Chiral HPLC trace of gemini-catenane 2 a. Chiral Column: DAICEL CHIRALPAK AD-H; Mobile phase: 80:20 n-hexane: isopropanol with elution speed 1.0 ml min 1 ; Temperature: room temperature. 39

Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 6.302 BB 0.4954 171.91141 4.87468 100 Supplementary Figure 72. Chiral HPLC trace of ps gemini-catenane 2 a. The peaks at 3 4.5 min were caused by residual solvents. Peak Ret Time (min) Type Width (min) Area (mau*s) height (mau) Ratio (%) 1 6.225 MM 0.5023 7.84061 2.60154e-1 2.0172 2 9.139 BB 0.8213 380.84586 6.64882 97.9828 Supplementary Figure 73. Chiral HPLC trace of pr-gemini-catenane 2 a. The peaks at 3 4.5 min were caused by residual solvents. 40

Supplementary Figure 74. CD spectra (CHCl 3, 25 C) of (a) 15 µm ps-1a with 100 equiv. 1,4-dicyanobutane and (b) 10 µm ps-2 a with 100 equiv. 1,4-dicyanobutane. 41

Supplementary Table 1. Crystal Data and Structure Refinement Details for 1a and 1d Compound 1a 1d Empirical formula C 55 H 66 N 2 O 12 C 53 H 62 N 2 O 12 2CHCl 3 CDCC 1016257 1016258 Formula weight 947.10 1241.94 Crystal system Trigonal Monoclinic Space group R-3 C2/c a (Å) 32.766(4) 19.287(4) b (Å) 32.766(4) 15.094(3) c (Å) 30.655(6) 21.486(4) α ( ) 90.00 90.00 β ( ) 90.00 105.709(2) γ ( ) 120.00 90.00 V (Å 3 ) 28502(8) 6021(2) Z 18 4 λ (Å) 0.71073 0.71073 Dcalcd (g cm -3 ) 0.993 1.370 F (0,0,0) 9108 2624 µ (mm -1 ) 0.959 0.349 T (K) 113(2) 113(2) Reflections collected / unique 66198 / 11181 30419 / 7178 Data / restraints / parameters 11181 / 0 / 630 7178 / 27 / 377 R [I>2σ(I)] 0.0612 0.0543 wr[i>2σ(i)] 0.1603 0.1484 R[all data] 0.0836 0.0679 wr[all data] 0.1722 0.1593 Goodness of fit (GOF) 1.033 0.995 Largest diff. peak and hole (e Å -3 ) 0.248 and -0.258 1.580 and -0.532 42

Supplementary Methods Synthesis of A1/A2-dicarboxylato-DMP[5]A 4 CO 2 Et OH OMe BrCH 2 CO 2 Et O OMe HO H 2 C MeO H 2 C 4 K 2 CO 3 CH 3 CN reflux 88% O H 2 C MeO H 2 C 4 4DM1HQP5 EtO 2 C 3 Diester 3: Ethyl bromoacetate (243 µl, 2.2 mmol) was added to a suspension of K 2 CO 3 (345 mg, 2.5 mmol) and 4DM1HQP5 (722 mg, 1.0 mmol) in CH 3 CN (10 ml), and the mixture was heated to reflux for 12 h. The reaction mixture was poured into saturated NaHCO 3 solution and the aqueous layer was extracted with DCM. The organic layer was washed with brine, dried over Na 2 SO 4, and concentrated. The residue was purified by chromatography on silica gel (Petroleum: DCM, 4:1 to 1:1 v/v) to afford 3 as a white solid (787 mg, 88%). m.p. = 194 196 ºC; TLC (DCM): R f = 0.64; 1 H NMR (400 MHz, CDCl 3 ) δ 6.87 (s, 4H), 6.85 (s, 2H), 6.83 (s, 2H), 6.73 (s, 2H), 4.54 (s, 4H), 3.75 (s, 16H), 3.74 (s, 6H), 3.71 (s, 6H), 3.69 (s, 6H), 3.35 (q, 4H, J = 6.8 Hz), 0.04 (t, 6H, J = 6.8 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 169.2, 150.4, 150.3, 150.2, 149.2, 128.6, 128.4, 128.4, 128.3, 127.8, 114.2, 114.12, 113.4, 113.3, 113.1, 66.9, 60.9, 55.7, 55.6, 55.5, 55.5, 29.4, 29.4, 28.9, 12.6; IR (KBr) ν max 2938, 2829, 1759, 1730, 1500, 1466, 1400, 1213, 1085, 1047, 930, 880, 855, 774, 733, 702, 649 cm -1 ; HRMS (m/z): [M + NH 4 ] + calc. for C 51 H 62 NO 14, 912.4170; found, 912.4162. A1/A2-Dicarboxylato-DMP[5]A 4: NaOH (80 mg, 2.0 mmol) was added to a solution of diester 2 (447 mg, 0.50 mmol) in THF: H 2 O (10mL: 5mL). And the mixture was stirred for 4 h at room temperature, The reaction mixture was poured into 0.1 M HCl and extracted with ethyl acetate. The 43

organic layer was washed with brine, dried over Na 2 SO 4, and concentrated. The residue was purified by chromatography on silica gel (CHCl 3 : MeOH, 40:1 to 10:1 v/v) to afford 4 as a white solid (385 mg, 92%). m.p. = 190 192 ºC; TLC (CHCl 3 : MeOH, 10:1 v/v): R f = 0.49; 1 H NMR (400 MHz, CDCl 3 ) δ 6.80 (s, 2H), 6.78 (s, 2H), 6.76 (s, 2H), 6.66 (s, 2H), 6.59 (s, 2H), 4.53 (s, 4H), 3.82 (s, 4H), 3.77 (s, 6H), 3.70 (s, 6H), 3.68 (s, 6H), 3.66 (s, 12H); 13 C NMR (100 MHz, CDCl 3 ) δ 170.0, 151.8, 150.9, 150.6, 150.1, 148.8, 129.2, 128.9, 128.3, 127.8, 127.3, 116.3, 114.7, 114.4, 114.0, 113.3, 66.8, 57.4, 56.0, 55.9, 30.0, 29.7, 29.3; IR (KBr) ν max 3470, 2990, 2942, 2912, 2830, 1730, 1500, 1466, 1399, 1211, 1044, 928, 878, 856,776, 732, 711, 649 cm -1 ; HRMS (m/z): [M + NH 4 ] + calc. for C 47 H 54 NO 14, 856.3544; found, 856.3533. General Procedure for the synthesis of pseudo[1]catenanes and gemini-catenanes HOBT (101 mg, 0.75 mmol) and EDCI (144 mg, 0.75 mmol) were added to a solution of diacid 2 (251 mg, 0.30 mmol) and α, ω-diaminooctane (0.33 mmol) in chloroform (100 ml), and the mixture was stirred for 48 h at room temperature, The reaction mixture was poured into 0.1 M HCl. The organic layer was washed with water, saturated NaHCO 3 and brine, dried over Na 2 SO 4, and concentrated. The residue was purified by chromatography on silica gel (CHCl 3 : MeOH, 200:1 to 50:1 v/v). The analytical data for methyl pseudo[1]catenane 1 and gemini-catenanes 2 are listed below. pseudo[1]catenane 1a: White solid; 51% yield; m.p. = 290 292 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 6.97 (s, 2H), 6.87 (s, 2H), 6.84 (s, 4H), 6.80 (s, 2H), 5.85 (bs, 2H), 4.68, 4.48 (ABq, 4H, J = 16.4 Hz), 3.74 3.77 (m, 34H), 3.02 (bs, 2H), 2.80 (bs, 2H), 0.58 0.72 (m, 2H), 0.29 0.44 (m, 2H), 0.79 to 0.76 (m, 4H), 1.34 to 1.25 (m, 2H), 1.48 to 1.37 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.7, 150.8, 150.2, 150.1, 148.6, 129.1, 128.5, 128.0, 127.9, 127.8, 114.2, 113.4, 113.0, 112.3, 67.4, 56.1, 55.9, 55.2, 55.0, 39.3, 29.2, 28.9, 28.8, 28.5, 26.7, 26.1; 44

IR (KBr) ν max 3415, 2934, 2853, 2829, 1681, 1496, 1464, 1398, 1212, 1046, 928, 880, 856, 774, 727, 704, 646 cm -1 ; HRMS (m/z): [M + H] + calc. for C 55 H 67 N 2 O 12, 947.4694; found, 947.4670. pseudo[1]catenane 1b: White solid; 60% yield; m.p. > 360 ºC (carbonization); TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 7.19 (s, 2H), 6.99 (s, 2H), 6.88 (s, 2H), 6.86 (s, 2H), 6.80 (s, 2H), 4.79, 4.52 (ABq, 4H, J = 16.8 Hz), 3.68 3.85 (m, 34H), 1.26(s, 4H), 0.58(bs, 2H), 1.93(s, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ 167.1, 150.6, 150.1, 149.4, 149.0, 129.9, 129.4, 128.8, 128.1, 125.0, 115.9, 113.3, 113.2, 112.8, 66.4, 55.6, 55.4, 55.2, 55.0, 37.9, 29.4, 29.0, 28.4, 25.0; IR (KBr) ν max 3407, 2937, 2829, 1666, 1497, 1467, 1450, 1399, 1213, 1045, 882, 858,773, 706, 648 cm -1 ; HRMS (m/z): [M + H] + calc. for C 50 H 57 N 2 O 12, 877.3912; found, 877.3900. pseudo[1]catenane 1c: White solid; 86% yield; m.p. > 360 ºC (carbonization); TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 6.98 (s, 2H), 6.96 (s, 2H), 6.89 (s, 2H), 6.87 (s, 2H), 6.85 (s, 2H), 4.74, 4.61 (ABq, 4H, J = 16.4 Hz), 4.57 (d, 2H, J = 10.4 Hz), 3.72 3.83 (m, 34H), 2.67 (t, 2H, J = 11.6 Hz), 0.66 (t, 2H, J = 11.6 Hz), 1.94 (dt, 2H, J = 4.4 Hz, J = 13.2 Hz), 2.20 (q, 2H, J = 13.2 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 166.4, 150.8, 150.4, 150.2, 149.4, 147.8, 129.5, 128.9, 128.5, 128.5, 125.9, 114.2, 113.2, 112.8, 112.8, 112.2, 66.7, 55.5, 55.4, 55.3, 55.2, 36.7, 29.2, 28.9, 25.3; IR (KBr) ν max 3410, 2991, 2937, 2830, 1677, 1529, 1497, 1464, 1399, 1213, 1045, 929, 881, 857, 773, 729, 705, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 51 H 59 N 2 O 12, 891.4068; found, 45

891.4060. pseudo[1]catenane 1d: White solid; 96% yield; m.p. > 360 ºC (carbonization); TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.65; 1 H NMR (400 MHz, CDCl 3 ) δ 7.01 (s, 2H), 6.92 (s, 2H), 6.91 (s, 2H), 6.85 (s, 2H), 6.70 (s, 2H), 5.98 (d, 2H, J =9.4 Hz), 4.67, 4.66 (ABq, 4H, J = 16.4 Hz), 3.70 3.82 (m, 34H), 3.51 (t, 2H, J = 11.6 Hz), 1.72 (q, 2H, J = 12.4 Hz), 0.20 to 0.14 (m, 2H), 0.74 (q, 2H, J = 12.6 Hz), 2.37 to 2.25 (m, 2H), 2.49 (q, 2H, J = 12.4 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 167.4, 151.0, 150.4, 150.1, 149.6, 147.4, 129.7, 128.6, 128.3, 127.7, 126.8, 113.6, 133.5, 112.7, 112.7, 111.7, 66.7, 55.9, 55.3, 55.2, 36.9, 29.6, 29.4, 29.3, 28.0, 23.3; IR (KBr) ν max 3411, 2939, 2853, 2830, 1685, 1529, 1496, 1463, 1399, 1213, 1046, 928, 880, 857, 774, 733, 704, 646 cm -1 ; HRMS (m/z): [M + H] + calc. for C 53 H 63 N 2 O 12, 919.4381; found, 919.4369. pseudo[1]catenane 1e: White solid; 32% yield; m.p. = 248 250 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.54; 1 H NMR (400 MHz, CDCl 3 ) δ 6.94 (s, 2H), 6.93 (s, 2H), 6.87 (s, 2H), 6.84 (s, 2H), 6.78 (s, 2H), 5.91 (bs, 2H), 4.64, 4.45 (ABq, 4H, J = 16.4 Hz), 3.66 3.76 (m, 34H), 2.96 (bs, 2H), 2.54 (bs, 2H), 0.40 (bs, 4H), 0.22 (bs, 2H), 0.04 (bs, 6H), 0.43 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.2, 150.7, 150.2, 150.1, 149.6, 130.2, 129.2, 128.0, 127.8, 127.1, 116.4, 113.7, 113.2, 112.9, 112.8, 69.6, 55.8, 55.6, 55.2, 55.0, 37.9, 29.3, 28.9, 28.8, 28.6, 28.2, 25.8, 24.2; IR (KBr) ν max 3414, 2932, 2852, 2829, 1680, 1497, 1464, 1398, 1212, 1047, 928, 879, 855, 774, 729, 704, 648 cm -1 ; HRMS (m/z): [M + H] + 46

calc. for C 57 H 71 N 2 O 12, 975.5007; found, 975.5003. pseudo[1]catenane 1f: White solid; 23% yield; m.p. = 178 180 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.54; 1 H NMR (400 MHz, CDCl 3 ) δ 6.98 (bs, 2H), 6.94 (s, 2H), 6.86 (s, 4H), 6.74 (bs, 2H), 5.94 (bs, 2H), 4.48 (s, 4H), 3.66 3.76 (m, 36H), 3.16 (bs, 2H), 2.33 (bs, 2H), 1.26 (s, 2H), 0.96 (bs, 4H), 0.64 (bs, 4H), 0.00 0.20 (bs, 6H), 0.39 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 167.8, 150.7, 150.2, 150.1, 149.0, 129.8, 129.4, 128.1, 127.7, 126.8, 116.5, 113.6, 113.4, 113.0, 112.7, 68.8, 56.0, 55.2, 55.0, 37.9, 29.6, 29.3, 29.1, 28.6, 27.2, 26.6, 23.7; IR (KBr) ν max 3410, 2931, 2852, 2829, 1681, 1498, 1465, 1399, 1212, 1047, 928, 879, 855, 774, 730, 704, 648 cm -1 ; HRMS (m/z): [M + H] + calc. for C 59 H 75 N 2 O 12, 1003.5320; found, 1003.5314. Gemini-catenane 2a: White solid; 9% yield; m.p. = 294 296 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.57; 1 H NMR (400 MHz, CDCl 3 ) δ 6.86 6.97 (m, 20H), 6.73 (s, 2H), 5.08 (bs, 2H), 4.62, 4.55 (ABq, 4H, J = 16.4 Hz), 4.47, 4.39 (ABq, 4H, J = 16.4 Hz), 3.77 3.98 (m, 68H), 3.33 (bs, 2H), 3.23 (bs, 2H), 2.41 (bs, 2H), 1.69 (bs, 2H), 1.27 (bs, 4H), 0.62 (bs, 4H), 0.04 (bs, 4H), 1.01 (bs, 6H), 1.28 (bs, 2H), 1.97 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.7, 167.1, 150.9, 150.4, 150.2, 150.1, 149.1, 148.9, 130.6, 129.3, 129.1, 128.3, 128.2, 127.9, 127.7, 127.3, 126.8, 117.7, 114.3, 113.9, 113.7, 113.2, 112.9, 112.7, 112.6, 70.0, 66.3, 56.1, 55.6, 55.5, 55.4, 55.3, 55.2, 55.1, 39.4, 38.2, 47

30.4, 30.3, 30.2, 29.3, 29.0, 28.8, 28.7, 28.5, 27.2, 26.0, 24.0; IR (KBr) ν max 3412, 2933, 2853, 2829, 1680, 1533, 1498, 1465, 1399, 1212, 1047, 929, 880, 855, 774, 727, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 110 H 133 N 4 O 24, 1894.9343; found, 1894.9295. Gemini-catenane 2 a: White solid; 19% yield; m.p. = 260 262 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.52; 1 H NMR (400 MHz, CDCl 3 ) δ 6.84 7.05 (m, 20H), 6.84 (s, 2H), 5.23 (bs, 2H), 4.62 (s, 4H), 4.51 (s, 4H), 3.74 3.82 (m, 68H), 3.36 (bs, 4H), 2.67 (bs, 2H), 1.71 (bs, 2H), 1.47 (bs, 4H), 0.78 (bs, 4H), 0.08 (bs, 2H), 0.15 (bs, 2H), 1.09 (bs, 2H), 1.21 (bs, 2H), 1.45 (bs, 2H), 1.55 (bs, 2H), 2.33 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.45, 166.87, 150.8, 150.4, 150.2, 150.1, 150.1, 150.00, 148.4, 148.1, 129.6, 129.1, 128.9, 128.3, 127.9, 127.9, 127.7, 127.4, 127.2, 127.0, 115.9, 114.3, 113.4, 113.2, 112.8, 112.6, 112.4, 112.1, 68.1, 66.8, 55.7, 55.6, 55.4, 55.2, 55.1, 55.0, 39.7, 37.7, 30.4, 30.1, 29.1, 29.0, 28.7, 28.5, 28.2, 27.3, 26.6, 23.3; IR (KBr) ν max 3411, 2935, 2854, 2829, 1680, 1532, 1498, 1465, 1398, 1212, 1046, 928, 880, 855, 774, 731, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 110 H 133 N 4 O 24, 1894.9343; found, 1894.9445. Gemini-catenane 2e: White solid; 12% yield; m.p. = 296 298 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.49; 1 H NMR (400 MHz, CDCl 3 ) δ 6.84 6.96 (m, 20H), 6.67 (s, 2H), 5.04(bs, 2H), 4.61, 4.57 (ABq, 4H, J = 16.4 Hz), 4.52, 4.44 (ABq, 4H, J = 16.4 Hz), 3.73 3.89 (m, 68H), 3.44 3.51 (m, 2H), 48

3.36 3.40 (m, 2H), 2.43 (bs, 2H), 1.63 1.67 (m, 6H), 1.35 (bs, 4H), 1.18(bs, 4H), 0.76(bs, 4H), 0.08 (bs, 4H), 1.28 (bs, 8H), 2.29 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.6, 167.1, 150.9, 150.4, 150.3, 150.1, 150.1, 148.6, 130.1, 129.3, 128.9, 128.3, 128.1, 127.8, 127.5, 127.4, 127.3, 126.8, 116.51, 114.3, 113.4, 113.3, 113.2, 112.9, 112.7, 112.5, 68.6, 66.0, 55.7, 55.6, 55.5, 55.3, 55.2, 38.9, 38.1, 30.7, 30.2, 30.1, 29.8, 29.3, 28.8, 28.6, 27.2, 26.2, 23.8, 22.6; IR (KBr) ν max 3411, 2933, 2853, 2829, 1679, 1532, 1499, 1465, 1399, 1212, 1047, 928, 880, 855, 774, 733, 704, 648 cm -1 ; HRMS (m/z): [M + H] + calc. for C 114 H 140 N 4 O 24, 1950.9969; found, 1950.9964. Gemini-catenane 2 e: White solid; 17% yield; m.p. = 270 272 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.45; 1 H NMR (400 MHz, CDCl 3 ) δ 6.84 6.98 (m, 20H), 6.63 (s, 2H), 4.95 (s, 2H), 4.59 (s, 4H), 4.46 (s, 4H), 3.73 3.92 (m, 68H), 3.45 3.51 (m, 2H), 3.34 3.40 (m, 2H), 2.30 (bs, 2H), 1.63 1.66 (m, 6H), 1.36 (bs, 4H), 1.20 (bs, 4H), 0.80 (bs, 4H), 0.01 (bs, 4H), 1.19 (bs, 4H), 1.37 (bs, 2H), 1.51 (bs, 2H), 2.32 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.4, 167.0, 150.9, 150.3, 150.2, 150.1, 150.0, 148.4, 148.3, 129.7, 129.3, 129.0, 128.3, 128.3, 128.0, 128.0, 127.7, 127.4, 127.1, 126.5, 116.07, 113.9, 113.4, 113.2, 113.1, 112.8, 112.7, 112.5, 68.4, 66.0, 56.0, 55.5, 55.4, 55.3, 55.1, 55.1, 38.8, 38.2, 30.9, 30.4, 30.0, 29.9, 29.7, 29.3, 28.8, 28.6, 27.3, 26.0, 23.7; IR (KBr) ν max 3411, 2932, 2853, 2829, 1679, 1532, 1498, 1465, 1449, 1399, 1212, 1047, 928, 880, 855, 774, 729, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 114 H 140 N 4 O 24, 1950.9969; found, 1951.0004. 49

Gemini-catenane 2f: White solid; 14% yield; m.p. = 238 252 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.50; 1 H NMR (400 MHz, CDCl 3 ) δ 6.83 6.98 (m, 20H), 6.43 (s, 2H), 5.00 (bs, 2H), 4.42(s, 4H), 4.58(s, 4H), 3.66 3.92 (m, 68H), 3.53 3.57 (m, 2H), 3.35 3.38 (m, 2H), 2.36(bs, 2H),1.79 1.82 (m, 4H), 1.64 1.66 (m, 4H), 1.40 (bs, 6H), 1.29 (bs, 4H), 1.14 (bs, 4H), 0.76 (bs, 4H), 0.09 (bs, 4H), 1.30 (bs, 6H), 1.48 (bs, 2H), 2.34 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.3, 167.0, 150.9, 150.3, 150.2, 150.2, 150.1, 149.9, 148.4, 148.1, 129.4, 129.3, 129.1, 128.3, 128.0, 127.9, 127.6, 127.45, 127.0, 126.5, 116.0, 113.8, 113.4, 113.1, 113.0, 112.8, 112.6, 112.4, 68.3, 66.9, 55.8, 55.4, 55.3, 55.27, 55.1, 55.0, 39.1, 38.1, 30.9, 30.8, 30.2, 30.0, 29.3, 29.2, 28.7, 26.8, 26.1, 23.7; IR (KBr) ν max 3412, 2931, 2853, 2830, 1680, 1530 1499, 1465, 1399, 1212, 1047, 929, 880, 855, 774, 732, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 118 H 149 N 4 O 24, 2007.0595; found, 2007.0586. Gemini-catenane 2 f: White solid; 14% yield; m.p. = 192 222 ºC; TLC (CHCl 3 : MeOH, 30:1 v/v): R f = 0.45; 1 H NMR (400 MHz, CDCl 3 ) δ 6.83 6.98 (m, 20H), 6.60 (s, 2H), 4.99 (s, 2H), 4.60, 4.56 (ABq, 4H, J = 16.4 Hz), 4.45, 4.39 (ABq, 4H, J = 16.4 Hz), 3.73 3.91 (m, 68H), 3.28 3.33 (m, 2H), 2.36 (bs, 2H), 1.83 (bs, 4H), 1.66 (bs, 4H), 1.41 (bs, 8H), 1.28 (bs, 4H), 1.15 (bs, 4H), 0.79 (bs, 4H), 0.05 (bs, 4H), 1.24 (bs, 4H), 1.38 (bs, 2H), 1.53 (bs, 2H), 2.36 (bs, 4H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.3, 166.9, 150.9, 150.4, 150.3, 150.1, 150.0, 148.6, 148.2, 129.8, 129.3, 129.0, 128.3, 128.2, 127.9, 127.7, 127.5, 127.1, 126.5, 116.7, 113.9, 113.4, 113.1, 113.0, 112.8, 112.8, 112.6, 112.5, 50

68.8, 66.9, 55.7, 55.4, 55.3, 55.2, 55.1, 55.1, 39.2, 38.1, 31.0, 30.9, 30.5, 30.3, 30.0, 29.5, 29.3, 28.8, 28.7, 28.6, 27.0, 26.1, 23.7; IR (KBr) ν max 3411, 2931, 2853, 2829, 1680, 1530, 1499, 1465, 1399, 1213, 1047, 928, 880, 855, 774, 730, 704, 647 cm -1 ; HRMS (m/z): [M + H] + calc. for C 118 H 149 N 4 O 24, 2007.0595; found, 2007.0630. DFT calculations of gemini-catenanes 2a and 2 a Conformational search was carried out for the gemini-catenane molecule and two most stable isomers, 2a and 2 a, were located. Geometry optimization and frequency analysis for 2a and 2 a were performed using the B3LYP/6-31G(d) method. M062X-D3 dispersion corrections 1 4 were calculated using the DFTD3 program 5 and added to the B3LYP Gibbs free energies. All calculations were carried out with Gaussian 09 6. Figures of three-dimensional molecular structures were prepared using CYLView 7. 2a 2 a G = 0.8 kcal/mol G = 0.0 kcal/mol Geometries and relative Gibbs free energies of 2a and 2 a. Energies are relative to 2 a. Supplementary References: 1 Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J.Chem. Phys. 132, 154104 (2010). 2 Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463 1473 (2004). 3 Tkatchenko, A. & Scheffler, M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009). 51

4 Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 241 (2008). 5 Grimme, S. DFTD3, V2.0 Rev 1; University Münster: Münster, Germany, 2010. 6 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima,T., Honda, Y., Kitao,O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken,V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian 09, revision B.01., Gaussian, Inc. Wallingford, CT; 2010. 7 Legault, C. Y. CYLview, 1.0b; Universitéde Sherbrooke: Sherbrooke, Québec, Canada, 2009 (http://www.cylview.org). 48