Lecture 5: Numerical Integration

Σχετικά έγγραφα
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions_3. 1 Exercise Exercise January 26, 2017

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Oscillatory integrals

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Math221: HW# 1 solutions

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Some definite integrals connected with Gauss s sums

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Second Order Partial Differential Equations

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Example Sheet 3 Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

INTEGRAL INEQUALITY REGARDING r-convex AND

C.S. 430 Assignment 6, Sample Solutions

Concrete Mathematics Exercises from 30 September 2016

University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and Determinants

Other Test Constructions: Likelihood Ratio & Bayes Tests

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

EE512: Error Control Coding

Solutions to Exercise Sheet 5

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Lecture 21: Scattering and FGR

Finite Field Problems: Solutions

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

PARTIAL NOTES for 6.1 Trigonometric Identities

Solution Series 9. i=1 x i and i=1 x i.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Electromagnetic Waves I

NUMERICAL EVALUATION OF HIGHLY OSCILLATORY INTERGRALS WITH WEAK SINGULARITIES

The Simply Typed Lambda Calculus

Uniform Convergence of Fourier Series Michael Taylor

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Solve the difference equation

ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

D Alembert s Solution to the Wave Equation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

SPECIAL FUNCTIONS and POLYNOMIALS

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Lecture 26: Circular domains

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Srednicki Chapter 55

Parametrized Surfaces

Section 8.3 Trigonometric Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 9.2 Polar Equations and Graphs

( ) 2 and compare to M.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

4.6 Autoregressive Moving Average Model ARMA(1,1)

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

2 Composition. Invertible Mappings

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

Trigonometric Formula Sheet

F19MC2 Solutions 9 Complex Analysis

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Notes on the Open Economy

ST5224: Advanced Statistical Theory II

Areas and Lengths in Polar Coordinates

Finite difference method for 2-D heat equation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.


Section 7.6 Double and Half Angle Formulas

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Differential equations

Differentiation exercise show differential equation

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

1. For each of the following power series, find the interval of convergence and the radius of convergence:

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Approximation of distance between locations on earth given by latitude and longitude

Αριθµητική Ολοκλήρωση

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Computing the Macdonald function for complex orders

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Transcript:

Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion, wic re primrily bsed on integrting interpolting polynomils nd wic led to te so-clled Newton-Cotes Integrtion Formule. We derive te clssic integrtion scemes suc s te trpezium rule nd Simpson s rule nd give teir error estimtes. We demonstrte ow tese error estimtes cn be used to obtin improved estimtes of te integrl vi process clled Ricrdson Extrpoltion. In fct, repeted extrpoltion using te trpezium rule yields Simpson s rule nd ll te iger order Newton-Cotes Formule Key Concepts: Numericl Integrtion, Newton-Cotes Formule, Trpezium Rule, Simpson s Rule, Ricrdson Extrpoltion. 5 Numericl Integrtion - Newton-Cotes Formule 5.1 Integrtion derived from integrting polynomil interpolnts f 1 f f N f Bsic Ide: Integrte polynomil interpolnts to pproximte integrls. x = x 1 x x N = b Outline: fx = p n x + f N+1 ξ N + 1! = = N k= N k= N N x x j ξ, x N p N x = f k l k x j= p N x dx + f N+1 ξ N + 1! f k l k x dx + f N+1 ξ N + 1! f k w k + f N+1 ξ N + 1! N x x j dx j= N x x j dx j= N x x j dx j= k= Closed Formule Trpezium Rule Adptive Integrtion Ricrdson Extrpoltion nd Simpson s Rule Singulr integrls nd open formule Midpoint Rule Subtrcting out te singulrity Guss-Legendre qudrture

Te Trpezium Rule: f p = E p f = 1 + p f 1 + p f fx dx x = + p, 1 dx = dp f + p f dp ] 1 = [f p + p f [ = f + 1 ] f 1 f = [f + f 1 ] Trpezoidl Rule x 1 Error Term: fx = p 1 x + f ξ x x x 1! [f + f 1 ] + f ξ x x x 1 dx = [f + f 1 ] + f ξ = [f + f 1 ] + f ξ = [f + f 1 ] + f ξ 1 1 pp 1 dp p pdp [ p p ] 1 x = + p x = p x x 1 = + p x 1 = p 1 1 1 = = 1 6 6 [f + f 1 ] f ξ 1

Interpoltion Composite Rule: Assume uniform mes f + f 1 + f 1 + f + + f N 1 + f N { N f ξ k ξ 1 ξ ξ x 1 x x N = = b 1 ] { [f + f 1 + + f N 1 + f N f b f + 4 f b f 1 7 [f + f 1 + + f N 1 + f N ] 1 b f ξ ξ, b by MV Teorem. Note: 1 Trpezoidl Rule is excellent for pproximting periodic functions Eg. If fx is periodic on [, b] i.e. f = fb ten Recll te DFT 1 π π Accurcy for periodic functions: e ikx fx dx 1 π N 1 N 1 π N j= k= f k e ik π N j f j = f k If If f = f b ten f = f b ten N 1 f j + O 4 j= N 1 f j + O 6 j=. If f k+1 = f k+1 b k =, 1,..., M ten Tis is were te spectrl ccurcy comes from. N 1 f j + O M+1 j=

4 Adptive Integrtion: Ide: Recursively refine te smpling of te integrnd until te difference between successive pproximte integrls is less tn some tolernce. N = 1 N = N = 1 1 1 4 5 + + + + k + 1 + + + k = + 1 k 1 1 = + k 1 1 = 1 + k 1 I 1 = f b 1 + f = f 1 + f i = N = 1 = b /i = b x = + [ ] b : : b =. I = 1 b b {I 1 + f = f 1 + f + f b = [f 1 + f + f ] 4 i = = = b / x = + [ ] b b : : b =, 4 4 I = 1 { I + f 4 + f 5 = 1 { b b [f 1 + f + f ] + f 4 + f 5 4 { b 4 = In generl : I k = 1 I k 1 + j k = 1 + k [f 1 + f + f 4 + f 5 + f ] b k j k + k j=j k +1 f j Trpezoidl Approximtion: Exmple: N 1 x dx 1 sin πx dx 1 sin πx dx.6559.5. 4.6485.6559.5 8.6581.6841744.5 16.66581.645715.5.66555894.66186.5 64.666781.664919.5. Exct.66666666 6.6661977.5 O? O O m

Interpoltion 5 Ricrdson Extrpoltion: Exploiting te error estimte to get n improved pproximtion: I I I 1 Becuse we ve n error estimte for te Trpezium rule of te form: I = I + c + c 4 4 I4 = I + c 16 + c 4 56 4 I = I + c 4 + c 4 16 4 eliminte te c nd get n improved estimte: Exmple: We cn continue wit tis process using te recursion 1 4I I = I 1c 4 4 4I I = I 4c 4 4 I = 1 sin πx dx I1/4 =.6559597 I1/8 =.68417465157 4I1/8 I1/4 =.67545.6661977 s = I s s = 1,..., k m s = m 1 s+1 + nd were expnsion for te error is of te form m 1 s+1 m 1 s s / s+m 1 γ 1 I = I + N C γk γ k s = 1,..., k m + 1 m =,..., k Note: Ricrdson extrpoltion combined wit dptive integrtion is known s Romberg integrtion.

6 Repeted Ricrd Extrpoltion: Successive Trpezoidl Approximtions to 1 sinπ x dx.7 Extrpoltion 1: 1 = I 1...666666666666667.5.5 I.6.5.4...1 Exct vlue =.66619776758 Extrpolted =.66666666666667 Trpezium =.5..4.6.8 1 Successive Trpezoidl Approximtions to.7 Extrpoltion : 1 = I.4 1...666666666666667.6616481771..5.5.6871187457698..5.65595974.1 I.6.5 Exct vlue =.66619776758 Extrpolted =.6616481771 Trpezium =.6559597..4.6.8 Successive Trpezoidl Approximtions to 1 sinπ x dx.7.6.5 I.4...1 Exct vlue =.66619776758 Extrpolted =.6661589898 Trpezium =.68417465157 Extrpoltion :..4.6.8 1 1 = I 1...666666666666667.6616481771.66615898979.5.5.6871187457698.66614478918.5.65595974.6675451817.15.684174651571

Interpoltion 7 Simpson s Rule: x 1 x Recll p = x x = + p dx = dp x E p f = 1 + p f = 1 + p + E p f 1 + p + pp 1 +... f! pp 1 f for polynomil of degree. f + p f + 1 p p f dp = {pf + p f + 1 p p { = f + f 1 f + 1 8 { = f 1 + 1 f f 1 + 1 f f f f 1 + f x {f + 4f 1 + f Simpson s Rule Requires intervls. Error involved: x x x x x 1 x x dx = x f ξ P x dx + x x x 1 x x dx! χ = x x 1 x = x 1 + χ x x χ + χχ dχ = {f + 4f 1 + f + x χ χ dχ =. f[, x 1, x, x]x x x 1 x x dx

8 Now x f[, x 1, x, x] f[, x 1, x, x ] = x x f[, x 1, x, x, x] x x f[, x 1, x, x]x x x 1 x x dx = + x fxdx = S + x f[, x 1, x, x, x]x x x 1 x x x x dx f 4 ξ 4! x x x x 1 x x dx = {f + 4f 1 + f x f[, x 1, x, x ]x x x 1 x x dx x x x 1 x x x x dx coose x = x 1 f 4 ξ 5 9 χ χ dχ = 5 5 5 6 1 = 5 = 45 15 15 Composite Rule: fxdx = [ fx + 4fx 1 + fx + 4fx +... + 4fx N 1 + fx N ] 5 N/ f 4 ξ k 9 ξ 1 ξ N/ fxdx = S 4 N/ 18 f 4 ξ k f 4 ξ k = S 4 f b f 18 = S 4 18 b f 4 ξ f 4 x dx = f b f

Interpoltion 9 Ricrd Extrpoltion leds to iger order Newton-Cotes formule: Net interprettion of te first extrpoltion formul for te trpezium rule: I = 4 I 1 I + O4 1 N 1 N I = 4 {f + f 1 + + f N 1 + f N 1 {f + f + + f N + f N = {f + 4f 1 + f + + f N + 4f N 1 + f N just Simpson s Rule. Note: If we repet tis process we obtin te iger order Newton-Cotes Formule. Closed Newton-Cotes Formule: x x x 4 f + f 1 1 f ξ Trpezium rule ξ, x 1 f + 4f 1 + f 5 9 f 4 ξ Simpson s rule ξ, x 8 f + f 1 + f + f 5 8 f 4 ξ ξ, x 45 7f + f 1 + 1f + f + 7f 4 87 945 f 6 ξ ξ x 1, x 4