Supporting information

Σχετικά έγγραφα
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

SUPPLEMENTARY MATERIAL

Supporting Information

The Free Internet Journal for Organic Chemistry

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information for

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Divergent synthesis of various iminocyclitols from D-ribose

Electronic Supplementary Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information. Experimental section

3018 Σύνθεση του 3-φαινυλοβενζοϊκού οξέος από 3-ιωδο βενζοϊκό οξύ

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

SUPPORTING INFORMATION

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Available online at

Supporting Information. Experimental section

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Aminofluorination of Fluorinated Alkenes

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Supporting Information

Supplementary information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Electronic Supplementary Information

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Supporting Information

Supporting Information. Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4-

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Supporting Information

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Supporting Information

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Selective mono reduction of bisphosphine

Electronic Supplementary information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

SI1. Supporting Information. Synthesis and pharmacological evaluation of conformationally restricted -opioid receptor agonists

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information

Available online at shd.org.rs/jscs/

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting information

Available online at shd.org.rs/jscs/

Supporting information

Supporting Information for

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

SUPPORTING INFORMATION

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supplementary Information for

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Transcript:

Supporting information Synthesis and biological investigation of oxazole hydroxamates as highly selective histone deacetylase 6 (HDAC6) inhibitors Johanna Senger, Jelena Melesina, Martin Marek, Christophe Romier, Ina Oehme, Olaf Witt, Wolfgang Sippl and Manfred Jung *, Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck- Straße 4, 06120 Halle (Saale), Germany Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 rue Laurent Fries, 67404 Illkirch Cedex, France Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany * email: manfred.jung@pharmazie.uni-freiburg.de Contents: S2-S10: additional synthetic procedures and analytical data S11: Figure S1. Western blots with BE(2)-C cells S12: Figure S2. Copies of 1 H- and 13 C-NMR-spectra of compound 4g S13: References S1

Characterization data: Ethyl 2-(4-bromophenyl)-1,3-thiazole-4-carboxylate (2b). 432 mg (2 mmol) 4-bromothiobenzamide and 301 µl (2.4 mmol) ethyl bromopyruvate were used according to method A. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.59 (s, 1H, 5-H), 7.94-7.92 (m, 2H, 2 -,6 -H), 7.75-7.72 (m, 2H, 3 -,5 -H), 4.36-4.31 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.34-1.31 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 167.0 (2-C), 161.1 (COOEt), 147.4 (4-C), 132.8 (2 -,6 -C), 131.9 (4 -C), 130.1 (5-C), 128.8 (3 -,5 -C), 124.7 (1 -C), 61.5 (O-CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-benzyl-1,3-thiazole-4-carboxylate (2c). 530 mg (3.5 mmol) 2-phenyl-thioacetamide and 527 µl (4.2 mmol) ethyl bromopyruvate were used according to method A. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.37 (s, 1H, 5-H), 7.38-7.33 (m, 4H, 2 -,3-5 -,6 -H), 7.31-7.26 (m, 1H, 4 -H), 4.37 (s, 2H, CH 2 ), 4.31-4.26 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.31-1.26 (t, 3H, O-CH 2 - CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 171.3 (2-C), 161.2 (COOEt), 146.2 (4-C), 138.2 (1 - C), 129.7 (5-C), 192.4 (2 -,6 -C), 129.2 (3 -,5 -C), 127.5 (4 -C), 38.9 (CH 2 ), 61.5 (O-CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(diphenylmethyl)-1,3-thiazole-4-carboxylate (2d). 986 mg (4.3 mmol) 2,2-diphenylthioacetamide and 648 µl (5.2 mmol) ethyl bromopyruvate were used according to method A. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.43 (s, 1H, 5-H), 7.38-7.34 (m, 4H, 2x2 -,6 -H), 7.31-7.26 (m, 6H, 2x3 -,4-5 -H), 6.03 (s, 1H, CH(Ph) 2 ), 4.30-4.25 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.30-1.26 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 174.2 (2-C), 161.2 (COOEt), 149.6 (4-C), 142.1 (2x1 -C), 129.7 (5-C), 129.1 (2x 3 -,5 -C), 129.1 (2x2 -,6 -C), 127.6 (2x4 -C), 61.2 (O-CH 2 -CH 3 ), 54.0 (CH(Ph) 2 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-phenyl-1,3-thiazole-4-carboxylate (2e). 1 g (7.3 mmol) thiobenzamide and 1.1 ml (8.8 mmol) ethyl bromopyruvate were used according to method A. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.58 (s, 1H, 5-H), 8.00-7.98 (m, 2H, 2 -,6 -H), 7.55-7.53 (m, 3H, 3 -,4 -,5 -H), 4.37-4.32 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.35-1.32 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 168.1 (2-C), 161.1 (COOEt), 147.4 (4-C), 132.8 (1 -C), 131.3 (4 -C), 129.8 (3 -,5 - C), 129.7 (5-C), 126.9 (2 -,6 -C), 61.3 (O-CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). 2-(4-bromophenyl)-1,3-thiazole-4-carboxylic acid (3b). 350 mg (1.1 mmol) 2b and 4.5 ml (4.5 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.16 (bs, 1H, COOH), 8.53 (s, 1H, 5-H), 7.95-7.92 (m, 2H, 2 -,6 -H), 7.76-7.72 (m, 2H, 3 -,5 - H). 13 C-NMR (100 MHz): δ 166.6 (2-C), 162.4 (COOH), 148.6 (4-C), 132.7 (2 -,6 -C), 132.1 (4 -C), 129.6 (5-C), 128.7 (3 -,5 -C), 124.5 (1 -C). 2-benzyl-1,3-thiazole-4-carboxylic acid (3c). 425 mg (1.7 mmol) 2c and 6.9 ml (6.9 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.30 (s, 1H, 5-H), 7.38-7.33 (m, 4H, 2 -,3-5 -,6 -H), 7.31-7.26 (m, 1H, 4 -H), 4.36 (s, 2H, CH 2 ). 13 C-NMR (100 MHz): δ 170.9 (2-C), 162.5 (COOH), 147.3 (4-C), 138.2 (1 -C), 129.4 (2 -,6 -C), 129.2 (5- C), 129.2 (3 -,5 -C), 127.5 (4 -C), 38.9 (CH 2 ). 2-(diphenylmethyl)-1,3-thiazole-4-carboxylic acid (3d). 777 mg (2.4 mmol) 2d and 9.6 ml (9.6 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.02 (bs, 1H, COOH), 8.37 (s, 1H, 5-H), 7.38-7.26 (m, 10H, (Ph) 2 CH), 6.03 (s, 1H, CH(Ph) 2 ). 13 C-NMR (100 MHz): δ 173.7 (2-C), 162.5 (COOH), 147.7 (4-C), 142.2 (2x1 -C), 129.2 (5-C), 129.1 (2x 3 -,5 -C), 129.1 (2x2 -,6 -C), 127.6 (2x4 -C), 54.0 (CH(Ph) 2 ). S2

2-phenyl-1,3-thiazole-4-carboxylic acid (3e). 528 mg (2.3 mmol) 2e and 9.1 ml (9.1 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.02 (bs, 1H, COOH), 8.51 (s, 1H, 5-H), 8.00-7.97 (m, 2H, 2,6 -H), 7.55-7.52 (m, 3H, 3 -,4 -,5 -H). 13 C-NMR (100 MHz): δ 167.9 (2-C), 162.5 (COOH), 148.5 (4-C), 132.9 (1 -C), 131.2 (4 -C), 129.8 (3 -,5 - C), 129.2 (5-C), 126.8 (2 -,6 -C). 2-(4-bromophenyl)-1,3-thiazole-4-carbohydroxamic acid (4b). 47 mg (0.17 mmol) 3b, 20 µl (0.21 mmol) ethyl chloroformate, 25 µl (0.23 mmol) N-methylmorpholine, 18 mg (0.26 mmol) hydroxylamine hydrochloride and 15 mg (0.26 mmol) potassium hydroxide were used according to method C. Overall yield: 35 mg (6%). Mp: 207-209 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.31 (bs, 1H, NH-OH), 9.21 (bs, 1H, NH-OH), 8.30 (s, 1H, 5-H), 8.02-8.00 (m, 2H, 2 -,6 -H), 7.76-7.73 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 166.5 (2-C), 158.6 (CONH), 149.6 (4-C), 132.6 (2 -,6 -C), 132.1 (4 -C), 128.8 (3 -,5 -C), 124.5 (5-C or 1 -C), 124.4 (5-C or 1 -C). MS (APCI, m/z): 298.9488 [M Br79 + H] +, 300.9466 [M Br81 + H] +. Purity >99% (16.61 min, M1). 2-benzyl-1,3-thiazole-4-carbohydroxamic acid (4c). 222 mg (1 mmol) 3c, 115 µl (1.2 mmol) ethyl chloroformate, 143 µl (1.3 mmol) N-methylmorpholine, 104 mg (1.5 mmol) hydroxylamine hydrochloride and 84 mg (1.5 mmol) potassium hydroxide were used according to method C. Overall yield: 37 mg (5%). Mp: 168-170 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.17 (bs, 1H, NH-OH), 9.08 (bs, 1H, NH-OH), 8.08 (s, 1H, 5-H), 7.38-7.34 (m, 4H, 2 -,3-5 -,6 -H), 7.30-7.27 (m, 1H, 4 -H), 4.36 (s, 2H, CH 2 ). 13 C-NMR (100 MHz): δ 171.0 (2-C), 158.9 (CONH), 148.6 (4-C), 138.2 (1 -C), 129.4 (2 -,6 -C), 129.2 (3 -,5 -C), 127.5 (4 -C), 124.0 (5-C), 38.9 (CH 2 ). MS (APCI, m/z): 235.0538 [M + H] +. Purity >99% (15.69 min, M3). 2-(diphenylmethyl)-1,3-thiazole-4-carbohydroxamic acid (4d). 455 mg (1.54 mmol) 3d, 176 µl (1.85 mmol) ethyl chloroformate, 220 µl (2.0 mmol) N-methylmorpholine, 161 mg (2.3 mmol) hydroxylamine hydrochloride and 130 mg (2.3 mmol) potassium hydroxide were used according to method C. Overall yield: 67 mg (5%). Mp: 174-176 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.18 (bs, 1H, NH-OH), 9.09 (bs, 1H, NH-OH), 8.15 (s, 1H, 5-H), 7.42-7.40 (m, 4H, 2x2 -,6 -H), 7.36-7.33 (m, 4H, 2x3 -,5 -H), 7.29-7.24 (m, 2H, 2x4 -H), 5.98 (s, 1H, CH(Ph) 2 ). 13 C-NMR (100 MHz): δ 173.2 (2-C), 158.9 (CONH), 149.2 (4-C), 142.2 (2x1 -C), 129.1 (2x 3 -,5 -C), 129.0 (2x2 -,6 -C), 127.5 (2x4 -C), 123.9 (5-C), 53.9 (CH(Ph) 2 ). MS (APCI, m/z): 311.0847 [M + H] +. Purity >99% (19.62 min, M3). 2-phenyl-1,3-thiazole-4-carbohydroxamic acid (4e). 40 mg (0.15 mmol) 3e, 17 µl (0.18 mmol) ethyl chloroformate, 22 µl (0.2 mmol) N-methylmorpholine, 16 mg (0.23 mmol) hydroxylamine hydrochloride and 13 mg (0.23 mmol) potassium hydroxide were used according to method C. Overall yield: 35 mg (2%). Mp: 141-143 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 10.30 (bs, 1H, NH-OH), 9.52 (bs, 1H, NH-OH), 8.26 (s, 1H, 5-H), 8.07-8.04 (m, 2H, 2,6 -H), 7.55-7.52 (m, 3H, 3 -,4 -,5 -H). 13 C-NMR (100 MHz): δ 167.6 (2-C), 158.7 (CONH), 149.8 (4- C), 133.0 (1 -C), 131.1 (4 -C), 129.6 (3 -,5 -C), 126.9 (2 -,6 -C), 123.7 (5-C). MS (APCI, m/z): 221.0377 [M + H] +. Purity >99% (15.80 min, M3). Ethyl 2-(4-bromphenyl)-1,3-oxazole-4-carboxylate (2g). 500 mg (2.5 mmol) 4- bromobenzamide, 375 µl (3.0 mmol) ethyl bromopyruvate and 850 mg (2.5 mmol) silver hexafluoroantimonate were used according to method D. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.97 (s, 1H, 5-H), 7.96-7.93 (m, 2H, 3 -,5 -H), 7.79-7.77 (m, 2H, 2 -,6 -H), 4.35-4.30 (q, 2H, O-CH 2 - CH 3, 3 J = 7.1 Hz), 1.33-1.30 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz, δ S3

[ppm]):161.0 (2-C), 161.0 (COOEt), 145.4 (5-C), 134.2 (4-C), 132.8 (2 -,6 -C), 128.7 (3 -,5 -C), 125.6 (4 -C or 1 -C), 125.4 (4 -C or 1 -C), 61.1 (O-CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(biphenyl-4-yl)-1,3-oxazole-4-carboxylate (2h). 1.1 g (5.6 mmol) biphenyl-4- carboxamide, 842 µl (6.7 mmol) ethyl bromopyruvate and 1.9 g (5.6 mmol) silver hexafluoroantimonate were used according to method D. 1 H-NMR ((DMSO-d 6, 400 MHz): δ 8.97 (s, 1H, 5-H), 8.11-8.08 (m, 2H, 2 -,6 -H), 7.89-7.87 (m, 2H, 3 -,5 -H), 7.77-7.75 (m, 2H, 2 -,6 -H), 7.53-7.49 (m, 2H, 3 -, 5 -H), 7.45-7.41 (m, 1H, 4 -H), 4.36-4.31 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.34-1.31 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 161.6 (2-C), 161.1 (COOEt), 146.1 (5-C), 143.2 (4 -C), 139.3 (1 -C), 134.2 (4-C), 129.5 (3 -,5 -C), 128.7 (4 -C), 127.9 (3 -,5 -C), 127.4 (2 -,6 -C), 127.2 (2 -,6 -C), 125.4 (1 -C), 61.1 (O-CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(diphenylmethyl)-1,3-oxazole-4-carboxylate (2i). 635 mg (3.0 mmol) 2,2- diphenylacetamide, 453 µl (3.6 mmol) ethyl bromopyruvate and 1 g (3.0 mmol) silver hexafluoroantimonate were used according to method D. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.83 (s, 1H, 5-H), 7.38-7.26 (m, 10H, CH-(Ph) 2 ), 5,88 (s, 1H, CH(Ph) 2 ), 4.30-4.24 (q, 2H, O-CH 2 - CH 3, 3 J = 7.1 Hz), 1.29-1.25 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 165.4 (2- C), 161.1 (COOEt), 146.2 (5-C), 140.0 (2x 1 -C), 133.0 (4-C), 129.1 (2x 3 -,5 -C), 128.9 (2x 2 -,6 -C), 127.6 (2x4 -C), 61.1 (O-CH 2 -CH 3 ), 49.8 (CH(Ph) 2 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(thiophene-2-yl)-1,3-oxazole-4-carboxylate (2j). 550 mg (4.3 mmol) thiophene-2- carboxamide, 650 µl (5.2 mmol) ethyl bromopyruvate and 1.5 g (4.3 mmol) silver hexafluoroantimonate were used according to method D. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.89 (s, 1H, 5-H), 7.88-7.87 (m, 1H, 3 -/4 -/5 -H), 7.80-7.79 (m, 1H, 3 -/4 -/5 -H), 7.26-7.24 (m, 1H, 3 -/4 -/5 -H), 4.34-4.28 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.32-1.29 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 160.9 (COOEt), 158.0 (2-C), 145.6 (5-C) 134.0 (4-C), 131.2 (3 - /4 -/5 -C), 129.8 (3-4 -/5 -C), 129.1 (3-4 -/5 -C), 128.3 (2 -C), 61.2 (O-CH 2 -CH 3 ), 14.6 (O- CH 2 -CH 3 ). Ethyl 2-(2-bromophenyl)-1,3-oxazole-4-carboxylate (2k). 802 mg (4.0 mmol) 2- bromobenzamide, 605 µl (4.8 mmol) ethyl bromopyruvate and 1.4 g (4.0 mmol) silver hexafluoroantimonate were used according to method D. 1 H-NMR (DMSO-d 6, 400 MHz): δ 9.05 (s, 1H, 5-H), 7.93-7.91 (m, 1H, 3 -H), 7.86-7.84 (m, 1H, 6 -H), 7.60-7.56 (m, 1H, 5 -H), 7.54-7.51 (m, 1H, 4 -H), 4.36-4.31 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.33-1.30 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 161.0 (COOEt), 160.4 (2-C), 146.6 (5-C), 134.6 (4-C), 133.9 (3 -C), 133.2 (4 -C), 132.3 (6 -C), 128.6 (5 -C), 127.7 (1 -C), 121.0 (2 -C), 61.2 (O-CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(4-chlorophenyl)-1,3-oxazole-4-carboxylate (2l). 578 mg (3.7 mmol) 4- chlorobenzamide, 559 µl (4.5 mmol) ethyl bromopyruvate and 1.3 g (3.7 mmol) silver hexafluoroantimonate were used according to method D. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.97 (s, 1H, 5-H), 8.03-8.01 (m, 2H, 2 -,6 -H), 7.65-7.63 (m, 2H, 3 -,5 -H), 4.35-4.29 (q, 2H, O-CH 2 - CH 3, 3 J = 7.1 Hz), 1.33-1.29 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 161.0 (COOEt), 160.8 (2-C), 145.4 (5-C), 136.5 (4 -C), 134.2 (4-C), 129.9 (3 -,5 -C), 128.6 (2 -,6 -C), 125.3 (1 -C), 61.2 (O-CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(4-fluorophenyl)-1,3-oxazole-4-carboxylate (2m). 453 mg (3.3 mmol) 4- fluorobenzamide, 621 µl (5 mmol) ethyl bromopyruvate and 1.1 g (3.3 mmol) silver S4

hexafluoroantimonate were used according to method D. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.96 (s, 1H, 5-H), 8.10-8.05 (m, 2H, 2 -,6 -H), 7.44-7.40 (m, 2H, 3 -,5 -H), 4.35-4.30 (q, 2H, O-CH 2 - CH 3, 3 J = 7.1 Hz), 1.33-1.30 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 164.2 (d, 1 J = 248.0 Hz, 4 -C), 161.0 (COOEt), 160.9 (2-C), 146.2 (5-C), 134.1 (4-C), 129.4 (d, 2C, 3 J = 9.0 Hz, 2 -,6 -C), 123.1 (d, 4 J = 3.0 Hz, 1 -C), 116.9 (d, 2C, 2 J = 22.0 Hz, 3 -,5 -C), 61.1 (O- CH 2 -CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(4-methoxyphenyl)-1,3-oxazole-4-carboxylate (2n). 581 mg (3.9 mmol) 4- methoxybenzamide, 580 µl (4.6 mmol) ethyl bromopyruvate and 1.3 g (3.9 mmol) silver hexafluoroantimonate were used according to method D. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.86 (s, 1H, 5-H), 7.97-7.94 (m, 2H, 2 -,6 -H), 7.12-7.10 (m, 2H, 3 -,5 -H), 4.34-4.28 (q, 2H, O-CH 2 - CH 3, 3 J = 7.1 Hz), 3.84 (s, 3H, O-CH 3 ), 1.32-1.29 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 162.0 (4 -C), 161.9 (COOEt), 161.2 (2-C), 145.5 (5-C), 133.9 (4-C), 128.6 (2 -,6 - C), 119.0 (1 -C), 115.1 (3 -,5 -C), 61.0 (O-CH 2 -CH 3 ), 55.9 (O-CH 3 ), 14.6 (O-CH 2 -CH 3 ). 2-phenyl-1,3-oxazole-4-carboxylic acid (3f). This compound has already been described. 1 591 mg (2.72 mmol) 2f and 10.9 ml (10.9 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.05 (bs, 1H, COOH), 8.85 (s, 1H, 5-H), 8.04-7.99 (m, 2H, 2 -,6 -H), 7.59-7.56 (m, 3H, 3 -,4 -,5 -H). 13 C-NMR (100 MHz, δ [ppm]):167.7 (2-C), 162.4 (COOH), 145.8 (5-C), 134.9 (4-C), 131.7 (4 -C), 129.7 (3 -,5 -C), 126.7 (2 -,6 -C), 126.6 (1 -C). 2-(4-bromphenyl)-1,3-oxazole-4-carboxylic acid (3g). 441 mg (1.49 mmol) 2g and 5.7 ml (5.7 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.24 (bs, 1H, COOH), 8.88 (s, 1H, 5-H), 7.96-7.92 (m, 2H, 3 -,5 -H), 7.80-7.76 (m, 2H, 2 -,6 - H). 13 C-NMR (100 MHz): δ 162.3 (COOH), 160.8 (2-C), 146.1 (5-C), 135.0 (4-C), 132.8 (2 -,6 - C), 128.6 (3 -,5 -C), 125.8 (4 -C or 1 -C), 125.3 (4 -C or 1 -C). 2-(biphenyl-4-yl)-1,3-oxazole-4-carboxylic acid (3h). 417 mg (1.42 mmol) 2h and 7 ml (7 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.21 (bs, 1H, COOH), 8.88 (s, 1H, 5-H), 8.11-8.08 (m, 2H, 2 -,6 -H), 7.90-7.87 (m, 2H, 3 -,5 -H), 7.77-7.74 (m, 2H, 2 -,6 -H), 7.53-7.49 (m, 2H, 3 -, 5 -H), 7.45-7.40 (m, 1H, 4 -H). 13 C-NMR (100 MHz): δ 162.4 (COOH), 161.4 (2-C), 145.9 (5-C), 143.0 (4 -C), 139.3 (1 -C), 135.0 (4-C), 129.5 (3 -,5 -C), 128.6 (4 -C), 127.9 (3 -,5 -C), 127.3 (2 -,6 -C), 127.2 (2 -,6 -C), 125.5 (1 - C). 2-(diphenylmethyl)-1,3-oxazole-4-carboxylic acid (3i). 189 mg (0.65 mmol) 2i and 2.4 ml (2.4 mmol) LiOH (1 M) were used according to method B. The compound was directly processed further and no NMR spectrum was recorded. 2-(thiophene-2-yl)-1,3-oxazole-4-carboxylic acid (3j). 333 mg (1.5 mmol) 2j and 6 ml (6 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.79 (s, 1H, 5-H), 7.86-7.85 (m, 1H, 3 -,4 -,5 -H), 7.78-7.77 (m, 1H, 3 -,4 -,5 -H), 7.26-7.24 (m, 1H, 3 -,4 -,5 -H). 13 C-NMR (100 MHz): δ 162.2 (COOH), 157.8 (2-C), 145.3 (5-C) 134.7 (4-C), 131.0 (3-4 -/5 -C), 129.6 (3-4 -/5 -C), 129.1 (3-4 -/5 -C), 128.5 (2 -C). 2-(2-bromophenyl)-1,3-oxazole-4-carboxylic acid (3k). 340 mg (1.15 mmol) 2k and 4.6 ml (4.6 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.96 (s, 1H, 5-H), 7.93-7.91 (m, 1H, 3 -H), 7.86-7.84 (m, 1H, 6 -H), 7.60-7.56 (m, 1H, 5 -H), S5

7.54-7.49 (m, 1H, 4 -H). 13 C-NMR (100 MHz): δ 162.3 (COOH), 160.2 (2-C), 146.3 (5-C), 134.7 (4-C), 133.1 (3 -C), 132.2 (4 -C), 128.6 (6 -C), 128.6 (5 -C), 127.8 (1 -C), 121.0 (2 -C). 2-(4-chlorophenyl)-1,3-oxazole-4-carboxylic acid (3l). 501 mg (2 mmol) 2l and 8 ml (8 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.85 (s, 1H, 5-H), 8.02-7.99 (m, 2H, 2 -,6 -H), 7.64-7.62 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 162.3 (COOH), 160.7 (2-C), 146.0 (5-C), 136.4 (4 -C), 135.0 (4-C), 129.8 (3 -,5 -C), 128.5 (2 -,6 -C), 125.4 (1 -C). 2-(4-fluorophenyl)-1,3-oxazole-4-carboxylic acid (3m). 500 mg (2.13 mmol) 2m and 8.5 ml (8.5 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.21 (bs, 1H, COOH), 8.86 (s, 1H, 5-H), 8.09-8.04 (m, 2H, 2 -,6 -H), 7.45-7.39 (m, 2H, 3 -,5 - H). 13 C-NMR (100 MHz): δ 163.7 (d, 1 J = 248.0 Hz, 4 -C), 162.0 (COOH), 160.4 (2-C), 145.5 (5-C), 134.5 (4-C), 128.9 (d, 2C, 3 J = 9.0 Hz, 2 -,6 -C), 122.8 (d, 4 J = 3.0 Hz, 1 -C), 116.5 (d, 2C, 2 J = 22.0 Hz, 3 -,5 -C). 2-(4-methoxyphenyl)-1,3-oxazole-4-carboxylic acid (3n). 267 mg (1.08 mmol) 2n and 4.3 ml (4.3 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.71 (s, 1H, 5-H), 7.95-7.82 (m, 2H, 2 -,6 -H), 7.11-7.08 (m, 2H, 3 -,5 -H), 3.81 (s, 3H, O- CH 3 ). 13 C-NMR (100 MHz): δ 162.6 (COOH), 161.9 (4 -C), 161.2 (2-C), 145.1 (5-C), 134.6 (4- C), 128.5 (2 -,6 -C), 119.0 (1 -C), 115.1 (3 -,5 -C), 55.8 (O-CH 3 ). 2-phenyl-1,3-oxazole-4-carbohydroxamic acid (4f). This compound has already been described. 1 236 mg (1.25 mmol) 3f, 143 µl (1.5 mmol) ethyl chloroformate, 178 µl, (1.6 mmol) N-methylmorpholine, 130 mg (1.9 mmol) hydroxylamine hydrochloride and 105 mg (1.9 mmol) potassium hydroxide were used according to method C. Overall yield: 156 mg (11%). Mp: 164-166 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 10.14 (bs, 1H, NH-OH), 9.52 (bs, 1H, NH-OH), 8.65 (s, 1H, 5-H), 8.05 (m, 2H, 2 -,6 -H), 7.58 (m, 3H, 3 -,4 -,5 -H). 13 C-NMR (100 MHz): δ 161.0 (2- C), 158.1 (CONH), 141.9 (5-C), 136.4 (4-C), 131.6 (4 -C), 129.7 (3 -,5 -C), 126.7 (1 -C), 126.7 (2 -,4 -C). MS (APCI, m/z): 205.0606 [M + H] +. Purity >98% (14.35 min, M3). 2-(4-bromphenyl)-1,3-oxazole-4-carbohydroxamic acid (4g). 200 mg (0.75 mmol) 3g, 86 µl (0.9 mmol) ethyl chloroformate, 107 µl, (1 mmol) N-methylmorpholine, 78 mg (1.13 mmol) hydroxylamine hydrochloride and 63 mg (1.13 mmol) potassium hydroxide were used according to method C. Overall yield: 120 mg (17%). Mp: 175-177 C.; 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.20 (bs, 1H, NH-OH), 9.16 (bs, 1H, NH-OH), 8.70 (s, 1H, 5-H), 7.94 (m, 2H, 3 -,5 -H), 7.79 (m, 2H, 2 -,6 -H). 13 C-NMR (100 MHz): δ 160.3 (2-C), 158.0 (CONH), 142.4 (5-C), 136.3 (4-C), 132.8 (2 -,6 -C), 128.6 (3 -,5 -C), 125.9 (4 -C), 125.2 (1 -C). MS (APCI, m/z): 282.9710 [M Br79 + H] +, 284.9689 [M Br81 + H] +. Purity >98% (15.38 min, M1). For 4g as an representative member, the IR spectral data are shown in an exemplary manner. The significant groups are listed and very similar values are obtained for the other target compounds. IR (cm 1 ): 3456 (N-H), 3160 (O H), 3017 (C-H), 1738 (C=O). 2-(biphenyl-4-yl)-1,3-oxazole-4-carbohydroxamic acid (4h). 246 mg (0.93 mmol) 3h, 106 µl (1.11 mmol) ethyl chloroformate, 132 µl, (1.20 mmol) N-methylmorpholine, 97 mg (1.4 mmol) hydroxylamine hydrochloride and 79 mg (1.4 mmol) potassium hydroxide were used according to method C. Overall yield: 29 mg (2%). Mp: 196-198 C. 1 H-NMR (CD 3 OD, 400 MHz): δ 8.48 (s, 1H, 5-H), 8.23-8.16 (m, 2H, 2 -,6 -H), 7.86-7.80 (m, 2H, 3 -,5 -H), 7.75-7.69 (m, 2H, 2 -,6 -H), 7.55-7.47 (m, 2H, 3 -, 5 -H), 7.46-7.39 (m, 1H, 4 -H). 13 C-NMR (100 S6

MHz): δ 161.8 (2-C), 159.4 (CONH), 143.9 (4 -C), 141.2 (5-C), 139.8 (1 -C), 135.4 (4-C), 128.6 (3 -,5 -C), 127.7 (4 -C), 127.1 (3 -,5 -C), 126.8 (2 -,6 -C), 126.6 (2 -,6 -C), 125.2 (1 - C). MS (APCI, m/z): 281.0918 [M + H] +. Purity >98% (17.81 min, M1). 2-(diphenylmethyl)-1,3-oxazole-4-carbohydroxamic acid (4i). 60 mg (0.21 mmol) 3i, 25 µl (0.26 mmol) ethyl chloroformate, 30 µl, (0.27 mmol) N-methylmorpholine, 46 mg (0.7 mmol) hydroxylamine hydrochloride and 37 mg (0.7 mmol) potassium hydroxide were used according to method C. Overall yield: 10 mg (1%). Mp: 181-183 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.08 (bs, 1H, NH-OH), 9.07 (bs, 1H, NH-OH), 8.55 (s, 1H, 5-H), 7.37-7.33 (m, 8H, 2x 2 -,3 -,5 -,6 -H), 7.31-7.24 (m, 2H, 2x 4 -H), 5,82 (s, 1H, CH-Ph 2 ). 13 C-NMR (100 MHz): δ 164.1 (2- C), 157.8 (CONH), 141.6 (5-C), 139.7 (2x 1 -C), 134.7 (4-C), 128.7 (2x 3 -,5 -C), 128.4 (2x 2 -,6 -C), 127.2 (4 -C), 49.5 (CH-Ph 2 ). MS (APCI, m/z): 295.1075 [M + H] +. Purity >99% (18.73 min, M3). 2-(thiophene-2-yl)-1,3-oxazole-4-carbohydroxamic acid (4j). 200 mg (1.02 mmol) 3j, 117 µl (1.23 mmol) ethyl chloroformate, 147 µl, (1.33 mmol) N-methylmorpholine, 107 mg (1.54 mmol) hydroxylamine hydrochloride and 86 mg (1.54 mmol) potassium hydroxide were used according to method C. Overall yield: 16 mg (2%). Mp: 168-170 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.19 (bs, 1H, NH-OH), 9.17 (bs, 1H, NH-OH), 8.61 (s, 1H, 5-H), 7.88-7.82 (m, 1H, 3 -,4 -,5 -H), 7.78-7.73 (m, 1H, 3 -,4 -,5 -H), 7.28-7.21 (m, 1H, 3 -,4 -,5 -H). 13 C-NMR (100 MHz): δ 158.0 (2-C), 157.4 (CONH), 141.7 (5-C) 136.1 (4-C), 131.0 (3-4 -/5 -C), 129.6 (3-4 - /5 -C), 129.1 (3-4 -/5 -C), 128.6 (2 -C). MS (APCI, m/z): 211.0173 [M + H] +. Purity >99% (13.83 min, M3). 2-(2-bromophenyl)-1,3-oxazole-4-carbohydroxamic acid (4k). 248 mg (0.93 mmol) 3k, 106 µl (1.11 mmol) ethyl chloroformate, 132 µl (1.2 mmol) N-methylmorpholine, 100 mg (1.43 mmol) hydroxylamine hydrochloride and 78 mg (1.43 mmol) potassium hydroxide were used according to method C. Overall yield: 34 mg (3%). Mp: 157-159 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.17 (bs, 1H, NH-OH), 9.15 (bs, 1H, NH-OH), 8.78 (s, 1H, 5-H), 7.94-7.88 (m, 1H, 3 - H), 7.87-7.80 (m, 1H, 6 -H), 7.61-7.56 (m, 1H, 5 -H), 7.55-7.48 (m, 1H, 4 -H). 13 C-NMR (100 MHz): δ 159.8 (2-C), 158.0 (CONH), 142.6 (5-C), 135.9 (4-C), 134.5 (3 -C), 133.1 (4 -C), 132.3 (6 -C), 128.5 (5 -C), 128.0 (1 -C), 121.1 (2 -C). MS (ESI, m/z): 282.9714 [M Br79 + H] +, 284.9693 [M Br81 + H] +, 304.9534 [M Br79 + Na] +, 306.9511 [M Br81 + Na] +. Purity >99% (16.23 min, M3). 2-(4-chlorophenyl)-1,3-oxazole-4-carbohydroxamic acid (4l). 386 mg (1.7 mmol) 3l, 197 µl (2.07 mmol) ethyl chloroformate, 247 µl (2.24 mmol) N-methylmorpholine, 240 mg (3.45 mmol) hydroxylamine hydrochloride and 194 mg (3.45 mmol) potassium hydroxide were used according to method C. Overall yield: 35 mg (4%). Mp: 180-182 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.19 (bs, 1H, NH-OH), 9.16 (bs, 1H, NH-OH), 8.69 (s, 1H, 5-H), 8.02-8.00 (m, 2H, 2 -,6 -H), 7.67-7.64 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 159.8 (2-C), 157.6 (CONH), 141.9 (5-C), 135.9 (4-C), 135.9 (4 -C), 129.4 (3 -,5 -C), 128.0 (2 -,6 -C), 125.1 (1 -C). MS (ESI, m/z): 239.0219 [M Cl35 + H] +, 241.0191 [M Cl37 + H] +, 261.0039 [M Cl35 + Na] +, 263.0009 [M Cl37 + Na] +. Purity >98% (16.61 min, M2). 2-(4-fluorophenyl)-1,3-oxazole-4-carbohydroxamic acid (4m). 300 mg (1.45 mmol) 3m, 166 µl (1.74 mmol) ethyl chloroformate, 207 µl (1.88 mmol) N-methylmorpholine, 202 mg (2.9 mmol) hydroxylamine hydrochloride and 163 mg (2.9 mmol) potassium hydroxide were used according to method C. Overall yield: 31 mg (4%). Mp: 174-176 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.18 (bs, 1H, NH-OH), 9.15 (bs, 1H, NH-OH), 8.68 (s, 1H, 5-H), 8.09-8.03 (m, 2H, 2 - S7

,6 -H), 7.46-7.40 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 165.3 (2-C), 161.6 (d, 1 J = 257.2 Hz, 4 -C), 158.1 (CONH), 142.2 (5-C), 136.2 (4-C), 129.2 (d, 2C, 3 J = 9.1 Hz, 2 -,6 -C), 123.4 (d, 4 J = 3.0 Hz, 1 -C), 116.9 (d, 2C, 2 J = 22.4 Hz, 3 -,5 -C). MS (ESI, m/z): 223.0515 [M + H] +, 245.0334 [M + Na] +. Purity >97% (15.01 min, M2). 2-(4-methoxyphenyl)-1,3-oxazole-4-carbohydroxamic acid (4n). 145 mg (0.66 mmol) 3n, 76 µl (0.80 mmol) ethyl chloroformate, 95 µl (0.86 mmol) N-methylmorpholine, 70 mg (1 mmol) hydroxylamine hydrochloride and 56 mg (1 mmol) potassium hydroxide were used according to method C. Overall yield: 29 mg (3%). Mp: 187-189 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.12 (bs, 1H, NH-OH), 9.12 (bs, 1H, NH-OH), 8.60 (s, 1H, 5-H), 7.95 (m, 2H, 2 -,6 -H), 7.12 (m, 2H, 3 -,5 -H), 3.84 (s, 3H, O-CH 3 ). 13 C-NMR (100 MHz): δ 161.9 (4 -C), 161.2 (2-C), 158.3 (CONH) 141.4 (5-C), 136.0 (4-C), 128.5 (2 -,6 -C), 119.3 (1 -C), 115.1 (3 -,5 -C), 55.9 (O-CH 3 ). MS (APCI, m/z): 235.0715 [M + H] +. Purity >97% (13.32 min, M1). Ethyl 2-(6-methoxynaphthalen-2-yl)-1,3-oxazole-4-carboxylate (2p). 241 mg (1.1 mmol) ethyl 2-bromo-1,3-oxazole-4-carboxylate, 332 mg (1.6 mmol) 6-methoxy-2-naphthylboronic acid, 127 mg (0.11 mmol) Pd(P(Ph) 3 ) 4 and 5.5 ml (11.0 mmol) Na 2 CO 3 (2 M) were used according to method E. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.93 (s, 1H, 5-H), 8.55-8.54 (m, 1H, 1 -H), 8.05-7.95 (m, 3H, 3 -,4 -,8 -H), 7.41 (m, 1H, 5 -H), 7.27-7.24 (m, 1H, 7 -H), 4.35-4.30 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 3.91 (s, 3H, O-CH 3 ), 1.34-1.30 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 162.1 (COOEt), 161.2 (2-C), 159.2 (6 -C), 145.9 (5-C), 136.0 (Ar- C), 134.1 (4-C), 130.9 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 126.8 (Ar-C), 123.8 (Ar-C), 121.5 (Ar-C), 120.2 (7 -C), 106.6 (5 -C), 61.1 (O-CH 2 -CH 3 ), 55.8 (O-CH 3 ), 14.6 (O-CH 2 -CH 3 ). Ethyl 2-(4-methylphenyl)-1,3-oxazole-4-carboxylate (2q). 207 mg (0.9 mmol) ethyl 2- bromo-1,3-oxazole-4-carboxylate, 192 mg (1.4 mmol) p-tolylboronic acid, 109 mg (0.09 mmol) Pd(P(Ph) 3 ) 4 and 4.7 ml (9.4 mmol) Na 2 CO 3 (2 M) were used according to method E. The compound was directly processed further and no NMR-spectra was recorded. Ethyl 2-(biphenyl-3-yl)-1,3-oxazole-4-carboxylate (2r). 407 mg (1.9 mmol) ethyl 2-bromo- 1,3-oxazole-4-carboxylate, 550 mg (2.8 mmol) biphenyl-3-boronic acid, 214 mg (0.19 mmol) Pd(P(Ph) 3 ) 4 and 9.5 ml (19.0 mmol) Na 2 CO 3 (2 M) were used according to method E. 1 H-NMR (DMSO-d 6, 400 MHz): δ 9.00 (s, 1H, 5-H), 8.24-8.23 (m, 1H, 2 -H), 8.04-8.01 (m, 1H, 6 -H), 7.90-7.88 (m, 1H, 4 -H), 7.77-7.76 (m, 2H, 2 -,6 -H), 7.70-7.66 (m, 1H, 5 -H), 7.54-7.50 (m, 2H, 3 -,5 -H), 7.45-7.44 (m, 1H, 4 -H), 4.36-4.31 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.34-1.31 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 161.6 (2-C), 161.0 (COOEt), 146.3 (5- C), 141.6 (1 -C), 139.5 (3 -C), 134.2 (4-C), 130.5 (Ar-C), 130.1 (Ar-C), 129.6 (2C, 3 -,5 -C), 128.5 (Ar-C), 127.3 (2C, 2 -,6 -C), 127.1 (1 -C), 125.8 (Ar-C), 124.8 (Ar-C), 61.2 (O-CH 2 - CH 3 ), 14.6 (O-CH 2 -CH 3 ). 2-(naphthalene-2-yl)-1,3-oxazole-4-carboxylic acid (3o). 170 mg (0.63 mmol) 2o and 2.5 ml (2.5 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 13.19 (bs, 1H, COOH), 8.92 (s, 1H, 5-H), 8.64 (m, 1H, 1 -H), 8.15-8.12 (m, 1H, Ar-H), 8.10-8.09 (m, 2H, Ar-H), 8.02-8.00 (m, 1H, Ar-H), 7.66-7.60 (m, 2H, Ar-H). 13 C-NMR (100 MHz): δ 162.5 (COOH), 161.7 (2-C), 146.0 (5-C), 135.1 (4-C), 134.3 (Ar-C), 133.0 (Ar-C), 129.5 (Ar-C), 129.2 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 127.6 (Ar-C), 126.9 (1 -C), 123.9 (2 -C), 123.3 (3 -C). 2-(6-methoxynaphthalen-2-yl)-1,3-oxazole-4-carboxylic acid (3p). 120 mg (0.4 mmol) 2p and 1.6 ml (1.6 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 S8

MHz): δ 13.15 (bs, 1H, COOH), 8.88 (s, 1H, 5-H), 8.56 (m, 1H, 1 -H), 8.07-7.97 (m, 3H, 3 -,4 -,8 -H), 7.43 (m, 1H, 5 -H), 7.29-7.26 (m, 1H, 7 -H), 3.92 (s, 3H, O-CH 3 ). 13 C-NMR (100 MHz): δ 162.5 (COOH), 161.9 (2-C), 159.2 (6 -C), 145.7 (5-C), 136.0 (Ar-C), 135.0 (4-C), 130.9 (Ar- C), 128.4 (Ar-C), 128.2 (Ar-C), 126.7 (Ar-C), 123.9 (Ar-C), 121.7 (Ar-C), 120.2 (7 -C), 106.6 (5 -C), 55.8 (O-CH 3 ). 2-(4-methylphenyl)-1,3-oxazole-4-carboxylic acid (3q). 69 mg (0.3 mmol) 2q and 1.2 ml (1.2 mmol) LiOH (1 M) were used according to method B. The compound was directly processed further and no NMR-spectra were recorded. 2-(biphenyl-3-yl)-1,3-oxazole-4-carboxylic acid (3r). 275 mg (0.94 mmol) 2r and 4 ml (4 mmol) LiOH (1 M) were used according to method B. The compound was directly processed further and no NMR-spectra were recorded. 2-(naphthalene-2-yl)-1,3-oxazole-4-carbohydroxamic acid (4o). 125mg (0.52 mmol) 3o, 60 µl (0.63 mmol) ethyl chloroformate, 75 µl (0.67 mmol) N-methylmorpholine, 55 mg (0.78 mmol) hydroxylamine hydrochloride and 44 mg (0.78 mmol) potassium hydroxide were used according to method C. Overall yield: 34 mg (13%). 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.22 (bs, 1H, NH-OH), 9.17 (bs, 1H, NH-OH), 8.74 (s, 1H, 5-H), 8.62 (s, 1H, 1 -H), 8.14-8.09 (m, 3H, 3 -,4 -,8 -H), 8.04-7.99 (m, 1H, 5 -H), 7.67-7.61 (m, 2H, 7 -H). 13 C-NMR (100 MHz): δ 161.3 (2_C), 158.2 (CONH), 142.3 (5-C), 136.4 (4-C), 134.3 (Ar-C), 133.0 (Ar-C), 129.4 (Ar-C), 129.2 (Ar-C), 128.3 (Ar-C), 128.3 (Ar-C), 127.6 (Ar-C), 126.7 (1 -C), 124.0 (2 -C), 123.4 (3 -C). MS (APCI, m/z): 255.0765 [M + H] +. Purity >99% (18.78 min, M3). 2-(6-methoxynaphthalen-2-yl)-1,3-oxazole-4-carbohydroxamic acid (4p). 83 mg (0.31 mmol) 3p, 35 µl (0.37 mmol) ethyl chloroformate, 44 µl (0.40 mmol) N-methylmorpholine, 32 mg (0.46 mmol) hydroxylamine hydrochloride and 26 mg (0.46 mmol) potassium hydroxide were used according to method C. Overall yield: 15 mg (5%). 1 H-NMR (DMSO-d 6, 400 MHz): δ 10.05 (bs, 1H, NH-OH), 9.52 (bs, 1H, NH-OH), 8.55 (s, 1H, 5-H), 8.52 (s, 1H, 1 -H), 8.07-7.96 (m, 3H, 3 -,4 -,8 -H), 7.41 (m, 1H, 5 -H), 7.27 (m, 1H, 7 -H), 3.92 (s, 3H, O-CH 3 ). 13 C-NMR (100 MHz): δ 161.2 (2-C), 159.1 (6 -C), 158.3 (CONH), 140.7 (5-C), 137.4 (Ar-C), 135.8 (4-C), 130.7 (Ar-C),, 128.3 (2 -C), 128.1 (Ar-C), 126.4 (1 -C), 124.0 (Ar-C), 122.0 (Ar-C), 120.1 (7 - C), 106.6 (5 -C), 55.8 (O-CH 3 ). MS (ESI, m/z): 285.0872 [M + H] +, 307.0693 [M + Na] +. Purity >95% (18.99 min, M3). 2-(4-methylphenyl)-1,3-oxazole-4-carbohydroxamic acid (4q). 44 mg (0.22 mmol) 3q, 25 µl (0.26 mmol) ethyl chloroformate, 31 µl (0.28 mmol) N-methylmorpholine, 23 mg (0.33 mmol) hydroxylamine hydrochloride and 18 mg (0.33 mmol) potassium hydroxide were used according to method C. Overall yield: 18 mg (9%). Mp: 171-173 C. 1 H-NMR (CD 3 OD, 400 MHz): δ 8.42 (s, 1H, 5-H), 8.02-7.97 (m, 2H, 2-6 -H), 7.39-7.33 (m, 2H, 3-5 -H), 2.44 (s, 3H, CH 3 ). 13 C-NMR (100 MHz): δ 162.1 (2-C), 159.4 (CONH), 141.6 (5-C), 140.9 (4 -C), 135.2 (4- C), 129.3 (3 -,5 -C), 126.3 (2 -,6 -C), 123.7 (1 -C), 20.1 (CH 3 ). MS (APCI, m/z): 219.0766 [M + H] +. Purity >98% (16.90 min, M3). 2-(biphenyl-3-yl)-1,3-oxazole-4-carbohydroxamic acid (4r). 204 mg (0.8 mmol) 3r, 88 µl (0.9 mmol) ethyl chloroformate, 110 µl (1.0 mmol) N-methylmorpholine, 80 mg (1.2 mmol) hydroxylamine hydrochloride and 67 mg (1.2 mmol) potassium hydroxide were used according to method C. Overall yield: 15 mg (3%). 1 H-NMR (CD 3 OD, 400 MHz): δ 8.46 (s, 1H, 5-H), 8.35 (s, 1H, 2 -H), 8.08-8.06 (m, 1H, 6 -H), 7.82-7.80 (m, 1H, 4 -H), 7.71-7.69 (m, 2H, 2 -,6 -H), S9

7.64-7.60 (m, 1H, 5 -H), 7.52-7.49 (m, 2H, 3 -,5 -H), 7.43-7.40 (m, 1H, 4 -H). 13 C-NMR (100 MHz): δ 161.8 (2-C), 159.2 (CONH), 142.0 (5-C), 141.1 (4-C), 139.9 (3 -C), 135.5 (1 -C), 129.4 (Ar-C), 129.2 (Ar-C), 128.6 (2C, 3 -,5 -C), 127.5 (Ar-C), 127.0 (1 -C), 126.6 (2C, 2 -,6 -C), 125.0 (Ar-C), 124.7 (Ar-C). MS (ESI, m/z): 303.1 [M + Na] +. Purity >97% (19.39 min, M3). Ethyl 5-(4-bromophenyl)-1,2,4-oxadiazole-3-carboxylate (2t). 584 mg (2.9 mmol) 4- bromoobenzoic acid, 632 µl (8.7 mmol) thionyl chloride, 384 mg (2.9 mmol) ethyl 2- oximinooxamate and 605 µl (4.4 mmol) triethylamine were used according to method F. 1 H- NMR (DMSO-d 6, 400 MHz): δ 8.11-8.09 (m, 2H, 2 -,6 -H), 7.90-7.87 (m, 2H, 3 -,5 -H), 4.48-4.42 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.38-1.34 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 176.3 (5-C), 162.6 (COOEt), 157.5 (3-C), 133.2 (3 -,5 -C), 130.4 (2 -,6 -C), 128.2 (4 -C), 122.4 (1 -C), 63.1 (O-CH 2 -CH 3 ), 14.3 (O-CH 2 -CH 3 ). Ethyl 5-(biphenyl-4-yl)-1,2,4-oxadiazole-3-carboxylate (2u). 560 mg (2.8 mmol) 4- biphenylcarboxylic acid, 615 µl (8.5 mmol) thionyl chloride, 374 mg (2.8 mmol) ethyl 2- oximinooxamate and 589 µl (4.3 mmol) triethylamine were used according to method F. 1 H- NMR (DMSO-d 6, 400 MHz): δ 8.22-8.20 (m, 2H, 2 -,6 -H), 7.95-7.93 (m, 2H, 3 -,5 -H), 7.78-7.76 (m, 2H, 2 -,6 -H), 7.54-7.50 (m, 2H, 3 -,5 -H), 7.47-7.44 (m, 1H, 4 -H), 4.47-4.42 (q, 2H, O-CH 2 -CH 3, 3 J = 7.1 Hz), 1.38-1.35 (t, 3H, O-CH 2 -CH 3, 3 J = 7.1 Hz). 13 C-NMR (100 MHz): δ 176.8 (5-C), 162.6 (COOEt), 157.6 (3-C), 145.5 (4 -C), 138.9 (1 -C), 129.6 (3 -,5 -C), 129.2 (4 -C), 129.2 (3 -,5 -C), 128.2 (2 -,6 -C), 127.4 (2 -,6 -C), 122.0 (1 -C), 63.1 (O-CH 2 -CH 3 ), 14.4 (O-CH 2 -CH 3 ). 5-phenyl-1,2,4-oxadiazole-3-carboxylic acid (3s). This compound has already been described. 1 240 mg (1.1 mmol) 2s and 4.4 ml (4.4 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 12.99 (bs, 1H, COOH), 8.17-8.15 (m, 2H, 2 -,6 - H), 7.78-7.73 (m, 1H, 4 -H), 7.69-7.64 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 176.7 (5-C), 167.7 (COOH), 159.0 (3-C), 134.1 (4 -C), 130.1 (3 -,5 -C), 128.4 (2 -,6 -C), 123.4 (1 -C). 5-(4-bromophenyl)-1,2,4-oxadiazole-3-carboxylic acid (3t). 80 mg (0.27 mmol) 2t and 1.1 ml (1.1 mmol) LiOH (1 M) were used according to method B. 1 H-NMR (DMSO-d 6, 400 MHz): δ 8.10-8.07 (m, 2H, 2 -,6 -H), 7.90-7.88 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 176.1 (5-C), 167.0 (COOH), 158.9 (3-C), 133.2 (3 -,5 -C), 130.4 (2 -,6 -C), 128.1 (4 -C), 122.6 (1 -C). 5-(biphenyl-4-yl)-1,2,4-oxadiazole-3-carboxylic acid (3u). 240 mg (0.82 mmol) 2u and 3.3 ml (3.3 mmol) LiOH (1 M) were used according to method B. The compound was directly processed further and no NMR spectra were recorded.5-phenyl-1,2,4-oxadiazole-3- carbohydroxamic acid (4s). This compound has already been described. 1 201mg (1.06 mmol) 3s, 121 µl (1.27 mmol) ethyl chloroformate, 151 µl (1.4 mmol) N-methylmorpholine, 147 mg (2.12 mmol) hydroxylamine hydrochloride and 119 mg (2.12 mmol) potassium hydroxide were used according to method C. Overall yield: 29 mg (4%). Mp: 173-175 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.89 (bs, 1H, NH-OH), 9.66 (bs, 1H, NH-OH), 8.17-8.14 (m, 2H, 2 -,6 -H), 7.78-7.74 (m, 1H, 4 -H), 7.69-7.65 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 176.3 (5-C), 163.7 (CONH), 154.1 (3-C), 134.2 (4 -C), 130.1 (3 -,5 -C), 128.5 (2 -,6 -C), 123.3 (1 -C). MS (ESI, m/z): 206.0563 [M + H] +, 228.0383 [M + Na] +. Purity >97% (13.23 min, M1). 5-(4-bromophenyl)-1,2,4-oxadiazole-3-carbohydroxamic acid (4t). 125mg (0.52 mmol) 3t, 43 µl (0.45 mmol) ethyl chloroformate, 50 µl (0.45 mmol) N-methylmorpholine, 368 mg (5.3 S10

mmol) hydroxylamine hydrochloride and 295 mg (5.3 mmol) potassium hydroxide were used according to method C. Overall yield: 80 mg (10%). Mp: 160-162 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.91 (bs, 1H, NH-OH), 9.70 (bs, 1H, NH-OH), 8.09-8.07 (m, 2H, 2 -,6 -H), 7.90-7.88 (m, 2H, 3 -,5 -H). 13 C-NMR (100 MHz): δ 175.6 (5-C), 163.7 (CONH), 153.9 (3-C), 133.3 (3 -,5 -C), 130.4 (2 -,6 -C), 128.2 (4 -C), 122.6 (1 -C). MS (APCI, m/z): 283.9668 [M Br79 + H] +, 285.9647 [M Br81 + H] +. Purity >97% (14.77 min, M1). 5-(biphenyl-4-yl)-1,2,4-oxadiazole-3-carbohydroxamic acid (4u). 105mg (0.4 mmol) 3u, 46 µl (0.48 mmol) ethyl chloroformate, 57 µl (0.52 mmol) N-methylmorpholine, 449 mg (8 mmol) hydroxylamine hydrochloride and 556 mg (8 mmol) potassium hydroxide were used according to method C. Overall yield: 90 mg (11%). Mp: 188-190 C. 1 H-NMR (DMSO-d 6, 400 MHz): δ 11.91 (bs, 1H, NH-OH), 9.86 (bs, 1H, NH-OH), 8.25-8.22 (m, 2H, 2 -,6 -H), 8.00-7.97 (m, 2H, 3 -,5 -H), 7.82-7.79 (m, 2H, 2 -,6 -H), 7.56-7.52 (m, 2H, 3 -,5 -H), 7,49-7.45 (m, 1H, 4 -H). 13 C-NMR (100 MHz): δ 176.2 (5-C), 163.7 (CONH), 154.1 (3-C), 145.4 (4 -C), 138.9 (1 -C), 129.6 (3 -,5 -C), 129.5 (4 -C), 129.1 (3 -,5 -C), 128.2 (2 -,6 -C), 127.4 (2 -,6 -C), 122.2 (1 - C). MS (ESI, m/z): 282.0875 [M + H] +, 304.0695 [M + Na] +. Purity >99% (17.48 min, M1). Figure S1. Western blot with the neuroblastoma cell line BE(2)-C. 5*10 5 cells were seeded in a 10 cm cell culture dish and incubated with DMSO or 10 µm of compounds for 24 hours. Cells were lysed in SDS Sample Buffer (2% w/v SDS, 1 mm dithothreitol, 10% v/v glycerol, 62.5 mm Tris-HCl (ph 6.8 at 25 C), 0.05% bromophenol blue). 20 µg were loaded onto the SDS-gel and run, followed by the transfer to a nitrocellulose membrane via semi dry transfer. The following procedure was already described in the experimental section. Antibodies used were anti-acetylated α-tubulin (Sigma Aldrich, 1:1000), anti-acetyl-histone H4 (Millipore, 1:2000) and anti-actin (Sigma-Aldrich, 1:20000). Detection was performed after ECL Prime incubation with the chemi-capt software (peqlab). S11

Figure S2. 1 H- and 13 C-NMR-spectra of compound 4g. 160.29 157.98 142.38 136.30 132.76 128.59 125.85 125.17 40.54 40.34 40.13 39.92 39.71 39.71 DMSO 39.50 39.29 0.98 0.99 1.00 2.08 2.12 11.20 9.17 8.71 7.96 7.96 7.95 7.94 7.93 7.93 7.82 7.81 7.81 7.79 7.79 7.78 2.50 DMSO S12

References 1. Huguet, F.; Melet, A.; Alves de Sousa, R.; Lieutaud, A.; Chevalier, J.; Maigre, L.; Deschamps, P.; Tomas, A.; Leulliot, N.; Pages, J. M.; Artaud, I. Hydroxamic acids as potent inhibitors of Fe(II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-ecmetap-mn complexes. ChemMedChem 2012, 7 (6), 1020-1030. S13