Supplementary Figure 1. General procedure for the synthesis of PTMC x STrityl and PTMC x SH.

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information for

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Supporting Information

Supplementary information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. Experimental section

Supporting Information

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Electronic Supplementary Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Electronic Supplementary Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Design and Solid Phase Synthesis of New DOTA Conjugated (+)-Biotin Dimers Planned to Develop Molecular Weight-Tuned Avidin Oligomers

Supporting information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

The Free Internet Journal for Organic Chemistry

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting Information. Experimental section

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information

Aminofluorination of Fluorinated Alkenes

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supplementary!Information!

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supplementary Information

Supporting information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Brønsted Acid-Catalyzed Hydroarylation of Activated. Olefins

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Supporting Information

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information

Supporting Information

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Supporting Information. for

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information. Chemoselective Acylation of 2-Amino-8-quinolinol in the Generation of C2-Amides or C8-Esters

Supporting Information

Supporting Information

SUPPLEMENTARY INFORMATION

Electronic Supporting Information. Synthesis and Reactivity of 18 F-Labeled α,α-difluoro-α-aryloxyacetic Acids

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

SI1. Supporting Information. Synthesis and pharmacological evaluation of conformationally restricted -opioid receptor agonists

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides

Supporting Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Crossed Intramolecular Rauhut-Currier-Type Reactions via Dienamine Activation

Supporting Information

Transcript:

3 CSH + HO n n= 6, 8, 10 Br DBU DMSO 15min, r. t. n n= 5; 10 n= 7; 11 n= 9; 12 S HO n S n= 6; 1 n= 8; 2 n= 10; 3 1) Bu 4 NOH THF; 30min; r. t. 2) p - Chloranil THF; 30min; r. t. Et 3 N SO 3 Py DMSO/DCM 20min; 0 º C * OHC t BUOK n S n= 5; 4 n= 7; 5 n= 9; 6 PTM(P(O)OEt 2) H THF - 78 º C t o r. t. 24h n= 5; 7 n= 7; 8 n= 9; 9 n S Et 3 Si ( ca t) DCM/TFA (30%) 10min; r. t. Et 3 Si ( ca t) DCM/TFA (30%) 10min; r. t. n SH n= 5; R 8 n= 7; R 10 n= 9; R 12 H n SH n= 5; NR 8 n= 7; NR 10 n= 9; NR 12 * PTM(P(O)OEt 2) Chemistry A European Journal O ( 2001 ), 7 (1), - 240 H OEt 250 P OEt Supplementary Figure 1. General procedure for the synthesis of PTMC x STrityl and PTMC x SH.

Supplementary Figure 2. IR-ATR spectrum of compound R10.

Supplementary Figure 3. IR-ATR spectrum of compound 11.

Supplementary Figure 4. Cyclic voltammogram of compound R8.

6.0 4.0 2.0 Current (µa) 0.0-2.0-4.0-6.0-8.0-10.0-12.0-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 Potential (V) vs Ag/Ag Supplementary Figure 5. Cyclic voltammogram of compound 11.

Supplementary Figure 6. UV-Vis spectrum of compound 10 in CH 2 2 solution.

Supplementary Figure 7. UV-Vis spectra of radicals R8, R10 and R12 in CH 2 2.

3320 3330 3340 3350 3360 3370 3380 H/Gauss Supplementary Figure 8. EPR spectrum of compound R10 in CH 2 2 solution, at room temperature.

3320 3330 3340 3350 3360 3370 3380 H/Gauss Supplementary Figure 9. EPR spectrum of compound 10 in CH 2 2 solution, at room temperature.

2.0E-05 1.5E-05 1.0E-05 5.0E-06 0.1 V/s 0.2 V/s 0.4 V/s 0.6 V/s 0.8 V/s 1 V/s Current (A) 0.0E+00-5.0E-06-1.0E-05-1.5E-05-2.0E-05-0.60-0.50-0.40-0.30-0.20-0.10 0.00 0.10 Voltage (V) vs Ag (s) Supplementary Figure 10. Cyclic voltammogram of the R 10 SAM on Au (111)/mica.

Supplementary Figure 11. Optical microscope image of the through-hole filled with Ga 2 O 3 /EGaIn.

Supplementary Figure 12. A) The 1000 J(V) traces of Au TS -SC 8 PTM R/NR //GaO x cond /EGaIn junctions. B) The values of J as a function of trace number with R 8 and NR 8 SAMs at +1.0 V.

Supplementary Figure 13. The C 1s (A), 2p (B), and S 2p (C) spectra of Au TS -SC n PTM R (n= 8, 10, 12; R 8, R 10 and R 12 as indicated in the panels) with a take-off angle of 90.

Supplementary Figure 14. The C 1s (A), 2p (B), and S 2p (C) spectra of Au TS -SC n PTM R (n= 8, 10, 12; R 8, R 10 and R 12 as indicated in the panels) with a take-off angle of 40.

Supplementary Figure 15. The C 1s (A), 2p (B), and S 2p (C) spectra of Au TS -SC n PTM NR (n= 8, 10, 12; NR 8, NR 10 and NR 12 as indicated in the panels) with a take-off angle of 90.

Supplementary Figure 16. The C 1s (A), 2p (B), and S 2p (C) spectra of Au TS -SC n PTM NR (n= 8, 10, 12; NR 8, NR 10 and NR 12 as indicated in the panels) with a take-off angle of 40.

Supplementary Figure 17. UPS and NEXAFS spectra of Au TS -SC n PTM NR (n= 8 and10; NR 8 and NR 10 respectively in the figures).

Supplementary Figure 18. Temperature dependent J(V) curves and the corresponding Arrhenius plot at V = ±1.0 V over the range of temperatures of 250 to 330 K of a junctions with a SAMs of NR 8.

Supplementary Figure 19. The plot of tunneling decay coefficient (β) against V.

Supplementary Table 1. The values of I, relative surface coverage and absolute surface coverage. SAMs I at 90 take-off angle Relative surface coverage a Absolute surface coverage ( 10-9 mol/cm 2 ) R 8 47997 0.13 0.14 R 10 49774 0.13 0.15 R 12 52305 0.14 0.16 NR 8 49225 0.13 0.15 NR 10 50556 0.14 0.15 NR 12 52907 0.14 0.16 SC 11 26450 1 1.10 a The relative surface coverage is calculated from I (SC 11 ) / (I (PTM R/NR ) / 14).

Supplementary Table 2. The elemental ratios calculated from the high-resolution XPS spectra SAM C 1s at 90 C 1s at 40 /C 3 C 1 /C 3 C 2 /C 3 C 1 /C 3 C 2 /C 3 At 90 At 40 R 8 0.87 0.52 0.80 0.52 3.69 4.03 R 10 0.73 0.49 0.62 0.47 3.70 4.09 R 12 0.54 0.49 0.40 0.44 3.69 4.12 NR 8 0.87 0.51 0.80 0.51 3.68 4.06 NR 10 0.72 0.48 0.60 0.47 3.70 4.11 NR 12 0.57 0.51 0.39 0.44 3.68 4.20

Supplementary Table 3. The ratio of (I θ ) of S 2p between take-off angles of 90º and 40º of R- based SAMs on Au TS. I θ (90º) (%) I θ (40º) (%) d (nm) Au TS -SC 8 PTM R 69.6 30.4 1.83 Au TS -SC 10 PTM R 73.2 26.8 2.05 Au TS -SC 12 PTM R 75.1 24.9 2.20 Au TS -SC 8 PTM NR 68.9 31.1 1.79 Au TS -SC 10 PTM NR 73.5 26.5 2.08 Au TS -SC 12 PTM NR 75.2 24.8 2.22

Supplementary Methods Synthesis and characterization of PTM derivatives General procedure Elemental analyses were performed on the CID (CSIC) services. NMR spectra were recorded on a Bruker Avance 400 MHz. EPR spectra were recorded in a Bruker ELEXYS E500 X-band spectrometer. The simulation of the EPR spectra was realised with software Simfonia. Electrochemical experiments were performed with a potensiostat/galvanostat Autolab/PGSTAT204 from Metrohm Autolab B.V. in a standard three-electrode cell, by using a platinum wire as working and counter electrode and Ag/Ag as reference electrode. Tetrabutylammonium hexafluorophospate (Fluka, 99%) was used as the supporting electrolyte. UV-Vis spectra were recorded on a Varian Carey 5000 in double-beam mode. Mass Spectra were recorded with a Bruker Ultraflex LDI-TOF mass spectrometer. The liquid chromatography were performed in an Agilent 1100 series HPLC (Agilent Technologies) connected to with two (in parallel) detectord, a photodiode array working into 200nm and 800nm and a mass spectrometer (Esquire 3000 MS Trap (Bruker Daltonik) equipped with Electrospray source ionisation), the methodology used was a binary gradient of acetonitrile (with 5% of formic acid) and chloroform, from 90/10 to 60/40. The IR spectra were recorded with an ATR-IR Perkin Elmer Spectrum One. The manipulation of the radicals in solution was performed under red light. General procedure for the synthesis of compounds tritylthio-alcohols 1, 2 and 3. 3 CSH + DBU + HO n Br DMSO 15min, r. t. HO n S n= 6, 8, 10 n= 6; 1 n= 8; 2 n= 10; 3 Triphenylmethane thiol (1Eq) was suspended in DMSO and DBU (1.14 Eq,) was added. After stirring at room temperature for 5 min, the corresponding bromo-alchol derivative (1.08 Eq, 0.96 mmol) was added, and the mixture was stirred for 10 min. The reaction mixture was diluted with ethyl acetate, quenched with 0.1M H (5 ml), extracted with ethyl acetate, dried over MgSO 4 and dried in vacum. The crude product was purified by flash chromatography (SiO 2, heptane/acoet 1/1).

General procedure for the synthesis of compounds tritylthio- aldehydes 4, 5 and 6. HO n S n= 6, 8, 10 + Et 3 N + SO 3 Py Et 3 N SO 3 Py OHC n S DMSO/DCM 20min; 0 º C n= 5; 4 n= 7; 5 n= 9; 6 The corresponding Triphenylmercapto-n-ol (1 Eq,) and triethylamine (3.5 Eq,) were dissolved in dichloromethane and DMSO, cooled to 0 C and added a suspension of sulfur trioxide pyridine complex (2.07 Eq, 408 mg, 2.57 mmol) in DMSO (400 μl). At the same temperature, the mixture was then stirred for 20 min at 0ºC and after diluted with dichloromethane and quenched with 0.1M H (5ml) and extracted with dichloromethane. The combined organic phases were washed with brine and dried (MgSO 4 ) The crude product was purified by flash chromatography (heptane/acoet 1/1). General procedure for the synthesis of PTM derivatives 7, 8 and 9. H O OEt P + OEt t BUOK OHC n S n= 5, 7, 9 THF - 78 º C t o r. t. 24h H n S n= 5; 7 n= 7; 8 n= 9; 9 Under Argon, potassium tert-butoxide (1.5 Eq) was added to a stirred solution of PTM- P(O)(OEt) 2 (1 Eq) in dry tetrahydrofuran (THF) at -78ºC and the mixture was stirred at this temperature for 10min, then a solution of the corresponding triphenylmercapto-n-al (2 Eq) in dry THF was added and the mixture was allowed to warm to room temperature. The resulting mixture was stirred in the dark at room temperature for 24h. After evaporation of the solvent the crude was purified by column chromatography (SiO 2, Hexane/CH 2 2 80/20). General procedure for the synthesis of PTM radical derivatives 10, 11 and 12.

H n S n= 5, 7, 9 1) Bu 4 NOH THF; 30min; r. t. 2) p - Chloranil THF; 30min; r. t. n S n= 5; 10 n= 7; 11 n= 9; 12 To a solution of the corresponding αh PTM triphenylmercapto derivative in THF, 1.3 Eq of Bu 4 NOH (1M in methanol) was added. The initial colorless solution turned to intense violet and the reaction mixture was stirred at room temperature for 30 min. and then, 1.5 Eq of p-chloranil was added. The color of the reaction mixture changed to red. After 30 min the solvent was removed under vacuum and the crude product was purified by flash chromatography (SiO 2, Hexane/CH 2 2 80/20). The resulting waxy compounds were washed with methanol to give a red solid in almost quantitative yield (96-98%). General procedure to generation of the free thiol groups H n S n= 5, 7, 9 n S n= 5, 7, 9 Et 3 Si ( ca t) DCM/TFA (30%) 10min; r. t. Et 3 Si ( ca t) DCM/TFA (30%) 10min; r. t. H n SH n= 5; R 8 n= 7; R 10 n= 9; R 12 n SH n= 5; R 8 n= 7; R 10 n= 9; R 12 To a solution of trifluoroacetic acid (TFA) in DCM (30%) triethylsilyl (cat) was added under argon, and then the PTM triphenylmercapto derivative (either radical or αh) was added to the mixture. The solution was stirred at room temperature in the dark for 10 min. Then the solvent was evaporated in vacuum, and the crude product was purified by flash chromatography (silica gel, Hexane/CH 2 2 80/20). The product was washed with methanol in a sonicated bath and filtered several time, to yield a solid (red for radicals and withe for αhs) in almost quantitative yield (95%-97%) 7-(tritylthio)heptan-1-ol (1)

HO S According to the general procedure, from triphenylmethane thiol (247 mg, 0.89 mmol), DBU (1.14 Eq, 152 µl, 1.02 mmol) and 7bromo-heptanol (187 mg, 0.96 mmol) in DMSO (1 ml), the compound 1 was obtained as a transparent oil (yield, 84%). 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 7.49 (m, 6H), 7.35 (m, 6H), 7.28(m, 3H), 3.61 (t, J = 6.6 Hz, 2H), 2.21 (t, J = 7.4 Hz, 2H), 1.64 1.14 (m, 11H); 13 C- NMR (101 MHz, CD 2 2 ) δ/ppm: 145.17, 129.60, 127.79, 126.51, 70.74, 62.69, 32.75, 31.89, 28.97, 28.95, 28.54, 25.55. FT-IR ν/cm 1 : 3345.9, 3085.0, 3055.8, 3024.1, 2927.5, 2853.9, 1594.7, 1488.5, 1443.4, 1183.3, 1079.6, 1054.8, 1033.9, 1001.6, 884.2, 850.1, 764.7, 741.3, 697.8, 676.3, 617.1; EM (m/z) (ESI): calculated for C 26 H 30 OS: 390.2; found: 413.2 (M+Na), 276.2( SC3+1H + ), 243.11 ( C3+1H + ). * 5.7 5.8 2.8 1.8 2.0 12.9 7.50 7.50 7.48 7.37 7.36 7.35 7.33 7.29 7.28 7.28 7.26 5.37 3.61 3.59 2.23 2.21 2.19 1.60 1.58 1.56 1.54 1.52 1.51 1.49 1.47 1.46 1.44 1.42 1.40 1.36 1.34 1.32 1.31 1.30 1.29 1.28 1.27 1.26 1.26 1.25 1.24 1.22 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) * Impurity that does not affect to the rest of the synthesis. Probably a fragment of the alkyl chain.

145.17 129.60 127.79 126.51 70.74 62.69 32.75 31.89 28.97 28.95 28.54 25.55 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) Intens. 1. x10 7 +MS, 0.4-1.8min #(18-78) 1.25 242.2 [ C 3 +H + ] 1.00 [M+Na] 413.3 0.75 401.2 403.2 409.3 412.1 414.4 0.50 400 405 410 415 0.25 0.00 [ SC 3 +H + ] 258.3 276.2 240 260 280 300 320 340 m/z 9-(tritylthio)nonan-1-ol (2) HO S According to the general procedure, from triphenylmethane thiol (247 mg, 0.89 mmol), DBU (152 µl, 1.02 mmol) and 9-bromo-nonanol (214 mg, 0.96 mmol) in DMSO (1 ml) the compound 2 was obtained as a transparent oil (yield, 85%), 1 H-NMR (400 MHz, CD 3 ) δ/ppm: 7.49 7.39 (m, 6H), 7.34 7.25 (m, 6H), 7.22 (t, J = 7.2 Hz, 3H), 3.63 (t, J = 6.6 Hz, 2H), 2.16 (t, J = 7.3 Hz, 2H), 1.56 (p, J = 6.6 Hz, 2H), 1.45 (s, 1H, OH), 1.40 (q, J = 7.5 Hz, 2H), 1.37 1.11 (m, 10H). 13 C-NMR (101 MHz, CD 3 ) δ/ppm: 145.11, 129.64, 127.82, 126.53, 77.42, 77.10, 76.78, 66.40, 63.02, 32.79, 32.05, 29.38, 29.34, 29.13, 29.01, 28.62, 25.73; FT-IR ν/cm 1 : 338.0, 3083.3, 3057.8, 3026.7, 2927.7, 2851.3, 1595.0, 1488.6, 1443.1, 1179.7, 1076.3, 1054.1,

1034.1, 1001.9, 885.2, 850.8, 765.2, 740.8, 697.5, 677.4. EM (m/z) (MALDI-TOF): calculated for C 28 H 34 OS: 418.23; found: 417.23 (M-H), 275.08( SC 3 ), 243.11 ( C 3 ) and 175.13 (M- C 3 ). 6.1 6.2 3.0 2.0 2.1 2.1 3.1 10.9 7.45 7.45 7.43 7.31 7.31 7.29 7.27 7.26 7.23 7.22 7.20 5.28 3.65 3.63 3.61 2.18 2.16 2.14 1.59 1.58 1.56 1.54 1.52 1.45 1.43 1.41 1.39 1.38 1.37 1.35 1.34 1.33 1.31 1.29 1.28 1.27 1.26 1.24 1.22 1.21 1.20 1.17 1.13 0.91 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 145.11 129.64 127.82 126.53 77.42 77.10 76.78 66.40 63.02 32.79 32.05 29.38 29.34 29.13 29.01 28.62 25.73 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 f1 (ppm) 70 65 60 55 50 45 40 35 30 25 20 15 10 5

120 r. int. (%) 175.1291 [M-C3] 90 60 243.1135 [ C3] 275.0765 [ SC3] 30 [M-1H] 417.2306 0 200 250 300 350 400 m/z 11-(tritylthio)undecan-1-ol (3) HO S According to general procedure, from triphenylmethane thiol (247 mg, 0.89 mmol), DBU (152 µl, 1.02 mmol) and 11-bromo-undecanol (241 mg, 0.96 mmol) in DMSO (1 ml), the compound 3 was obtained as a transparent oil (yield, 79%). 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 7.54 7.47 (m, 6H), 7.36 (t, J = 7.5 Hz, 6H), 7.29 (t, J = 7.2 Hz, 3H), 3.65 (t, J = 6.6 Hz, 2H), 2.22 (t, J = 7.4 Hz, 2H), 1.71 (s, 1H), 1.61 (q, J = 6.7 Hz, 2H), 1.53 1.16 (m, 16H); 13 C-NMR (101 MHz, CD 2 2) δ/ppm: 145.20, 129.62, 127.81, 126.53, 66.35, 62.79, 53.46, 32.91, 31.95, 29.63, 29.54, 29.50, 29.45, 29.20, 29.06, 28.63, 25.83. FT-IR ν/cm 1 : 3327.5, 3085.2, 3058.0, 3023.0, 2923.9, 2852.6, 1595.1, 1488.9, 1443.8 1183.5, 1077.4, 1055.3, 1033.9, 1001.7, 884.7, 852.1, 741.4, 967.8, 676.2, 617.3; EM (m/z) (MALDI-TOF): calculated for C 30 H 38 OS: 446.22; found: 445.29 (M-1H) and 243.13 ( C 3 ).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 f1 (ppm) 17.62 2.24 0.95 2.09 1.99 3.07 6.49 6.26 1.26 1.28 1.30 1.30 1.32 1.33 1.35 1.38 1.43 1.45 1.47 1.49 1.50 1.57 1.59 1.61 1.62 1.64 1.71 2.20 2.22 2.24 3.64 3.65 3.67 5.37 7.27 7.29 7.29 7.30 7.32 7.34 7.36 7.38 7.50 7.52 7.52 7.54 7.54 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 50 f1 (ppm) 25.83 28.63 29.06 29.20 29.45 29.50 29.54 29.63 31.95 32.91 53.46 62.79 66.35 126.53 127.81 129.62 145.20

r. int. (%) 243.1287 [ C3] 90 60 30 [M-1H] 445.2950 0 240 270 300 330 360 390 420 m/z 7-(tritylthio)heptanal (4) O H S According to general procedure, from 7-triphenylmercapto-1-ol (1) (484 mg, 1.24 mmol) triethylamine (600 μl, 4.34 mmol) and sulfur trioxide pyridine complex (408 mg, 2.57 mmol) in mixture of DCM (3.5 ml) and DMSO (500 µl), the compound 4 was obtained as a transparent oil (yield, 66%). 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 9.75 (t, J = 1.7 Hz, 1H), 7.56 7.43 (m, 6H), 7.35 (t, J = 7.5 Hz, 7H), 7.28 (t, J = 7.2 Hz, 3H), 2.40 (td, J = 7.4, 1.7 Hz, 2H), 2.21 (t, J = 7.3 Hz, 2H), 1.59 (p, J = 7.4 Hz, 2H), 1.51 1.38 (m, 2H), 1.38 1.19 (m, 4H). 13 C-NMR (101 MHz, CD 2 2 ) δ/ppm: 202.40, 145.14, 129.59, 127.80, 126.53, 70.75, 70.62, 43.71, 31.79, 28.68, 28.64, 28.40, 21.84; FT-IR ν/cm 1 : 3083.7, 3056.6, 3028.8, 2929.2, 2855.5, 2721.2, 1721.9, 1593.5, 1485.6, 1440.8, 1238.1, 1079.6, 1033.9, 742.2, 698.3, 674.5, 625.5. EM (m/z) (ESI): calculated for C 26 H 28 OS: 388.2; found: 411.2 (M+Na), 243.11 ( C3+1H+).

-1-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 1.0 f1 (ppm) 4.79 2.77 2.22 2.00 1.61 2.79 5.85 5.79 0.72 1.25 1.27 1.28 1.30 1.31 1.32 1.41 1.43 1.45 1.47 1.57 1.59 1.60 2.07 2.19 2.21 2.23 2.38 2.38 2.39 2.40 2.41 2.42 5.37 7.26 7.28 7.29 7.33 7.35 7.36 7.37 7.48 7.50 7.50 9.75-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 f1 (ppm) 21.84 28.40 28.64 28.68 31.79 43.71 66.39 70.75 126.53 127.80 129.59 145.14 202.40

Intens. x10 5 5 243.1 [ C 3 +H + ] +MS, 2.4-3.3min #(107-142) 4 3 2 [M+Na] 411.3 1 0 262.9 301.2 240 260 280 300 320 340 360 380 400 420 m/z 9-(tritylthio)nonanal (5) O H S According to the general procedure, from 9-triphenylmercapto-1-ol (2) (1.24 mmol, 519 mg), triethylamine (600 μl, 4.34 mmol) and sulfur trioxide pyridine complex (408 mg, 2.57 mmol) in a mixture of DCM (3.5 ml) and DMSO (500 µl), the compound 5 was obtained as a transparent oil (yield, 71%). 1 H-NMR (400 MHz, CD 3 ) δ/ppm: 9.84 (t, J = 1.6 Hz, 1H), 7.67 7.57 (m, 6H), 7.42 (t, J = 7.5 Hz, 6H), 7.35 (t, J = 7.2 Hz, 3H), 2.49 (td, J = 7.4, 1.6 Hz, 2H), 2.34 (t, J = 7.3 Hz, 2H), 1.72 (q, J = 7.2 Hz, 2H), 1.56 (q, J = 7.1 Hz, 2H), 1.50 1.26 (m, 8H); 13 C-NMR (101 MHz, CD 2 2) δ/ppm: 202.42, 145.31, 129.74, 127.95, 126.66, 66.52, 43.94, 32.04, 29.29, 29.19, 29.09, 29.06, 28.72, 22.16; FT-IR ν/cm 1 : 3086.5, 3057.1, 3032.2, 2922.8, 2852.5, 1722.9, 1594.7, 1488.7, 1444.3, 155.5, 10841.1, 1034.1, 952.9, 887.2, 850.2, 164.3, 742.4, 697.8, 676.7; EM (m/z) (MALDI-TOF): calculated for C 28 H 32 OS: 416.22; found: 415.21 (M-H) and 243.08 (M-C 3 ).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 f1 (ppm) 9.57 2.49 2.18 2.20 2.00 3.30 6.73 6.62 0.72 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.8 2.3 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 5.4 7.3 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 9.8-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 f1 (ppm) 22.16 28.72 29.06 29.09 29.19 29.29 32.04 43.94 66.52 126.66 127.95 129.74 145.31 202.42

r. int. (%) 243.0835 [ C3] 90 60 30 [M-1H] 415.2130 0 240 270 300 330 360 390 420 m/z 11-(tritylthio)undecanal (6) O H S According to the general procedure, from 11-triphenylmercapto-1-ol (3) (1.24 mmol, 553 mg), triethylamine (600 μl, 4.34 mmol) and sulfur trioxide pyridine complex (408 mg, 2.57 mmol) in a mixture of DCM (3.5 ml) and DMSO (500 µl), the compound 6 was obtained as a transparent oil (yield, 68%). 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 9.77 (t, J = 1.8 Hz, 1H), 7.50 7.41 (m, 6H), 7.33 (t, J = 7.5 Hz, 6H), 7.26 (t, J = 7.2 Hz, 3H), 2.43 (td, J = 7.4, 1.8 Hz, 2H), 2.18 (t, J = 7.4 Hz, 2H), 1.64 (q, J = 7.3 Hz, 2H), 1.43 (q, J = 7.3 Hz, 2H), 1.38 1.12 (m, 12H). 13 C-NMR (101 MHz, CD 2 2 ) δ/ppm: 202.64, 145.15, 129.57, 127.75, 126.47, 66.30, 53.41, 43.85, 31.89, 29.30, 29.12, 29.09, 28.98, 28.56, 22.06; FT-IR (ν/cm 1 ): 3058.1, 2924.9, 2853.2, 1723.2, 1595.5, 1489.3, 1444.1, 1276.2, 1262.1, 1081.4, 1033.4, 908.6, 851.1, 743.3; EM (m/z): (MALDI-TOF): calculated for C 30 H 36 OS: 444.25; found: 445.43 (M+1H) and 243.21 ( C 3 ).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 f1 (ppm) 13.5 2.4 2.1 2.1 1.9 2.9 6.3 6.1 0.7 1.22 1.23 1.24 1.26 1.28 1.29 1.29 1.32 1.39 1.41 1.43 1.44 1.46 1.60 1.62 1.64 1.66 1.68 2.16 2.18 2.19 2.41 2.41 2.43 2.43 2.44 2.45 5.36 5.36 5.36 7.24 7.25 7.26 7.26 7.28 7.29 7.31 7.33 7.34 7.35 7.36 7.45 7.47 7.47 9.76 9.77 9.77 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 f1 (ppm) 22.06 28.56 28.98 29.09 29.12 29.30 31.89 43.85 53.41 66.30 126.47 127.75 129.57 145.15 202.64

r. int. (%) 90 60 30 243.2088 [ C3] [M+1H] 445.4279 0 200 250 300 350 400 450 m/z (E)-(8-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)oct-7-en-1- yl)(trityl)sulfane (7) H S According to the general procedure, from potassium tert-butoxide (58 mg 051 mmol), PTM- P(O)(OEt) 2 (300 mg, 0.34 mmol) and 7-(tritylthio)heptanal (4) (263 mg, 0.68 mmol) in THF (10 ml), the compound 7 was obtained as a withe powder (yield, 67%). 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 7.49 7.42 (m, 6H), 7.32 (t, J = 7.5 Hz, 6H), 7.25 (t, J = 7.2 Hz, 3H), 7.06 (s, 1H), 6.35 (d, J = 16.1 Hz, 1H), 6.16 (dt, J = 16.1, 6.9 Hz, 1H), 2.29 (q, J = 6.8 Hz, 2H), 2.19 (t, J = 7.3 Hz, 2H), 1.53 1.20 (m, 8H); ); 13 C-NMR (101 MHz, CD 2 2 ) δ/ppm: 145.05, 141.22, 138.14, 136.67, 136.64, 135.38, 135.07, 134.96, 134.44, 133.95, 133.94, 133.56, 133.41, 133.38, 133.34, 133.23, 132.35, 132.31, 132.14, 129.49, 127.68, 126.40, 124.21, 66.27, 56.53, 53.33, 32.98, 31.77, 28.66, 28.46, 28.41, 28.32; FT-IR (ν/cm 1 ): 3057.4, 2926.1, 2852.6, 1594.5, 1488.4, 1442.7, 1362.6, 1334.9, 1295.2, 1238.3, 1137.8, 1238.3, 1137.8, 1032.6, 966.2, 852.7,

807.2, 741.5, 696.9. EM (m/z) (ESi): calculated for C 46 H 30 14 S: 1109.76; found: 1108.8 (M- 1H). 6.4 6.4 3.2 0.8 1.0 1.0 2.2 2.3 10.0 7.47 7.46 7.44 7.34 7.34 7.32 7.30 7.27 7.25 7.06 6.37 6.33 6.20 6.18 6.17 6.16 6.14 6.13 5.36 2.32 2.30 2.28 2.27 2.21 2.19 2.17 1.50 1.48 1.46 1.44 1.42 1.32 1.31 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 145.05 141.22 138.14 136.67 136.64 135.38 135.07 134.96 134.44 133.95 133.94 133.56 133.41 133.38 133.34 133.23 132.35 132.31 132.14 129.49 127.68 126.40 124.21 66.27 56.53 53.33 32.98 31.77 28.66 28.46 28.41 28.32 145 140 135 130 125 120 115 110 105 100 95 90 85 f1 (ppm) 80 75 70 65 60 55 50 45 40 35 30 25

te s x10 5 1. 1108.8 1110.8 4 1106.8 3 1112.8 1109.8 2 1104.8 1107.8 1111.8 1114.8 1 0 1105.8 1116.7 1102.8 1117.7 1100 1105 1110 1115 1120 (E)-(10-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)dec-9-en-1- yl)(trityl)sulfane (8) H S According to the general procedure, from potassium tert-butoxide (58 mg 051 mmol), PTM- P(O)(OEt) 2 (300 mg, 0.34 mmol) and 9-(tritylthio)nonanal (5) (283 mg, 0.68 mmol) in THF (10 ml), the compound 8 was obtained as a withe powder (yield, 65%). 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 7.48 7.41 (m, 6H), 7.32 (t, J = 7.5 Hz, 6H), 7.25 (t, J = 7.2 Hz, 3H), 7.05 (s, 1H), 6.36 (d, J = 16.1 Hz, 1H), 6.19 (dt, J = 16.1, 6.9 Hz, 1H), 2.32 (q, J = 6.8 Hz, 2H), 2.16 (t, J = 7.4 Hz, 2H), 1.52 (p, J = 7.2 Hz, 2H), 1.46 1.16 (m, 10H); 13 C-NMR (101 MHz, CD 2 2 ) δ/ppm: 145.13, 141.46, 138.25, 136.74, 136.70, 135.42, 135.14, 135.03, 134.53, 134.50, 134.02, 134.00, 133.62, 133.47, 133.44, 133.40, 133.30, 132.41, 132.37, 132.21, 129.56, 127.75, 126.47, 124.21, 66.29, 56.59, 53.42, 33.18, 31.86, 29.17, 29.07, 28.96, 28.92, 28.61, 28.55; FT-IR (ν/cm 1 ): 3061.7, 2923.7, 2851.4, 1593.4, 1488.3, 1443.0, 1365.1, 1334.7, 1295.9, 1238.3, 1137.9, 1033.1, 965.1, 852.9, 807.5, 741.5, 967.7. EM (m/z) (ESI): calculated for C 48 H 34 14 S: 1137.79; found: 1136.8 (M-1H).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 f1 (ppm) 11.5 2.2 2.0 2.0 0.9 0.9 0.7 2.8 5.7 5.7 1.21 1.22 1.23 1.24 1.25 1.27 1.28 1.31 1.34 1.36 1.38 1.40 1.42 1.44 1.47 1.49 1.51 1.52 1.54 2.15 2.16 2.18 2.30 2.31 2.33 2.35 5.36 5.36 6.15 6.17 6.19 6.19 6.21 6.23 6.34 6.38 7.05 7.25 7.26 7.30 7.32 7.34 7.44 7.46 7.46 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 f1 (ppm) 28.55 28.61 28.92 28.96 29.07 29.17 31.86 33.18 53.42 56.59 66.29 124.21 126.47 127.75 129.56 132.21 132.37 132.41 133.30 133.40 133.44 133.47 133.62 134.00 134.02 134.50 134.53 135.03 135.14 135.42 136.70 136.74 138.25 141.46 145.13

te s x10 5 5 1. 1136.8 1138.8 4 1134.8 3 2 1132.8 1135.8 1137.8 1139.8 1140.8 1142.8 1141.8 1 0 1133.8 1143.8 1130.9 1145.8 1130 1135 1140 1145 (E)-(12-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)dodec-11- en-1-yl)(trityl)sulfane (9) H S According to the general procedure, from potassium tert-butoxide (58 mg 051 mmol), PTM- P(O)(OEt) 2 (300 mg, 0.34 mmol) and 11-(tritylthio)undecanal (6) (302mg, 0.68 mmol) in THF (10 ml), the compound 9 was obtained as a withe powder (yield, 71%). 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 7.45 (d, J = 7.6 Hz, 6H), 7.32 (t, J = 7.5 Hz, 6H), 7.25 (t, J = 7.2 Hz, 3H), 7.05 (s, 1H), 6.37 (d, J = 16.1 Hz, 1H), 6.20 (dt, J = 16.1, 6.8 Hz, 1H), 2.33 (q, J = 6.8 Hz, 2H), 2.16 (t, J = 7.4 Hz, 2H), 1.55 (p, J = 7.3 Hz, 2H), 1.48 1.11 (m, 14H); 13 C-NMR (101 MHz, CD 2 2 ) δ/ppm: 145.13, 141.51, 138.26, 136.74, 136.70, 135.41, 135.14, 135.02, 134.50, 134.01, 134.00, 133.62, 133.46, 133.43, 133.40, 133.29, 132.41, 132.37, 132.21, 129.55, 127.74, 126.46, 124.18, 66.27, 53.42, 33.21, 31.87, 29.47, 29.37, 29.11, 29.02, 28.98, 28.67, 28.55. EM (m/z) (ESI): calculated for C 50 H 38 14 S: 1165.82; found: 1164.8 (M-1H).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 f1 (ppm) 11.0 4.4 2.5 2.0 2.0 0.9 0.9 0.7 2.8 5.9 5.8 1.21 1.23 1.25 1.26 1.31 1.33 1.38 1.40 1.41 1.43 1.51 1.53 1.55 1.57 1.58 2.14 2.16 2.18 2.31 2.33 2.34 2.36 5.36 6.16 6.18 6.20 6.20 6.22 6.24 6.35 6.39 7.05 7.23 7.25 7.27 7.30 7.32 7.34 7.44 7.46 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 f1 (ppm) 28.55 28.67 28.98 29.02 29.11 29.37 29.47 31.87 33.21 53.42 66.27 124.18 126.46 127.74 129.55 132.21 132.37 132.41 133.29 133.40 133.43 133.46 133.62 134.00 134.01 134.50 135.02 135.14 135.41 136.70 136.74 138.26 141.51 145.13

te s x10 5 1. 1164.8 1166.8 4 1162.8 3 2 1 0 1168.8 1165.9 1167.8 1160.8 1163.8 1170.8 1169.8 1161.8 1171.8 1158.9 1173.8 1160 1165 1170 1175 (E)-(8-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)oct-7-en-1- yl)(trityl)sulfane (radical) (10) S According to the general procedure, the compound 10 was obtained as a red powder in quantitative yield. HPLC: retention time: 14.9 (2.5% of cis isomer), 15.5min (95% of trans isomer), 16.9 (2.5% αh); UV/Vis (CH 2 2 ): λ(nm) (logε)= 388 (4.46), 515 (3.08), 567 (3.10). CV: E 1/2 = -0.16 V (PTM reduction); FT-IR (ν/cm 1 ): 3057.1, 2924.2, 2853.2, 1653.5, 1596.1, 1489.5, 144.4, 1333.0, 1259.6, 1157.3, 1081.6, 1033.9, 857.7, 816.4, 738.1, 697.9, 652.3, 620.5; EPR (CH 2 2, r.t.): g = 2.002804; Η PP = 1.3 G, a 13Cα = 29.6 G; a 13Cο = 13.2 G; a 13Cm = 10.3 G; a 1H = 1.8 G; EM (m/z) (ESI): calculated for C 46 H 29 14 S : 1108.75; found: 1108.8 (M*). Intens. mau 2 200 150 100 50 1 3 0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 Time [min]

Intens. x10 5 1.5 1. -MS, 14.8-15.2min #(460-475) 1104.8 1106.8 1108.8 1110.7 1108.8 1.0 1102.8 1103.8 1105.8 1107.8 1109.7 1112.8 1114.7 1100.8 1115.8 1100 1105 1110 1115 0.5 862.7 1142.7 806.0 896.6 930.9 830.6 980.9 1030.9 1052.8 1080.9 1167.2 0.0 700 750 800 850 900 950 1000 1050 1100 1150 m/z (E)-(10-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)dec-9-en-1- yl)(trityl)sulfane (radical) (11) S According to the general procedure, the compound 11 was obtained as a red powder in quantitative yield. HPLC, retention time: 17.4min (98% of trans isomer); UV/Vis (CH 2 2 ): λ(nm) (logε)= 387 (4.49), 515 (3.11), 566 (3.13); CV: E 1/2 = -0.16 V (PTM reduction); FT-IR (ν/cm 1 ): 3056.0, 2924.2, 2852.4, 1649.5, 1595.2, 1489.1, 1443.4, 1332.7, 1259.2, 1157.2, 1033.6, 966.06, 858.7, 815.9, 739.7, 697.8, 651.9, 619.7; EPR (CH 2 2, r.t.): g = 2.002840; Η PP = 1.1 G, a 13Cα = 29.6 G; a 13Cο = 13.2 G; a 13Cm = 10.2 G; a 1H = 1.8 G; EM (m/z) (Electrospray): calculated for C 48 H 33 14 S : 1136.78; found: 1136.8 (M*). Intens. mau x10 4 1 6 4 2 0 4 6 8 10 12 14 16 18 20 Time [min]

Intens. x10 5 1. -MS, 17.1-17.6min #(532-547) 1136.8 1136.8 5 1138.8 1134.8 4 1137.8 1140.8 1135.8 1139.8 3 1132.8 1142.8 2 1131.9 1143.8 1145.7 1 0 1130 1135 1140 1145 894.6 928.6 1116.9 1170.8 900 950 1000 1050 1100 1150 1200 m/z (E)-(12-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl) dodec-11- en-1-yl)(trityl)sulfane (radical) (12) S According to the general procedure, the compound 12 was obtained as a red powder in quantitative yield. HPLC, retention time: 18.8min (96% of trans isomer); UV/Vis (CH 2 2 ): λ(nm) (logε)= 388 (4.49), 515 (3.12), 566 (3.14); CV: E 1/2 = -0.16 V (PTM reduction); FT-IR (ν/cm 1 ):3055.7, 2924.2, 2852.3 1658.5, 1595.6, 1489.5, 1444.0, 1332.8, 1259.4, 1156.9, 1080.9, 1033.4, 967.2, 858.5, 816.0, 738.6, 697.8, 673.2, 651.8, 620.1; EPR (CH 2 2, r.t.): g = 2.002945; Η PP = 1.4 G, a 13Cα = 29.6 G; a 13Cο = 13.2 G; a 13Cm = 10.1 G; a 1H = 1.8 G; EM (m/z) (Electrospray): calculated for C 48 H 32 14 S : 1164.81; found: 1164.8 (M*). Intens. mau x10 4 4 2 1 0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 Time [min]

Intens. 2. -MS, 18.4-19.0min #(571-592) x10 5 1164.8 1164.8 1166.8 4 1162.9 1165.9 1163.9 1168.8 3 1160.9 1170.8 2 1159.8 1171.8 1173.8 1 1160 1165 1170 1175 0 922.7 956.7 850 900 950 1000 1050 1100 1150 1200 m/z 1198.8 (E)-8-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)oct-7-ene-1- thiol (NR8) H SH The compound NR8 was obtained as withe powder in quantitative yield, using the general methodology described for the generation of free thiols. 1 H-NMR (400 MHz, CD 2 2 ) δ/ppm: 7.00 (s, 1H), 6.31 (d, J = 16.1 Hz, 1H), 6.14 (dt, J = 15.7, 6.7 Hz, 1H), 2.54 (q, J = 7.2 Hz, 2H), 2.31 (q, J = 6.3 Hz, 2H), 1.71 1.17 (m, 9H); 13 C-NMR (101 MHz, CD 3 ) δ/ppm: 141.27, 138.19, 136.79, 136.76, 135.64, 135.28, 135.16, 134.71, 134.10, 134.08, 133.78, 133.70, 133.67, 133.64, 133.58, 133.41, 132.58, 132.54, 132.32, 124.55, 77.16, 56.71, 34.10, 33.33, 28.68, 28.63, 28.30, 24.77. FT-IR (ν/cm 1 ): 2927.0, 2853.9, 2343.8, 1654.2, 1533.8, 1461.7, 1363.7, 1335.5, 1298.7, 1241.0, 1139.2, 963.9, 855.3, 807.2, 752.8, 717.0, 675.2, 692.5. EM (m/z) (MALDI- TOF): calculated for C 27 H 16 14 S: 867.65; found: 866.90 (M-1H) and 796.95 (M-2).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 f1 (ppm) 13.9 2.3 2.1 1.0 1.0 0.8 1.26 1.32 1.34 1.36 1.42 1.43 1.54 1.62 1.64 1.65 2.28 2.30 2.32 2.51 2.53 2.55 2.57 6.10 6.12 6.14 6.16 6.17 6.29 6.33 7.00 7.26 CD3 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 f1 (ppm) 24.77 28.30 28.63 28.68 33.33 34.10 56.71 77.16 CD3 124.55 132.32 132.54 132.58 133.41 133.58 133.64 133.67 133.70 133.78 134.08 134.10 134.71 135.16 135.28 135.64 136.76 136.79 138.19 141.27

r. int. (%) 25 796.9549 [M-2] 20 15 10 5 [M-1Hl] 866.8995 0 810 840 870 m/z (E)-10-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)dec-9-ene-1- thiol (NR10). H SH The compound NR10 was obtained as withe powder in quantitative yield, using the general methodology described for the generation of free thiols. 1 H-NMR (400 MHz, CD 3 ) δ/ppm: 6.99 (s, 1H), 6.31 (d, J = 16.1 Hz, 1H), 6.14 (dt, J = 16.1, 6.8 Hz, 1H), 2.52 (q, J = 7.4 Hz, 2H), 2.30 (q, J = 6.8 Hz, 2H), 1.61 (p, J = 7.2 Hz, 2H), 1.51 (p, J = 7.2 Hz, 2H), 1.43 1.21 (m, 9H); 13 C-NMR (101 MHz, CD 3 ) δ/ppm: 141.47, 136.80, 136.77, 135.59, 135.28, 135.16, 134.70, 134.10, 134.08, 133.77, 133.69, 133.67, 133.64, 133.57, 132.58, 132.53, 132.32, 124.43, 77.16, 56.70, 34.17, 33.41, 29.86, 29.45, 29.18, 29.12, 28.79, 28.50, 24.81.; FT-IR (ν/cm 1 ): 2926.5, 2854.0, 1710.0, 1653.9, 1461.1, 1365.2, 1337.0, 1296.8, 1239.7, 1193.0, 1137.7, 1042.9, 966.8, 899.9, 855.2, 808.4, 739.0, 690.1, 648.4, 609.9; EM (m/z) (MALDI-TOF): calculated for C 29 H 20 14 S: 895.68; found: 894.97 (M-1H) and 825.02 (M-2).

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 f1 (ppm) 24.81 28.50 28.79 29.12 29.18 29.45 29.86 33.41 34.17 56.70 77.16 CD3 124.43 132.32 132.53 132.58 133.57 133.64 133.67 133.69 133.77 134.08 134.10 134.70 135.16 135.28 135.59 136.77 136.80 141.47 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 f1 (ppm) 15.1 2.3 2.2 2.3 2.0 1.1 1.1 0.9 1.25 1.28 1.31 1.33 1.35 1.37 1.39 1.50 1.51 1.53 1.55 1.60 1.61 2.27 2.29 2.31 2.32 2.50 2.52 2.53 2.55 6.11 6.12 6.14 6.15 6.16 6.18 6.29 6.33 6.99 7.26 CD3

r. int. (%) 8 825.0212 7 6 5 4 3 2 894.9722 1 820 830 840 850 860 870 880 890 900 m/z (E)-12-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl) ene-1-thiol (NR12) dodec-11- H SH The compound NR12 was obtained as withe powder in quantitative yield, using the general methodology described for the generation of free thiols. 1 H-NMR (400 MHz, CD 3 ) δ/ppm: 7.00 (s, 1H), 6.31 (d, J = 16.2 Hz, 1H), 6.15 (dt, J = 16.1, 6.9 Hz, 1H), 2.52 (q, J = 7.4 Hz, 2H), 2.30 (q, J = 6.7 Hz, 2H), 1.67 1.45 (m, 5H), 1.45 1.12 (m, 16H); 13 C-NMR (101 MHz, CD 3 ) δ/ppm: 141.54, 138.27, 136.80, 136.77, 135.58, 135.28, 135.17, 134.70, 134.10, 134.08, 133.77, 133.69, 133.67, 133.64, 133.58, 133.42, 132.58, 132.54, 132.33, 124.39, 77.16, 56.70, 34.20, 33.44, 29.86, 29.82, 29.68, 29.65, 29.56, 29.52, 29.22, 29.20, 28.83, 28.53, 24.81, 22.85; FT-IR (ν/cm 1 ): 2924.5, 2852.6, 1717.8, 1653.2, 1532.6, 1461.2, 1365.3, 1336.1, 1296.1, 1263.7, 1238.8, 1137.4, 966.7, 854.8, 807.6, 737.8, 717.6, 700.1, 674.9, 648.0, 606.9; EM (m/z) (MALDI-TOF): calculated for C 31 H 24 14 S: 923.71; found: 922.93 (M-1H) and 852.99 (M-2).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5.0 f1 (ppm) 32.5 7.1 2.0 2.0 0.9 0.9 0.9 0.88 1.26 1.29 1.32 1.34 1.36 1.38 1.48 1.49 1.51 1.53 1.55 1.57 1.59 1.61 1.63 1.64 2.27 2.29 2.31 2.32 2.49 2.51 2.53 2.55 6.11 6.13 6.15 6.17 6.18 6.29 6.33 7.00 7.26 CD3 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 f1 (ppm) 22.85 24.81 28.53 28.83 29.20 29.22 29.52 29.56 29.65 29.68 29.82 29.86 33.44 34.20 56.70 77.16 CD3 124.39 132.33 132.54 132.58 133.42 133.58 133.64 133.67 133.69 133.77 134.08 134.10 134.70 135.17 135.28 135.58 136.77 136.80 138.27 141.54

r. int. (%) 5.0 4.5 4.0 852.9912 3.5 3.0 2.5 2.0 1.5 1.0 922.9325 0.5 0.0 870 900 930 m/z (E)-8-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)oct-7-ene-1- thiol radical (R8) SH The compound R8 was obtained as a red powder in quantitative yield, using the general methodology described for the generation of the free thiol groups. HPLC, retention time 13.8min: (97% of trans isomer); UV/Vis (CH 2 2 ): λ(nm) (logε) = 387 (4.43), 515 (3.10), 566 (3.14); CV: E 1/2 = -0.18 V (PTM reduction); FT-IR (ν/cm 1 ): 3025.5, 2926.1, 2853.6, 1647.8, 1597.7, 1511.2, 1494.2, 1450.8, 1332.3, 12594.4, 1157.4, 1120.1, 1078.6, 1049.1, 1031.4, 966.1, 860.2, 815.8, 752.9, 732.7, 698.1, 651.7, 605.1; EPR (CH 2 2, r.t.): g = 2.002552; Η PP = 1.4 G, a 13Cα = 29.8 G; a 13Cο = 13.1 G; a 13Cm = 10.1 G; a 1H = 1.8 G; EM (m/z) (ESI): calculated for C 27 H 15 14 S : 866.6; found: 866.7 (M*).

Intens. mau x10 4 1 4 2 0 2 4 6 8 10 12 14 16 Time [min] Intens. 1. -MS, 13.6-14.0min #(420-433) x10 5 866.7 866.7 6 868.7 5 864.7 870.7 4 3 2 862.7 867.7 865.7 869.7 872.7 863.7 871.6 860.7 874.6 876.6 860 865 870 875 1 0 900.6 846.7 832.7 760 780 800 820 840 860 880 900 m/z (E)-10-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl)dec-9-ene-1- thiol radical (R10) SH The compound R10 was obtained as a red powder in quantitative yield, using the general methodology described for the generation of the free thiol groups. HPLC retention time: 15.2min (98% of trans isomer); UV/Vis (CH 2 2 ): λ(nm) (logε) = 388 (4.46), 515 (3.08), 566 (3.12); CV: E 1/2 = -0.18 V (PTM reduction); FT-IR (ν/cm 1 ): 3026.8, 2924.7, 2852.7, 1647.37, 1598.3, 1511.0, 1494.9, 1455.2, 1332.3, 1258.9, 1157.4, 1118.9, 1048.3, 965.7, 860.1, 815.4, 750.7, 732.9, 698.9; EPR (CH 2 2, r.t.): g = 2.002431; Η PP = 1.4 G, a 13Cα = 29.5 G; a 13Cο = 13.0 G; a 13Cm = 10.0 G; a 1H = 1.8 G; EM (m/z) (ESI): calculated for C 29 H 19 14 S : 894.7; found: 894.7 (M*).

Intens. mau x10 4 6 1 4 2 0 0 2 4 6 8 10 12 14 16 18 Time [min] Intens. 1. -MS, 14.9-15.4min #(464-479) x10 5 894.7 896.7 5 892.7 894.7 4 898.7 3 2 1 0 895.7 890.7 893.7 671.4 897.7 900.7 891.7 901.7 888.7 703.3 903.6 905 890 895 900 735.3 776.5 874.8 675 700 725 750 775 800 825 850 875 900 m/z (E)-12-(4-(bis(perchlorophenyl)methyl)-2,3,5,6-tetrachlorophenyl) ene-1-thiol radical (R12) dodec-11- SH The compound R12 was obtained as a red powder in quantitative yield, using the general methodology described for the generation of the free thiol groups. HPLC retention time: 21.1min (92% of trans isomer), 22.8 (8% of αh derivative); UV/Vis (CH 2 2 ): λ(nm) (logε) = 387 (4.50), 515 (3.13), 566 (3.16); CV: E 1/2 = -0.18 V (PTM reduction); FT-IR (ν/cm 1 ):2924.4, 2852.4, 1648.6, 1510.6, 1460.7, 1332.3, 1259.1, 1157.1, 1119.7, 1048.3, 966.4, 860.2, 815.7, 752.1, 733.9, 707.0, 651.4, 606.1; EPR (CH 2 2, r.t.): g = 2.002803; Η PP = 1.2 G, a 13Cα = 29.8 G; a 13Cο = 13.2 G; a 13Cm = 10.3 G; a 1H = 1.8 G; EM (m/z) (ESI): calculated for C 31 H 23 14 S : 922.7; found: 922.7 (M*). Intens. mau 150 1 100 50 2 0 5 10 15 20 25 Time [min]

Intens. x10 5 1. -MS, 20.8-21.5min #(646-669) 4 920.7 922.7 924.7 922.7 3 2 916.7 918.7 919.7 921.7 923.7 925.6 926.6 928.6 930.7 1 0 915 920 925 930 956.6 980.8 650 700 750 800 850 900 950 1000 m/z