Notes 6 Coordinate Systems

Σχετικά έγγραφα
Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Answer sheet: Third Midterm for Math 2339

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Homework 8 Model Solution Section

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

derivation of the Laplacian from rectangular to spherical coordinates

Spherical Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CYLINDRICAL & SPHERICAL COORDINATES

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Approximation of distance between locations on earth given by latitude and longitude

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Areas and Lengths in Polar Coordinates

CURVILINEAR COORDINATES

Parametrized Surfaces

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Math221: HW# 1 solutions

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Solutions to Exercise Sheet 5

Section 9.2 Polar Equations and Graphs

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

Chapter 7 Transformations of Stress and Strain

Variational Wavefunction for the Helium Atom

PARTIAL NOTES for 6.1 Trigonometric Identities

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

1 String with massive end-points

CRASH COURSE IN PRECALCULUS

Geodesic Equations for the Wormhole Metric

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Inverse trigonometric functions & General Solution of Trigonometric Equations

Matrices and Determinants

Srednicki Chapter 55

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

D Alembert s Solution to the Wave Equation

Strain gauge and rosettes

( y) Partial Differential Equations

Example 1: THE ELECTRIC DIPOLE

Tutorial Note - Week 09 - Solution

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order RLC Filters

The Simply Typed Lambda Calculus

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Derivations of Useful Trigonometric Identities

Second Order Partial Differential Equations

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Section 8.2 Graphs of Polar Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

TMA4115 Matematikk 3

Numerical Analysis FMN011

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Differential equations

Orbital angular momentum and the spherical harmonics

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Differentiation exercise show differential equation

Homework 3 Solutions

Geometry of the 2-sphere

Solution to Review Problems for Midterm III

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Lecture: P1_Wk1_L5 Inter-Molecular Forces: Keesom Force. Ron Reifenberger Birck Nanotechnology Center Purdue University 2012

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Notes on the Open Economy

Lecture 26: Circular domains

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SPECIAL FUNCTIONS and POLYNOMIALS

Math 6 SL Probability Distributions Practice Test Mark Scheme

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

F-TF Sum and Difference angle

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 6 Mohr s Circle for Plane Stress

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Trigonometric Formula Sheet

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

Trigonometry 1.TRIGONOMETRIC RATIOS

Example Sheet 3 Solutions

10.7 Performance of Second-Order System (Unit Step Response)

Transcript:

ECE 3318 pplied Electricit and Magnetism Spring 018 Prof. David R. Jackson Dept. of ECE Notes 6 Coordinate Sstems Notes prepared b the EM Group Universit of Houston 1

Review of Coordinate Sstems P(,, ) n understanding of coordinate sstems is important for doing EM calculations.

Kinds of Integrals That Often Occur Line integrals : Volume integrals : Q V E Q E C C ρ d E dr C ρ Rˆ 4πε R V V 0 v ρ dv ρ ˆ v R 4πε R 0 (scalar integral, scalar result) d (vector integral, scalar result) (vector integral, vector result) (scalar integral, dv scalar result) (vector integral, vector result) Q I E Surface integrals : S s J nˆ ds S S ρ ds ρ ˆ s R 4πε R 0 (scalar integral, scalar result) (vector integral, scalar result) ds (vector integral, vector result) We wish to be able to perform all of these in various coordinates. 3

Rectangular Coordinates Position vector: r ˆ + ˆ + ˆ ẑ r P(,, ) Short hand notation: r (,, ) ˆ ŷ Note: We have the tip to tail rule when adding vectors. Note: unit vector direction is defined b increasing one coordinate variable while keeping the other two fied. Note: Different notations are used for vectors in the books. 4

Rectangular Coordinates Differentials d d ds dd d ds dd ds dd dv d d d We increase,, or starting from an initial point (blue dot). Note: ds ma be in three different forms. 5

Rectangular (cont.) Path Integral (we need dr) C r dr r + dr dl dr r ˆ + ˆ + ˆ dr d ( r ) dr dr ˆd + ˆd + ˆ d Note on notation: The smbol dl is often used instead of dr. 6

Clindrical Coordinates ρ ρ P ( ρφ,, ) φ φ. ρcosφ ρsinφ ρ + φ ( ) 1 tan / 7

Clindrical (cont.) ẑ Unit Vectors ρ. ˆρ φ Note: unit vector direction is defined b increasing one coordinate variable while keeping the other two fied. φ ˆρ Note: and ˆ φ depend on (, ) ˆρ φ This is wh we often prefer to epress them in terms of ˆ and ˆ 8

Clindrical (cont.) Epressions for unit vectors (illustrated for ˆρ ) φ ˆρ ssume ˆ ρ ˆ+ ˆ 1 φ Solve for 1 : Similarl, so ˆ ρ ˆ ˆ ˆ+ ˆ ˆ 1 1 ˆ ρ 1 ˆ ˆ ρ ˆ cosφ cosφ ˆ ˆ ρ π cos φ sinφ Hence, we have ˆ ρ ˆcos φ+ ˆsin φ 9

Clindrical (cont.) Summar of Results ˆ ρ ˆcos φ+ ˆsin φ ˆ φ ˆ sinφ + ˆcos φ ˆ ˆ ( ) ˆ ˆ ρcosφ+ ˆ φ sinφ ( ) ˆ ˆ ρsinφ+ ˆ φcosφ ˆ ˆ 10

Clindrical (cont.) ẑ ρ. φ ˆρ r Eample: Epress the r vector in clindrical coordinates. r ˆ + ˆ + ˆ Substituting from the previous tables of unit vector transformations and coordinate transformations, we have r ( ρcosφ ˆ φ( sinφ) )( ρcosφ) ( ρsinφ ˆ φcosφ)( ρsinφ) ˆ + + ˆ + + ˆ ( ˆ ρρ )( cos φ sin φ ) + + ˆ ˆ ρρ + ˆ 11

Clindrical (cont.) ẑ ρ. φˆ r ˆρ ẑ ˆρρ r ˆ ρρ + ˆ Note: r ˆ ρρ + ˆ φφ + ˆ 1

Clindrical (cont.) Differentials ds ρd ρdφ dφ Note: ds ma be in three different forms. ρ d ds dρd dρ ρdφ ds ρdφd dv ρdρdφd We increase ρ, φ, or starting from an initial point (blue dot). Note: The angle φ must be in radians here. 13

Clindrical (cont.) Path Integrals First, consider differential changes along an of the three coordinate directions. dρ dφ ρ ρdφ dφ d dr ˆ ρdρ dr ˆ φ( ρdφ) dr ˆ d Note: The angle φ must be in radians here. 14

Clindrical (cont.) In general: Note: change in is not shown, but is possible. ˆ( ) dr ˆ ρdρ + φ ρdφ + ˆ d C ˆ ρd ρ dr If we ever need to find the length along a contour: ( ρ) ( ρ φ) ( ) d dr d + d + d ( ρdφ) φ 15

Spherical Coordinates φ θ r. P( r, θφ, ) φ ρ θ r. P( r, θφ, ) Note: 0 θ π Note: ρ r sin θ 16

Spherical (cont.) φ ρ θ r. P( r, θφ, ) rsinθ cosφ rsinθ sinφ rcosθ r + + θ φ ( r) ( ) 1 cos / 1 tan / Note: ρ r sin θ 17

Spherical (cont.) Unit Vectors θ ˆr φˆ Note: unit vector direction is defined b increasing one coordinate variable while keeping the other two fied. Note: ( ) rˆ, ˆ θ, ˆ φ depend on,, 18

Spherical (cont.) Transformation of Unit Vectors ˆr rˆ ˆsinθcosφ+ ˆsinθsinφ+ ˆ cosθ ˆcos cos + ˆcos sin + ˆ ( sin ) θ θ φ θ φ θ θ φˆ ( sin ) ˆ φ ˆ φ + ˆcos φ ˆ( ) ˆ rˆsin θcosφ+ θcosθcosφ+ φ sinφ ˆ rˆsinθsinφ+ θcosθsinφ+ ˆ φcosφ ( ) ˆ rˆ cosθ + θ sinθ 19

Spherical (cont.) θ ˆr φˆ Eample: Epress the r vector in spherical coordinates. r ˆ + ˆ + ˆ Substituting from the previous tables of unit vector transformations and coordinate transformations, we have: ( ˆ sinθ cosφ θ cosθ cosφ ˆ φ( sinφ) )( sinθ cosφ) r r + + r + ( rˆ sinθ sinφ+ θ cosθ sinφ+ ˆ φ cosφ)( rsinθ sinφ) ( r ( )) + ˆ cosθ + θ sinθ rcosθ 0

Spherical (cont.) fter simplifing: ˆrr ˆr φˆ θ r rr ˆ Note : r rr ˆ + ˆ θθ + ˆ φφ 1

Spherical (cont.) Differentials ( sin ) ρdφ r θ dφ We increase r, θ, or φ starting from an initial point (blue dot). dφ r ρ ( sinθ) ds r dθdφ dθ dr rdθ dv r sinθ dr dθ dφ Note: ds ma be in three different forms (onl one is shown). The other two are: ds r drdθ ds r sinθdrdφ Note: The angles θ and φ must be in radians here.

Spherical (cont.) Path Integrals dr r dθ dr dφ ρ dr r ρdφ rsinθ dφ dr rˆ dr dr ˆ θ( rdθ) dr ˆ φ ( rsinθdφ) dr rˆ dr + ˆ θ rdθ + ˆ φr sinθdφ Note: The angles θ and φ must be in radians here. 3

Note on dr Vector Note that the formula for the dr vector never changes, no matter which direction we go along a path (we never add a minus sign!). Eample: Integrating along a horiontal radial path in clindrical coordinates. ˆ( ) dr ˆ ρdρ + φ ρdφ + ˆ d V E dr dr ˆ ρdρ The limits take care of the sign of dr. E ˆ ρe + ˆ φe + E V ρ ρ ρ Edρ This form does not change, regardless of which limit is larger. φ ρ ˆ C dr ρ < ρ d ρ > 0 dr +ρˆ dρ C dr ρ > ρ dρ < 0 dr ρˆ dρ 4

Eample Given: J ( ) ˆ [/m ] Find the current I crossing a hemisphere ( > 0) of radius a, in the outward direction. Hemisphere nˆ rˆ I J nˆ ds S J 5

Eample (cont.) I J nˆ ds S J rˆ ds S S S S S a ( ˆJ ) rˆds J ( sinθcosφ) ( )( sinθcosφ) ( a sinθcosφ)( sinθcosφ) ( sin θcos φ) S ds ds ds ds rˆ ˆsinθcosφ+ ˆsinθsinφ+ ˆ cosθ ˆcos cos + ˆcos sin + ˆ ( sin ) θ θ φ θ φ θ ( sin ) ˆ φ ˆ φ + ˆcos φ ˆ( ) ˆ rˆsin θcosφ+ θcosθcosφ+ φ sinφ ˆ rˆsinθsinφ+ θcosθsinφ+ ˆ φcosφ ( ) ˆ rˆ cosθ + θ sinθ rsinθ cosφ rsinθ sinφ rcosθ 6

Eample (cont.) S ( sin θcos φ) I a ds ππ/ a sin cos a sin d d a a a 0 0 ( ) ππ/ 3 0 0 ( ) π / 3 ( ) ( sin ) ( ) ( sin ) ( π ) 0 π / 3 3 0 3 a θ φ θ θ φ sin θcos φ sinθ dθdφ π θ sinθ dθ π θ dθ 3 I π a 3 3 [] ds r sinθ dθdφ Note : π 0 π / 0 1 φ φ ( π) π cos d Note : sin 3 θdθ 3 7

ppendi Here we work out some more eamples. 8

Eample ( ) ( ) o P1 4,60,1 Given: Clindrical coordinates (ρ, φ, ) o P 3,180, 1 with distances in meters Find d distance between points ( ) ( ) ( ) d + + 1 1 1 This formula onl works in rectangular coordinates! ρcosφ ρsinφ 1 1 1 ( ) ( ) 4cos 60 4sin 60 3.4641 1 ( ) ( ) 3cos 180 3 3sin 180 0 1 d 6.403 [m] 9

Eample Given: ( φ ) [ ] ρv r < r < 8 4 3 3 10 cos / C/m, 5 m Find Q Solution: Note: The integrand is separable and the limits are fied. a a b [ ] b [ ] m, 5m Q V ρ dv v π π 0 0 b a v ( ) ρ r φ r θdrdθdφ, sin π π b 8 1 3 10 cos sin r 0 0 a φ θ drdθdφ sphere with a hole in it π b π 8 1 r 0 a 0 3 10 cos φdφ dr sinθdθ 30

Eample (cont.) π π cos 0 0 b a φdφ 1+ cos φ dφ π 1 sin φ φ + π 4 1 1 dr r r 1 1 3/10 a b b a 0 Note: The average value of cos φ is 1/. π 0 1 φ φ π π cos d π 0 [ ] sinθ dθ cosθ π 0 Q 8 5.655 10 [C] 31

Eample Derive ˆ rˆ cosθ + θ( sinθ) Let ẑ r ˆ + θ + ˆ φ 1 3 Dot multipl both sides with rˆ, θ, ˆ φ Then ˆ 1 ˆ r θ ˆ 3 ˆ ˆ φ 3

Eample (cont.) ẑ r ˆ + θ + ˆ φ 1 3 ẑ θ ˆr ẑ φˆ ẑ θ θ θ θ θ 1 1 ˆ rˆ ˆ rˆ cosθ cosθ ˆ θ ˆ π θ cos + θ sinθ 3 ˆ φ 0 3 ˆ ˆ φ 0 Result: ( ) ˆ rˆ cosθ + θ sinθ 33

Eample Derive rˆ ˆsinθcosφ+ ˆsinθsinφ+ ˆ cosθ rˆ ˆ + ˆ + ˆ Let 1 3 Dot multipl both sides with ˆ, ˆ, ˆ θ ˆr 1 3 ( component of ˆ) ( component of ˆ) ( component of ˆ) rˆ ˆ r rˆ ˆ r rˆ ˆ r φ L ˆρ n illustration of finding the component of ˆr (We use a two-step process.) 34

Eample (cont.) θ θ ˆr π / θ π L cos θ sin θ Hence φ L ˆρ rˆ ˆ Lcosφ sinθcosφ Similarl, rˆ ˆ Lsinφ sinθsinφ lso, rˆ ˆ cosθ Result: rˆ ˆsinθcosφ+ ˆsinθsinφ+ ˆ cosθ 35

Eample (Part 1) ( 3 ) ( ) ( 1) E ˆ + ˆ + ˆ + (This is not an electrostatic field.) Find V using path C shown below. ( 1,0,0) C E(,, ). ( 0,1, 0) Top view ( ) (( 3) d ( ) d) 1 d d V E dr E d + E d + E d + 1 1 1 0 1 ( 3 )( 1 ) ( 1 ) V d 36

Eample (cont.) Completing the calculus: 0 1 0 1 1 0 1 ( 3 )( 1 ) ( 1 ) V d 3 3 + 3 d 3 + 3 + + 3 d 3 ( ) + d 0 1 1 1 3+ 4 1 5 + 4 3 1 1 V [ ] 5 /1 V 37

Eample (cont.) lternative calculation (we parameterie differentl): 0 1 ( ) V E dr E d + E d + E d ( 3 ) ( ) d + d 1 0 1 1 0 1 ( 3 )( 1 ) ( 1 )( ) V d + d 1 0 0 1 3 ( 3 3 ) ( ) d + d 1 0 3 1 1 + 1 + 3 4 V [ ] 5 /1 V 38

Eample (Part ) ( 3 ) ( ) ( 1) E ˆ + ˆ + ˆ + (same field as in Part 1) Find V using path C shown below. ( 1,0,0) C E(,, ) ( 0,1, 0) ( ) E dr E d + E d + E d (( 3) d ( ) d) + 0 ( ( 3 ) ( ) ) ( 3 ) ( ) 0 1 0d + 0d 0 1 0 0 ( ) d + d + d + d V 0 [ V] 39

Eample ( 3 ) ( ) ( ) E ˆ + ˆ + ˆ (This is a valid electrostatic field.) ( 1,0,0) Find V using an arbitrar path C in the plane. C E(,, ) ( 0,1, 0) Note: The path does not have to be parameteried. Hence, onl the endpoints are important. The integral is path independent! ( ) E dr E d + E d + E d ( 3 ) ( ) d + d 0 1 ( 3 ) ( ) d + d 1 0 1 1 ( 3 ) ( ) V d + d V 0 0 1 1 3 + 3 7/6 [ ] 7/6 V 40

Eample Note: If we have an electric field of the form: ( ( )) ( ) ( ) ( ( )) E ˆ f + ˆ g + ˆ h E 0 (discussed later) V is path independent. 41

Eample ( ) ( ) E ˆ + ˆ Find V using path C shown below. V E dr ( dφ) ( ) dr ˆ ρdρ + ˆ φ ρdφ + d ˆ ˆ φ 3 ρ cosφ 3cosφ ρ sinφ 3sinφ 3[ m] C ( ) ˆ ˆ ρ cosφ + ˆ φ sinφ ˆ ˆ ρ sinφ+ ˆ φcosφ 4

Eample (cont.) ( ) ( ) E ˆ + ˆ ˆcos ˆsin ( 3cos ) ˆsin ˆcos ( ( 3sin )) dr ˆ φ ( 3dφ ) E ρ φ φ φ φ + ρ φ+ φ φ φ V π / π π / π 9sinφcosφdφ 9 sin ( φ) ( φ ) 9 cos dφ π / π 9 1 1 9 ( ) E dr 9 + 18 sinφcosφdφ 9sinφcosφdφ Note: The angle φ must change continuousl along the path. If we take the angle φ to be π / at point, then the angle φ must be -π at point. V 9/ [ V] 43

Eample (cont.) Let s eamine this same electric field once again: ( ) ( ) E ˆ + ˆ V E dr Question: Is this integral path independent? 3[ m] C Note: The answer is es because the curl of the electric field is ero, but we will talk about curl later. 44

Eample (cont.) ( ) ( ) E ˆ + ˆ Question: Is this integral path independent? V E dr Let s find out from the calculus: ( ) E dr E d + E d + E d ( ) d ( ) + d 3[ m] C 0 3 ( ) d ( ) + 3 0 9 + 9 9/ d Yes, it is path independent! V 9/ [ V] 45