RMT Tick RMT. Application of the RMT-test on Real Data: Hash Function and Tick Data of Stock Prices

Σχετικά έγγραφα
Price Predictions Based on Evolvable Strategies, Principal Component Analysis, and Randomness of Data Strings

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

; +302 ; +313; +320,.

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Stabilization of stock price prediction by cross entropy optimization

ST5224: Advanced Statistical Theory II

[1] P Q. Fig. 3.1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2 Composition. Invertible Mappings

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Matrices and Determinants

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Probability and Random Processes (Part II)

Buried Markov Model Pairwise

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Simplex Crossover for Real-coded Genetic Algolithms

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΕΛΕΓΚΤΙΚΗΣ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Statistical Inference I Locally most powerful tests

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ "

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

IMES DISCUSSION PAPER SERIES

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

CRASH COURSE IN PRECALCULUS

Solution Series 9. i=1 x i and i=1 x i.

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Exercises to Statistics of Material Fatigue No. 5

Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Biostatistics for Health Sciences Review Sheet

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΕΤΑΙΡΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΥΘΥΝΗ ΣΤΗΝ ΝΑΥΤΙΛΙΑΚΗ ΒΙΟΜΗΧΑΜΙΑ


«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Assalamu `alaikum wr. wb.

ΕΠΑΝΑΛΗΨΗ ΨΕΥΔΟΛΕΞΕΩΝ ΑΠΟ ΠΑΙΔΙΑ ΜΕ ΕΙΔΙΚΗ ΓΛΩΣΣΙΚΗ ΔΙΑΤΑΡΑΧΗ ΚΑΙ ΠΑΙΔΙΑ ΤΥΠΙΚΗΣ ΑΝΑΠΤΥΞΗΣ

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

, -.

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Tridiagonal matrices. Gérard MEURANT. October, 2008

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Medium Data on Big Data

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

FORMULAS FOR STATISTICS 1

Supplementary Appendix

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Μηχανική Μάθηση Hypothesis Testing

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

- S P E C I A L R E P O R T - EMPLOYMENT. -January Source: Cyprus Statistical Service

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Areas and Lengths in Polar Coordinates

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

AKAΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Η ΧΡΗΣΗ ΒΙΟΚΑΥΣΙΜΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ-ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΠΡΟΟΠΤΙΚΕΣ

Areas and Lengths in Polar Coordinates

Elements of Information Theory

4.6 Autoregressive Moving Average Model ARMA(1,1)

the total number of electrons passing through the lamp.

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Μεταπτυχιακή διατριβή

Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Approximation of distance between locations on earth given by latitude and longitude

Test Data Management in Practice

Homework 3 Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme


ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Reminders: linear functions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Transcript:

RMT Tick 1,a) 1 1,b) RMT 2 SHA-1 MD5 RMT SHA-1 2007 2009 TOPIX500 2010 2011 RMT Application of the RMT-test on Real Data: Hash Function and Tick Data of Stock Prices Xin Yang 1,a) Yuta Mikamori 1 Mieko Tanaka-Yamawaki 1,b) Abstract: The RMT-test, that we have proposed earlier as a tool to measure the randomness of long sequences, is applicable on various data types, integer or real, independent of the length of sequences. We have shown its effectiveness by comparing the degrees of randomness among pseudo-random generators as well as physical random generators. From the practical point of view, however, the advantage of this RMT-test resides in its applicability on real-world data, whose randomness level is far below the reach of the conventional randomness tests, such as NIST or JIS. In this paper, we present our result on applying the RMT-test on two examples: the choice of hash functions and the stock prices, assuming that the high randomness of the sequences indicates the high security level in both cases. In the first example, we compare two popular hash functions, the SHA-1 and the older MD5. The result of the RMT-test shows that the randomness of the output sequences of SHA-1 is indeed higher than the output of MD5. In the second example, we compare the performance of various stock prices in relation to their randomness and show that the stock prices of higher randomness perform better than the stocks of lower randomness, for the stocks in TOPIX500 in the year 2010 and 2011 based on their randomness in the previous three years, 2007-2009. Keywords: Random matrix theory, RMT-test, Randomness, Hash value, Safetiness of Stocks 1 Tottori University, Graduate School of Engineering, Department of Information and Electronics a) yx0709@ike.tottori-u.ac.jp b) mieko@ike.tottori-u.ac.jp 1. c 2012 Information Processing Society of Japan 1

1 Fig. 1 RMT Example of the qualitative evaluation of the RMT-test (left: passed, right: failed) PLAB ENT NIST-SP 800-22 DIEHARD [1]-[4] RMT [5] RMT 2. RMT 2.1 RMT Plerou [6][7][8] L N Random Matrix TheoryRMT N Q = L/N P RMT (λ) = Q (λ+ λ)(λ λ ) (1) 2πλ λ ± = ( ) 2 1 1 ± (2) Q (1) RMT 1 RMT 1 2.2 RMT RMT k m k = 1 N N λ k i (3) i=1 (1) µ k = E(λ k ) = λ+ λ λ k P RMT (λ)dλ (4) error k = m k /µ k 1 (5) N RMT k (trace) 1/N k m k = 1 N N (C k ) i,i = 1 N i=1 N λ k i (6) i=1 [9] k 2 LCG MT 3 5 N = 500 Q = 3 6L = 1500 3000500 5 k = 5 k = 6 75 6 3% 5 [10] N = 200300 400Q = 310 6 α = 0.05 N = 200L = 600Q = 36 5% RMT k = 6x = 56 5% c 2012 Information Processing Society of Japan 2

1 MD5 SHA-1 RMT 10 () Table 1 Quantitative evaluation of the output sequences from MD5 and SHA-1:The average(s.d.) over 10 samples 2 Fig. 2 Relation between a hash function and its hash value RMT 12 N = 100Q = 36 10% 5% N 200L 600 N L= 12 [11] 3. RMT 3.1 2 MD5 SHA-1 RMT 2004 8 SHA-0 RIPEMDMD5 SHA-1 RIPEMD-128 2009 MD5[9] SHA-1[10] MD5 SHA-1 MD5 SHA-1 SHA-1 MD5 MD5 SHA-1 2 12 3750 MD5 3000 SHA1 12 N = 200Q = 3 6 10% 1 MD5 SHA-1 MD5 k = 6 2σ k MD5 SHA-1 2 -.0017(.0030) -.0003(.0016) 3 -.0044(.0078) -.0006(.0039) 4 -.0074(.0139) -.0005(.0069) 5 -.0106(.0211) -.0001(.0106) 6.0137(.0294) -.0011(.0154) 5%SHA-1 MD5 SHA-1 3.2 3.2.1 % (p 1, p 2,..., p L ) r i = ln p i ln p i 1 (7) (r 1, r 2,..., r L 1 ) 7 LCG N = 500L = 1500 3 [λ, λ + ] 3 3 LCG () () Fig. 3 Evaluation of LCG by means of log-return with overlapping (left) and non-overlapping (right) c 2012 Information Processing Society of Japan 3

3 Table 3 TOPIX500 14 14 industrial sectors having high liquidity 1 2002,22**,25**,28**,2914 20 2 3405,3407,40**,41**,42**,44**,46** 40 3 4151,45** 17 4 54**,5541 14 5 4062,4902,60**,65**,66**,67**,68**,69**,7276,77**,8035 54 6 5631,61**,62**,63**,64**,6581,6586,70** 32 7 57**,58** 11 8 3116,6201,6902,6995,7003,7012,72**,73** 26 9 83**,84**,8522,8544 40 10 26**,2730,30**,3382,7453,7532,7649,8028,8184,82**,98**,9983,9989 27 11 27**,7459,80**,9832,9962,9987 17 12 3231,4666,88**,89**,9706 11 13 3626,46**,47**,8056,94**,96**,9766,9984 24 14 95** 13 [12] 2 RMT 6 5% 3.2.2 R=(r 1, r 2,..., r L 1 ) R 1 =(r 1, r 3,..., r L 1 ) R 2 =(r 2, r 4,..., r L 2 ) (L )R 1 R 2 6 R RMT ( 1 ) 2007 2009 TOPIX500 3 TOPIX 33 TOPIX500 500 2 LCG MT ( () ()) Table 2 Errors in RMT-test for the overlapping(left) and nonoverlapping(right) log-return sequences k LCG MT LCG MT 2.1268.1230 -.0013 -.0016 3.3211.3089 -.0039 -.0042 4.5692.5434 -.0072 -.0076 5.8732.8282 -.0112 -.0115 6 1.2416 1.1702 -.0156 -.0159 TOPIX500 1 RMT N L 33 2 14 10 17 14 3 2012 14 4 56 ( 2 ) 3 12 2007 2009 RMT 4 2010 1 4 6988 4568 8053 5 5 3 2 2 100% 40634519 8031 3 2010 1 2 8031 2 c 2012 Information Processing Society of Japan 4

4 Table 4 4 (Q=4) :% Errors in RMT-test for the data length which is the top 4 of each industrial sector () () () 5 6988(1.9) 4568(1.2) 8053(0.9) 4901(3.3) 4503(1.3) 2768(2.6) 4185(3.6) 4502(1.9) 8058(5.6) 4063(7.0) 4519(3.9) 8031(6.8) 2010 1 4 2010 1 Table 5 Purchase all the stock in table 3 on January 4th2010,and calculate the log-return on the end of January 2010 () () () 4901(.032) 4568(1.2) 8053(.052) 6988(.019) 4503(1.3) 8031(-.002) 4185(-.074) 4502(1.9) 2768(-.041) 4063(-.121) 4519(3.9) 8058(-.058) 4 probability Fig. 4 0.0 0.2 0.4 0.6 0.8 1.0 5 10 15 20 time (H) (L) (Q=4) Probability of the profit and loss of stocks which is top 2 in each industrial sector for Q=4 H L 33.3% 1 2 4 4 2010 2011 TOPIX 500 24 H L ( 3 ) Q=4 RMT N N N 5 LCG (2 ) N = 100 N = 50 RMT N = 50Q = 8 N = 100 Q = 2 5 Q Q = 23456 Q = 2 H L Q = 3 H L H L Q = 5 L H Q = 6 L H Q = 4 2 H L 3 6 Q = 3 4 Q = 4 5 Q RMT (Q=2()Q=8()) Fig. 5 Comparison of Q=2 and Q=8 for the same data 3.2.3 2007-2009 3 RMT 2010 1 4 2 H L 2 4 (r) r = 1 n (r 1 + r 2 + r 3 + + r n ) (8) n 2010 2011 2 24 4 H L 6 7 6 7 A B 4. RMT (RMT c 2012 Information Processing Society of Japan 5

Log return 6 Fig. 6 Yen 0.5 0.3 0.1 0.0 0.1 0.2 A 5 10 15 20 time HL 8000 9000 10000 11000 Average Log-return of each month: H: highest randomness, L: lowest randomness) A 5 10 15 20 time H L B NIKKEI B [6] Laloux, L.,Cizeaux, P.,Bouchaud, J., Potters, M.: Noise Dressing of Financial Correlation Matrices,Physical Review L, Vol.83, pp.1467-1470 (1998). [7] Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N. and Stanley, H.E.: Universal and Non-Universal Properties of Cross-Correlations in Financial Times Series,Physical Review L, Vol.83, pp.1471-1474 (1999). [8] Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N. and Stanley, H.E.: Random Matrix Approach to Cross Correlation in Fianancial Data,Physical Review E, Vol.65, no.066126 (2002). [9] RMT NIST MPS2012-MPS-88(15). [10] Vol.2718pp.19-31 (2012). [11] Black, J., Cochran, M. and Highland, T.: A Study of the MD5 Attacks: Insights and Improvements (online), http://www.cs.colorado.edu/ jrblack/papers/md5efull.pdf (2008.07.27). [12] Locktyukhin, M. and Farrel, K.: Improving the Performance of the Secure Hash Algorithm(SHA-1) (online), http://software.intel.com/en-us/articles/improvingthe-performance-of-the-secure-hash-algorithm-1/ (2010.03.29). [13] Tanaka-Yamawaki, M., Yang, X. and Itoi, R.: Moment Approach for Quantitative Evaluation of Randomness Based on RMT Formula, Intelligent Decision Technologies Smart Innovation, Systems and Technologies, Vol.16, pp.423-432 (2012). 7 (2010-2011) Fig. 7 NIKKEI Average chart(2010-2011) ) MD5 SHA-1 SHA-1 MD5 TOPIX 500 14 4 4 [1] Hannes,L.: PLAB a System for Testing Random Numbers, Proceedings of the International Workshop Parallel Numerics 94,pp.89-99(1994). [2] ENT: A Pseudorandom Number Sequence Test Program(online), http://www.fourmilab.ch/random/). [3] NIST: A Statistical Test Suite (online), csrc.nist.gov/groups/st/toolkit/rng/documentationsoftware.html (2010.08.13). [4] Dieharder: A Random Number Test SuiteVersion 3.31.1 (online), http://www.phy.duke.edu/ rgb/general/dieharder.php. [5] RMT Vol.5pp.1-8 (2012). c 2012 Information Processing Society of Japan 6