Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable H-function

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS MULTI-POINT BVPS USING A FIXED-POINT THEOREM

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

derivation of the Laplacian from rectangular to spherical coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

α & β spatial orbitals in

Every set of first-order formulas is equivalent to an independent set

Some Theorems on Multiple. A-Function Transform

2 Composition. Invertible Mappings

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

C.S. 430 Assignment 6, Sample Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Other Test Constructions: Likelihood Ratio & Bayes Tests

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

Finite Field Problems: Solutions

1 Complete Set of Grassmann States

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Matrices and Determinants

A Class of Orthohomological Triangles

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Estimators when the Correlation Coefficient. is Negative

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 3 Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Saigo-Maeda Fractional Differential Operators of the Multivariable H-Function

Statistical Inference I Locally most powerful tests

CRASH COURSE IN PRECALCULUS

EE512: Error Control Coding

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Math221: HW# 1 solutions

8.324 Relativistic Quantum Field Theory II

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

LECTURE 4 : ARMA PROCESSES

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

A summation formula ramified with hypergeometric function and involving recurrence relation

Constant Elasticity of Substitution in Applied General Equilibrium

Example Sheet 3 Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Approximation of distance between locations on earth given by latitude and longitude

Phasor Diagram of an RC Circuit V R

Solutions to Exercise Sheet 5

Section 9.2 Polar Equations and Graphs

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

ST5224: Advanced Statistical Theory II

Mellin transforms and asymptotics: Harmonic sums

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 8 Model Solution Section

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

The Simply Typed Lambda Calculus

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

On Generating Relations of Some Triple. Hypergeometric Functions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Homomorphism in Intuitionistic Fuzzy Automata

Section 7.6 Double and Half Angle Formulas

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

On the k-bessel Functions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Uniform Convergence of Fourier Series Michael Taylor

On the Galois Group of Linear Difference-Differential Equations

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Non polynomial spline solutions for special linear tenth-order boundary value problems

Mean-Variance Analysis

Homomorphism of Intuitionistic Fuzzy Groups

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Reminders: linear functions

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Solution Series 9. i=1 x i and i=1 x i.

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Galatia SIL Keyboard Information

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Concrete Mathematics Exercises from 30 September 2016

6.3 Forecasting ARMA processes

Derivation for Input of Factor Graph Representation

Advanced Subsidiary Unit 1: Understanding and Written Response

SPECIAL FUNCTIONS and POLYNOMIALS

Transcript:

Proc Indan Acad Sc Math Sc Vol 2 No 4 November 2002 pp 55 562 Prnted n Inda Certan fractonal dervatve formulae nvolvng the product of a general cla of polynomal and the multvarable -functon R C SONI and DEEPIKA SING Department of Mathematc MN Inttute of Technology Japur 302 07 Inda MS receved 5 Augut 2000 reved 4 June 2002 Abtract In the preent paper we obtan three unfed fractonal dervatve formulae FDF The frt nvolve the product of a general cla of polynomal and the multvarable -functon The econd nvolve the product of a general cla of polynomal and two multvarable -functon and ha been obtaned wth the help of the generalzed Lebnz rule for fractonal dervatve The lat FDF alo nvolve the product of a general cla of polynomal and the multvarable -functon but t obtaned by the applcaton of the frt FDF twce and t nvolve two ndependent varable ntead of one The polynomal and the functon nvolved n all our fractonal dervatve formulae a well a ther argument whch are of the type ρ = t σ + α are qute general n nature Thee formulae bede beng of very general character have been put n a compact form avodng the occurrence of nfnte ere and thu makng them ueful n applcaton Our fndng provde nteretng unfcaton and etenon of a number of new and known reult For the ake of llutraton we gve here eact reference to the reult n eence of fve reearch paper 2 3 0 2 3 that follow a partcular cae of our fndng In the end we record a new fractonal dervatve formula nvolvng the product of the ermte polynomal the Laguerre polynomal and the product of r dfferent Whttaker functon a a mple pecal cae of our frt formula Keyword Remann Louvlle and Erdély Kober fractonal operator; fractonal dervatve formulae; general cla of polynomal; multvarable -functon; generalzed Lebnz rule Introducton We hall defne the fractonal ntegral and dervatve of a functon f0 pp 528 529 ee alo 6 8 a follow: Let α β and γ be comple number The fractonal ntegral Reα > 0 and dervatve Reα < 0 of a functon fdefned on 0 gven by α β t α F α + β γ;α; t ftdt Ɣα 0 I αβγ Reα > 0 0 f= d q d q I α+qβ qγ q 0 freα 0 0 < Reα + q q = 2 3 where F the Gau hypergeometrc functon 55

552 R C Son and Deepka Sngh The operator I nclude both the Remann Louvlle and the Erdély Kober fractonal operator a follow: The Remann Louvlle operator I α αγ 0 f= t α ftdt Ɣα 0 R0 α f= Reα > 0 d q 2 d q Rα+q 0 freα 0 0 < Reα + q q = 2 3 The Erdély Kober operator E αγ 0 f=iαoγ 0 f= α γ Ɣα 0 t α t γ ftdtreα > 0 Alo Sn m occurrng n the equel denote the general cla of polynomal ntroduced by Srvatava p eq n/m Sn m = k=0 n mk A nk k n = 02 4 k! where m an arbtrary potve nteger and the coeffcent A nk n k 0 are arbtrary contant real or comple On utably pecalzng the coeffcent A nk S m n yeld a number of known polynomal a t pecal cae Thee nclude among other the ermte polynomal the Jacob polynomal the Laguerre polynomal the Beel polynomal the Gould opper polynomal the Brafman polynomal and everal other 6 pp 58 6 The -functon of r comple varable z z r wa ntroduced by Srvatava and Panda 5 We hall defne and repreent t n the followng form 4 p 25 eq C : where w = z z r = 0N:M N ; ;M r N r PQ:P Q ; ;P r Q r z a ; α αr P : c γ P ; ; z r b ; β βr Q : d Q δ ; ; = 2πω r L φ ξ = c r d r γ r P r δ r Q r L r φ ξ φ r ξ r ψξ ξ r z ξ zξ r r dξ dξ r M = Ɣ d Q =M + Ɣ d δ N ξ + δ ξ = Ɣ c + γ ξ P =N + Ɣ c γ ξ 3 5 { r} 6

Unfed fractonal dervatve formulae 553 ψξ ξ r = N= Ɣ a + r = α P=N+ Ɣ a r = α Q ξ = Ɣ b + r = β ξ ξ 7 The nature of contour L L r n 5 the varou pecal cae and other detal of the above functon can be found n the book referred to above It may be remarked here that all the Greek letter occurrng n the left-hand de of 5 are aumed to be potve real number for tandardzaton purpoe The defnton of th functon wll however be meanngful even f ome of thee quantte are zero Agan t aumed that the varou multvarable -functon occurrng n the paper alway atfy ther approprate condton of convergence 4 pp 252 253 eq C5 and C6 2 Man reult 2 Fractonal dervatve formula I αβγ 0 { ρ z u = = α σ ασ n t /m t k t =0 e k ek t t + α σ t = S m n e λ t v + α z r u r = ρ β n /m k =0 n m k n t mt k t k!k t! = = A n k A t n t k t t η + α t +α v r t α η k + +η t k t α η k + +η t k t λ k + +λ t k t 0N++2:M N ; ;M r N r ;0; ;0 P ++2Q++2:P Q ; ;P r Q r 0; ;0 ; } z α v α v u z r α vr α vr α t α t ρ λ k λ t k t ;u u r t t β γ ρ λ k λ t k t ;u u r t t β ρ λ k λ t k t ;u u r t t α γ ρ λ k λ t k t ;u u r t t u r

554 R C Son and Deepka Sngh provded that + σ + η k + +η t k t; v vr +σ +η k + +η t k t ; v vr +σ +η k + +η t k t; v vr +σ +η k + +η t k t ; v vr a ;α αr b ;β βr : c γ P P ; ; : d Q δ ; ; Q c r γ r ; P r ; ; d r δ r ; Q r 0 ; ;0 8 Reα > 0; the quantte t t λ η η λ tη t ηt u v v u rv r vr are all potve ome of them may however decreae to zero provded that the reultng ntegral ha a meanng Reρ + r = u mn Re d M /δ + > 0 Alo the number occurrng below the lne at any place on the rght-hand de of 8 and throughout the paper ndcate the total number of zero/one/par covered by t Thu 0; ;0 would mean r zero/r one/r par and o on r r r 22 Fractonal dervatve formula 2 I αβγ 0 { ρ z u = t + α σ t = S m n e λ t v + α z r u r = = = = t η + α t +α v r z r+ u r+ r+ t v + α z r+τ u r+τ = α σ ασ ρ β l=0 n /m k =0 n t /m t k t =0 β l = } r+τ t v +α n m k n t mt k t k!k t!

Unfed fractonal dervatve formulae 555 A n k A t n t k t e k ek t t α η k + +η t k t α η k + +η t k t λ k + +λ t k t 0N+N +2+3:M N ; ;M r N r ;0; ;0;M r+ N r+ ; ;M r+τ N r+τ ;0; ;0 P +P +2+3Q+Q +2+3:P Q ; ;P r Q r 0; ;0 ; ;P r+ Q r+ ; ;P r+τ Q r+τ 0; ;0 ; z α v α v u z r α vr α vr α t α t z r+ α vr+ u r α vr+ z r+τ α vr+τ α t α t λ k λ t k t ;u u r t t u r+ α vr+τ τ + l γ λ k λ t k t ;u u r t t l λ k λ t k t ;u u r t t τ + α γ λ k λ t k t ;u u r t t +η k + +η t k t; v vr τ +2 2 +σ +η k + +η t k t ; v vr +η k + +η t k t; v vr 00 τ +2 +σ +η k + +η t k t ; v vr a ;α αr ρ; τ +2 N u r+ u r+τ t t r + τ + u r+τ τ + τ +2 τ +

556 R C Son and Deepka Sngh b ; β βr τ +2 Q β l ρ; β l γ; +σ ; α γ ρ; +σ ; +σ ; a + σ ; b u r+ u r+τ t t r + u r+ u r+τ t t r + v r+ r + v r+τ 2 u r+ u r+τ t t r + v r+ r + v r+τ r + ;0 0 r + r + ;0 0 r + v r+ vr+τ α r+ α r+τ v r+ vr+τ β r+ β r+τ 2 P Q a ; α αr : c τ +2 γ ; ; N+P P : c r c r+ d r+ γ r d δ γ r+ δ r+ ; ; ; ; P r Q ; ; P r+ ; ; Qr+ ; ; d r δ r Q c r+τ 0 ; ;0 ; ; r γ r+τ d r+τ δ r+τ Q 0; ;0 ; r+τ 9 ; ; ; P r+τ here z r+ z r+τ tand for the followng multvarable -functon of τ comple varable z r+ z r+τ 4 p 25 eq C:

Unfed fractonal dervatve formulae 557 z r+ z r+τ = 0N :M r+ N r+ ; ;M r+τ N r+τ P Q :P r+ Q r+ ; ;P r+τ Q r+τ z r+ z r+τ a ;αr+ b ;βr+ α r+τ β r+τ P : Q : c r+ γ r+ P c r+τ γ r+τ P r+τ d r+ δ r+ Q d r+τ ; ; r+ ; ; r+ δ r+τ Q r+τ The functon occurrng on the rght-hand de of 9 the -functon of r + 2 + τ varable provded that Reα > 0; the quantte t t λ η η λ tη t ηt u v v u rv r vr u r+ v r+ v r+ u r+τv r+τ v r+τ are all potve ome of them may however decreae to zero provded that the reultng ntegral ha a meanng Reρ + r+τ = u mn Re d M /δ + > 0 23 Fractonal dervatve formula 3 { I αβγ 0 I α β γ 0y ρ y ρ e λ y ζ z u y u = = = t +α v r = t + α η t + α σ y t + β σ τ y t + β t = S m n t + α v y t + β w z r u r y u r } r w y t + β = α σ n /m ασ βσ βσ ρ β y ρ β n t /m t k t =0 e k ek t n m k n t mt k t k!k t! k =0 t α η k + +η t k t α η k + +η t k t λ k + +λ t k t y ζ k + +ζ t k t A n k A t n t k t β τ k + +τ t k t β τ k + +τ t k t 0

558 R C Son and Deepka Sngh 0N+2+4:M N ; ;M r N r ;0; ;0 P +2+4Q+2+4:P Q ; ;P r Q r 0; ;0 ; 2 z α v α v β w β w u y u z r α vr α vr α t α t β yt β y t ρ λ k λ t k t ;u u r β wr u r y u r β wr β γ ρ λ k λ t k t ;u u r β ρ λ k λ t k t ;u u r α γ ρ λ k λ t k t ;u u r +σ +η k + +η t k t; v vr +σ +η k + +η t k t ; v vr +σ +η k + +η t k t; v t t t t t t t t 2 vr 2 +σ +η k + +η t k t ; v vr 2 ρ ζ k ζ t k t ;u u r t 0 t 0 β γ ρ ζ k ζ t k t ;u u r t 0 t 0 β ρ ζ k ζ t k t ;u u r t 0 t 0 α γ ρ ζ k ζ t k t ;u u r t 0 t 0

provded that Unfed fractonal dervatve formulae 559 + σ + τ k + +τ t k t; w wr +σ +τ k + +τ k t;w wr +σ +τ k + +τ t k t; w wr +σ +τ k + +τ k t;w wr a ;α αr b ;β βr 2 c r P γ r 2 d r δ r : 2 2 0 0 2 c γ ; ; P ; ; ; P r Q : d δ ; ; Q 0 ; ;0 ; Q r 2 Reα > 0; Reα > 0; the quantte t t t t λ η η λ t η t ηt ζ τ τ ζ tτ t τt u v v u w w u r v r vr u r wr wr are all potve ome of them may however decreae to zero provded that the reultng ntegral ha a meanng Reρ + r = u mn Re d M ı /δ + > 0 and Reρ + r = u mn M ı Re /δ + > 0 d Proof of 8 To prove the fractonal dervatve formula FDF we frt epre the product of a general cla of polynomal occurrng on t left-hand de n the ere form gven by 4 replace the multvarable -functon occurrng theren by t well-known Melln Barne contour ntegral gven by 5 nterchange the order of ummaton ξ ξ r - ntegral and takng the fractonal dervatve operator nde whch permble under the condton tated wth 8 and make a lttle mplfcaton Net we epre the term t σ +η + α k + +η t k t v ξ v r ξr t σ +η +α k + +η t k t v ξ v r ξ r o obtaned n term of Melln Barne contour ntegral 4 p 8 eq 264; p 0 eq 2 Now nterchangng the order of ξ r+ ξ r+ and ξ ξ r -ntegral whch alo permble under the condton tated wth 8 and evaluatng the -ntegral thu obtaned by ung the known formula 9 p 6 Lemma I αβγ 0 { λ } = Ɣ + λɣ β + γ + λ Ɣ β + λɣ + α + γ + λ λ β Reλ > ma0 Reβ γ 2 and renterpretng the multvarable Melln Barne contour ntegral o obtaned n term of the -functon of r + varable we ealy arrve at the dered formula 8 after a lttle mplfcaton

560 R C Son and Deepka Sngh Proof of 9 To prove FDF 2 we take and f= ρ t σ +α = z r+ u r+ r+ t v +α = g = t + α σ = r+τ t v +α z u t = S m n e λ = t v + α z r u r = z r+τ u r+τ t η + α = r t v +α n the left-hand de of 9; and apply the followng generalzed Lebnz rule for the fractonal ntegral I αβγ 0 {fg} = l=0 β l I αβ lγ 0 {f}i αlγ 0 {g} 3 we ealy obtan FDF 2 after a lttle mplfcaton on makng ue of FDF and a known reult 4 p 9 eq 6 Proof of To prove FDF 3 we ue the formula FDF twce frt wth repect to the varable y and then wth repect to the varable ; here and y are ndependent varable 3 Specal cae and applcaton The fractonal dervatve formulae 2 and 3 etablhed here are unfed n nature and act a key formulae Thu the general cla of polynomal nvolved n FDF 2 and 3 reduce to a large pectrum of polynomal lted by Srvatava and Sngh 6 pp 58 6 and o from formulae 2 and 3 we can further obtan varou fractonal dervatve formulae nvolvng a number of mpler polynomal Agan the multvarable -functon occurrng n thee formulae can be utably pecalzed to a remarkably wde varety of ueful functon or product of everal uch functon whch are epreble n term of EFG and -functon of one two or more varable For eample f N = P = Q = 0 or N = P = Q = 0 the multvarable -functon occurrng n the left-hand de of thee formulae would reduce mmedately to the product of r or τ dfferent -functon of Fo Thu the table ltng varou pecal cae of the -functon 5 pp 45 59 can be ued to derve from thee fractonal dervatve formulae a number of other FDF nvolvng any of thee mpler pecal functon On reducng the operator defned by to the Remann Louvlle operator gven by 2 we arrve at three fractonal dervatve formulae nvolvng thee operator but we do not record them here eplctly Agan our FDF 2 and 3 wll alo gve re n eence to a

Unfed fractonal dervatve formulae 56 number of other FDF lyng cattered n the lterature ee 2 pp 563 564 eq 2 23 3 pp 644 645 eq 2 23 3 pp 7 72 eq 2 and 2 p 7 eq 3 on makng utable ubttuton Alo f we take σ = 0 = ν 8 the polynomal S m 0 Sm t = = νr = and n = 0 = t n 0 wll reduce to A 00 At 00 repectvely whch can be taken to be unty wthout lo of generalty we arrve at the formula gven by 0 p 532 eq 4 If n FDF we take t = 2 and reduce the polynomal S m n to the ermte polynomal 6 p 58 eq 4 the polynomal S m 2 n 2 to the Laguerre polynomal 6 p 59 eq 8 the multvarable -functon to the product of r dfferent Whttaker functon 4 p 8 eq 267 we arrve at the followng new and nteretng pecal cae of the FDF after a lttle mplfcaton I αβγ 0 = k r b l + n 2 ρ+ l= = r I= t σ + α n 2 L θ n 2 } ep z l 2 W µl ν l z l rl= z l b l α σ ασ ρ β n /2 Ɣ σ Ɣ σ n2 + θ n 2 k +k 2 θ + k2 n 2 k =0 k 2 =0 n 2k n 2 k2 k!k 2! z z r ; ; 02:20; ;20;; ; 2; ;2 22: r ; α t α t ρ k k 2 ; t t β γ ρ k k 2 ; β ρ k k 2 ; t t r t t : α γ ρ k k 2 ; t t : r b µ +; ;b r µ r +;+σ ; ;+σ b ±ν + 2 ; ; b r ±ν r + 2 0; ;0 ; The condton of valdty of 4 can be ealy obtaned from thoe of 8 Several other nteretng and ueful pecal cae of our man fractonal dervatve formulae 2 and 3 nvolvng the product of a large varety of polynomal whch are pecal cae of S m n S m t n t and numerou mple pecal functon nvolvng one or more 4

562 R C Son and Deepka Sngh varable whch are partcular cae of the multvarable -functon can alo be obtaned but we do not record them here for lack of pace Acknowledgement The author are thankful to the referee for h ueful uggeton Reference Fo C The G and -functon a ymmetrcal Fourer kernel Tran Amer Math Soc 98 96 395 429 2 Gupta K C and Agrawal S M Fractonal ntegral formulae nvolvng a general cla of polynomal and the multvarable -functon Proc Indan Acad Sc Math Sc 99 989 69 73 3 Gupta K C Agrawal S M and Son R C Fractonal ntegral formulae nvolvng the multvarable -functon and a general cla of polynomal Indan J Pure Appl Math 2 990 70 77 4 Gupta K C and Son R C A tudy of -functon of one and everal varable J Raathan Acad Phy Sc 2002 89 94 5 Matha A M and Saena R K The -functon wth applcaton n tattc and other dcplne New Delh: Wley Eatern Lmted 978 6 Mller K S and Ro B An ntroducton to the fractonal calculu and fractonal dfferental equaton New York: John Wley and Son 993 7 Oldham K B and Spaner J The fractonal calculu New York: Academc Pre 974 8 Sago M A remark on ntegral operator nvolvng the Gau hypergeometrc functon Math Rep Kyuhu Unv 978 35 43 9 Sago M and Rana R K Fractonal calculu operator aocated wth a general cla of polynomal Fukuoka Unv Sc Report 8 988 5 22 0 Sago M and Rana R K Fractonal calculu operator aocated wth the -functon of everal varable n: Analy Geometry and Group: A Remann Legacy Volume ed M Srvatava and Th M Raa Palm arbor Florda 34682-577 USA adronc Pre ISBN 0-9767- 59-2 993 527 538 Srvatava M A contour ntegral nvolvng Fo -functon Indan J Math 4 972 6 2 Srvatava M Chandel R C Sngh and Vhwakarma P K Fractonal dervatve of certan generalzed hypergeometrc functon of everal varable J Math Anal Appl84 994 560 572 3 Srvatava M and Goyal S P Fractonal dervatve of the -functon of everal varable J Math Anal Appl 2 985 64 65 4 Srvatava M Gupta K C and Goyal S P The -functon of one and two varable wth applcaton New Delh: South Aan Publher 982 5 Srvatava M and Panda R Some blateral generatng functon for a cla of generalzed hypergeometrc polynomal J Rene Angew Math 283/284 976 265 274 6 Srvatava M and Sngh N P The ntegraton of certan product of the multvarable -functon wth a general cla of polynomal Rend Crc Mat Palermo 32 983 57 87