( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
|
|
- Κόρη Ελευθερόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a imple differenial equaion for w w dw (.) w + w= w = d dw w = d wih iniial condiion w( ) α w = : = = β. Then he oluion of (.) i eaily found o be αco βin w = +. We generalize hi o he following nonlinear differenial equaion which i well known a van der Pol equaion: w w w + w= (.) ε where < ε <. If we ake (.3) W = AW Γ W w = w we can wrie (.) a he following way: where A = ε Γ=Γ =. ww ( ). ( ) The marix A ha wo eigen value r = ε + i and r = ε i ( ha a pecral repreenaion A = rp+ rp I = P+ P PP = PP =. Hence from he relaion rp = A rp = A r I P = ε ) and we have
2 P = A r r r P = ( r A) r r Uing hee we will be able o wrie he exponenial funcion of A :. { } e = e P + e P = e e A + re re r r A r r r r r r We can ge r r e e ε in = e r r So we have (.4) and r r re re ε in = e co ε r r. A in in e e ε A co ε = + ε in = e U Σ where in co U U( ) = = and Σ= in co ε.. Lemma.. We have (.5) UU = U + (.6) U = I (.7) in ΣU Σ= U Σ where U U ( ) in co = = and in co Σ= ε. I i ell known ha a oluion of (.3) aifie A (.8) ( ) A W = e W e Γ d Hence uing (.4) and (.7) we have (.9) ε in e W U W = Σ ( ) in e U Σ d w( ) w ( )
3 =ΣU ΣW e ΣU Σ d. w ( ) w ( ) Theorem.. I =Σ Σ + ε I (.) e W( ) U ( ) W S C ( ) ( ) where Proof in IS ( ) = e w ( ) w ( ) d = co I e w w d C Since U Σ = U we have Σ = I and ww ( ) ww ( ) I e ΣU Σ d =Σ U e U d =ΣU w ( ) w ( ) w( ) w ( ) I c. Hence we have from (.9) he deired reul (.). ( ) Theorem.3. If e W( ) lim hen here exi lim lim c co I I e w w d C = = in I( ) = IS ( ) = e w ( ) w ( ) d and (.) Σ W + ε = where Σ= ε ε Proof : From (.) we have e U ( ) W( ) W ( ) ( ) I S Σ =Σ + ε 3
4 and leing in he la equaion we have (.). Theorem.4 W( ) W( ) if and only if + = for ome > (.) ε e U = e U I ΣW Proof: Subiuing + ino of (.) ( ) ( ) e W( ) =ΣU Σ W + ε I C we have ( + ) ( + ) ε + e W( + ) =ΣU Σ W + ε I C.. Hence W( ) W( ) (.3) + = i equivalen o e U Σ W + ε =Σ W + ε IC. which lead o (.). Remark: W = W( ) if and only if W W or (.3) i auonomou. A a reul we have =. Thi i becaue our yem (.) Theorem.5 The following are equivalen W W (.4) = for ome > ε ( e U ) W (.5) Σ = ε Proof Taking = in (.) we have (.5). Hence we ee ha (.5) i equivalen o W = W. Hence we have (.4) by he propery of auonomou in he yem. 4
5 Theorem.6 The following are equivalen W W (.6) = for ome > (.7) ( + ) ( + ) ( ) ( ) e U = Proof (.6) (.7): Since from (.6) we have W = W( ) we have ε e U = ( e U I) ΣW which i for = ε = ( e U I) Σ W. Hence we have (.7). (.7) (.6) Puing in (.7) we have ε( I e U ) = ε. From (.) we have ε = Σ W o we have ε ( I e U ) W Σ = ε. The la formula i equivalen o (.6).. Properie of he periodic oluion of van der Pol differenial equaion If w ( + ε ) = w ( ε) wih he period = ( ε) of rajecory ( ) we have from Theorem.5 (.) ε ( e U ) W Σ = ε ha i wε hen 5
6 (.) w( ε )( e co ) + ( w( ε ) ε w ( ε )) in ( ) = ε e w ε w ε d (.3) e in w ε e in + w ε ε w ε e co ( ) = ε e co w ε w ε d Dividing boh ide of hee equaion by ε we have (.4) e co e in w( ε) + ( w( ε) ε w ( ε) ) ε ε in = e ( w ( ε) w ( ε) ) d (.5) w e in ( ( ) ( )) e ε w w co + ε ε ε ε ε ( ) = e co w ε w ε d Since we have known he rajecorie wε ( ) on he limi cycle are bounded uniformly in by aking ε in he equaion (.) we would have (.6) lim W( ε) = U limw ( ε) ε ε U co in = in co ha i he ame: (.7) ε ( ε) = = α + β lim w w co in lim w ε = w = α in + β co ε where α = lim w( ε) and β lim w( ε) ε ε limi of he period ( ε ) of he limi cycle i ( ε) equaion (.4) and (.5) we would have =. I could be conidered o how ha he lim = π. By aking ε in he ε 6
7 (.8) π ( ) πα + β + in w w d = which i π + + =. 4 (.9) πα β α ( α β ) Alo (.) π ( ) βπ+ α + co w w d = which i π = 4 (.) βπ α β ( α β ) where we have hown he exience of in ε = lim which i equivalen o he ε ε differeniabiliy of ε. When we olve he imulaneou equaion (.9) and (.) we have = and α + =. Hence we have w ( ε) w ( ε) β 4 for each by he propery of auonomou yem. ε { } lim + = 4 3. Anoher approach Le u conider one more van der Pol equaion x x x + x= (3.) µ where µ > dx x = d d x x = d inegraing hem we have ( ) x x x x d + = µ. Muliplying x boh ide of (3.) and from which if we apply an iniial condiion α = x β = x ( ) x β + x α = µ x x d. 7 hen we have
8 Le be he period of he limi cycle of hi yem. Then we have aking ( ) = x x d. A in he previou ecion if we ake µ we will be having π and x( ) x ( ) = α co+ β in. So we mu have = π ( ) = x x d. ( ( α β ) )( α β ) π d. = co + in in + co π π ( α in + β co ) = ( α in + β co ) ( α co + β in ) d From which we again obain µ { x( ) x( ) } α + = ha i we have β 4 lim + = 4 by arbirarily chooing he iniial ime inead of =. 8
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat
Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model
Inernaional Journal of Modern Nonlinear Theory and Applicaion, 6, 5, 8-9 Publihed Online March 6 in SciRe hp://wwwcirporg/journal/ijmna hp://dxdoiorg/36/ijmna659 Global Aracor for a la of Nonlinear Generalized
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Xiaoquan (Michael) Zhang
RESEARCH ARTICLE HO DOES THE INTERNET AFFECT THE FINANCIAL MARKET? AN EQUILIBRIUM MODEL OF INTERNET-FACILITATED FEEDBACK TRADING Xiaoquan (Michael) Zhang School of Buine and Managemen, Hong Kong Unieriy
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Appendix A. Stability of the logistic semi-discrete model.
Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
α ]0,1[ of Trigonometric Fourier Series and its Conjugate
aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Αλγόριθμοι και πολυπλοκότητα Maximum Flow
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Maximm Flo Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Maximm Flo χ 3/5 4/6 4/7 1/9 3/5 5/11/2008 11:05 PM Maximm Flo 1 Oline and Reading
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Linear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det
Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Asymptotic behavior of solutions of mixed type impulsive neutral differential equations
Tariboon e al. Advance in Difference Equaion 2014, 2014:327 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 R E S E A R C H Open Acce Aympoic behavior of oluion of mixed ype impulive neural differenial
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Managing Production-Inventory Systems with Scarce Resources
Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Fourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey
Epanion and one-range addiion heore for coplee orhonoral e of pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin in poiion oenu and four-dienional pace I.I. Gueinov Deparen of Phyic
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations
P4 Stre and Strain Dr. A.B. Zavatk HT08 Lecture 5 Plane Stre Tranformation Equation Stre element and lane tre. Stree on inclined ection. Tranformation equation. Princial tree, angle, and lane. Maimum hear
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ
ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ Συστήματα γεωγραφικών πληροφοριών 1 ος Κύκλος Εκπαίδευσης ο σεμινάριο Ιουνίου 0 Δρομολόγηση Η δρομολόγηση (rouing) είναι η διαδικασία εύρεσης των «καλύτερων» μονοπατιών
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Cyclic or elementary abelian Covers of K 4
Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3
Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems
Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:
Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic