Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Electronic Supporting Information Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine Elizabeth Kleisath, a,b Nathan J. Yutronkie, a,b Ilia Korobkov, a Bulat M. Gabidullin a and Jaclyn L. Brusso *,a,b a Department of Chemistry and Biomolecular Science and b Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. Contents (23 pages) Page S2 Page S15 Page S18 Page S23 NMR Spectra Crystallography UV-Vis and Computational Studies References S1
13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 0.58 2.00 1.99 2.05 2.04 2.09 3.15 12.254 8.860 8.857 8.856 8.854 8.848 8.845 8.844 8.842 8.355 8.352 8.350 8.335 8.333 8.330 8.161 8.157 8.142 8.138 8.122 8.118 7.834 7.832 7.822 7.819 7.815 7.812 7.803 7.800 3.741 3.723 3.705 3.687 1.552 1.534 1.516 Figure S1. 1 H NMR spectrum of 12 in MeCN-d3. S2
13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 0.49 2.00 1.98 2.06 2.04 3.15 12.340 8.866 8.864 8.862 8.860 8.854 8.852 8.850 8.848 8.343 8.341 8.338 8.324 8.321 8.318 8.166 8.162 8.146 8.142 8.127 8.123 7.838 7.835 7.826 7.823 7.819 7.816 7.807 7.804 3.425 Figure S2. 1 H NMR spectrum of 13 in MeCN-d3. S3
14 13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 2.00 2.07 2.01 2.00 6.12 3.14 8.723 8.721 8.720 8.718 8.702 8.700 8.699 8.697 8.653 8.651 8.650 8.648 8.646 8.626 8.625 8.623 8.622 8.620 8.600 8.598 8.596 8.595 8.594 8.130 8.124 8.109 8.103 8.098 8.082 8.078 4.465 3.244 Figure S3. 1 H NMR spectrum of [3,5-bis(N-methyl-2-pyridinium)-S-methyl-1,2,4,6- thiatriazine][otf]2 in MeCN-d3. S4
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm 2.00 2.06 2.10 2.08 2.21 3.32 8.724 8.721 8.715 8.712 8.709 8.706 8.406 8.403 8.402 8.399 8.380 8.376 8.376 8.373 7.935 7.929 7.909 7.908 7.903 7.902 7.883 7.877 7.525 7.521 7.509 7.505 7.500 7.495 7.484 7.480 3.169 3.144 3.119 3.095 1.346 1.321 1.297 Figure S4. 1 H NMR spectrum of 14 in MeCN-d3. S5
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm 2.00 2.06 2.10 2.08 3.32 8.726 8.723 8.721 8.717 8.711 8.708 8.705 8.702 8.436 8.432 8.429 8.409 8.406 8.405 8.402 7.939 7.933 7.914 7.913 7.908 7.907 7.888 7.882 7.525 7.521 7.509 7.505 7.499 7.495 7.484 7.480 2.759 Figure S5. 1 H NMR spectrum of 15 in MeCN-d3. S6
13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 2.00 2.01 2.07 2.07 2.09 3.13 8.570 8.568 8.566 8.564 8.558 8.556 8.554 8.552 8.413 8.411 8.408 8.393 8.391 8.388 8.003 7.999 7.984 7.979 7.964 7.960 7.567 7.564 7.555 7.552 7.548 7.545 7.536 7.533 3.254 3.236 3.217 3.199 1.390 1.371 1.353 Figure S6. 1 H NMR spectrum of 17 in MeCN-d3. S7
13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 2.00 2.04 2.02 2.04 3.06 8.598 8.595 8.594 8.591 8.586 8.584 8.581 8.579 8.421 8.418 8.416 8.401 8.398 8.396 8.003 7.999 7.984 7.980 7.964 7.960 7.567 7.564 7.555 7.552 7.548 7.545 7.536 7.533 2.851 Figure S7. 1 H NMR spectrum of 18 in MeCN-d3. S8
158.54 150.57 145.61 139.85 130.77 124.47 49.47 5.89 200 180 160 140 120 100 80 60 40 20 ppm Figure S8. 13 C NMR spectrum of 12 in MeCN-d3. S9
158.16 150.60 145.68 139.91 130.77 124.42 40.45 200 180 160 140 120 100 80 60 40 20 ppm Figure S9. 13 C NMR spectrum of 13 in MeCN-d3. S10
171.68 155.49 150.41 137.67 126.99 124.65 45.54 5.99 200 180 160 140 120 100 80 60 40 20 0 ppm Figure S10. 13 C NMR spectrum of 14 in MeCN-d3. S11
171.31 155.47 150.41 137.70 127.01 124.74 34.78 200 180 160 140 120 100 80 60 40 20 0 ppm Figure S11. 13 C NMR spectrum of 15 in MeCN-d3. S12
170.58 153.96 150.25 139.00 128.10 124.91 46.89 5.83 200 180 160 140 120 100 80 60 40 20 ppm Figure S12. 13 C NMR spectrum of 17 in MeCN-d3. S13
170.31 154.01 150.31 139.02 128.12 124.94 35.96 200 180 160 140 120 100 80 60 40 20 ppm Figure S13. 13 C NMR spectrum of 18 in MeCN-d3. S14
Table S1. Crystallographic data and selected collection parameters for 12, 14, [3,5-bis(N-methyl- 2-pyridinium)-S-methyl-1,2,4,6-thiatriazine][OTf]2 ([(MePy)2MeTTA][OTf]2) and 17. Parameters 12 14 [(MePy)2MeTTA][OTf]2 17 Empirical formula C14H14BF4N5S C14H13N5S C17H17F6N5O6S3 C14H13IN5NaS Formula weight 371.17 283.35 597.53 433.24 Crystal system orthorhombic orthorhombic triclinic triclinic Space group P212121 P212121 P 1 P 1 a (Å) 9.9995(2) 5.799(3) 8.938(4) 10.1629(3) b (Å) 10.0313(2) 14.641(9) 11.927(5) 10.3262(3) c (Å) 16.1233(4) 16.056(10) 12.900(5) 10.3488(3) α (deg) 90 90 96.902(19) 109.4798(8) β (deg) 90 90 108.004(18) 116.3682(8) γ (deg) 90 90 107.987(17) 102.2525(9) V (Å3) 1617.30(6) 1363.2(14) 1208.1(8) 829.69(4) Z 4 4 2 2 Dcalc (mg/m3) 1.524 1.381 1.643 1.734 T (K) 200(2) 258(2) 200(2) 200(2) μ (mm -1 ) 0.250 0.234 0.398 2.084 θ range for data 2.397 to 28.28 1.882 to 28.089 2.198 to 34.352 2.313 to 28.43 collection (deg) no. of total reflections 14055 11126 25311 8711 no. of unique reflections 3960 3294 9183 4062 Rint 0.0279 0.0331 0.0202 0.0109 R1, WR2 (on F2) 0.0424, 0.1191 0.0419, 0.0933 0.0485, 0.1266 0.0167, 0.0434 S15
Table S2. Bond length comparisons of the central TTA ring for compounds 12, 14, [3,5-bis(Nmethyl-2-pyridinium)-S-methyl-1,2,4,6-thiatriazine][OTf]2 ([(MePy)2MeTTA][OTf]2) and 17, as well as other previously reported TTA derivatives [3,5-bis(N-hydro-2-pyrinium)-Sbromo-1,2,4,6-thiatriazine][Br][Br3] ([(HPy)2BrTTA][Br][Br3]), 1 3,5-bis(pyridyl)-4-hydro- S-oxo-1,2,4,6-thiatriazine (Py2TTAH=O) 1 and Py2TTAH (11). 2 Bond numbers are in reference to the numbers shown in the schematic, and all lengths are reported in Angstroms (Å). Aromatic [(MePy) 2MeTTA] [OTf] 2 R2=Me, R3=Me [(HPy) 2BrTTA] [Br][Br 3] R2=Br, R3=Br Anti-Aromatic 14 R2=Et 17 R1=Na-I, 12 R1=H, 11 R1=H Py2TTAH=O R1=H, R2=Et R2=Et R2=O 1 1.3333(31) 1.3059(20) 1.3168(26) 1.3398(47) 1.2872(37) 1.279(2) 1.2854(43) 2 1.3394(32) 1.3571(17) 1.3409(17) 1.3378(52) 1.3556(31) 1.396(2) 1.3726(42) 3 1.3504(35) 1.3361(23) 1.3550(21) 1.3448(56) 1.3612(38) 1.391(2) 1.3671(42) 4 1.3157(31) 1.3195(22) 1.3117(26) 1.3181(48) 1.2858(37) 1.278(2) 1.2831(43) 5 1.6638(23) 1.6731(13) 1.6693(12) 1.6216(38) 1.6630(22) 1.693(2) 1.6865(27) 6 1.6544(23) 1.6705(18) 1.6521(19) 1.6027(42) 1.6728(25) 1.692(2) 1.6814(28) S16
Figure S14. Calculated twist angles between planes of the thiatriazine and pyridine rings of 14. The central plane was calculated without the S and N3 atoms, as this ring adopts a shallow boatlike arrangement. Figure S15. Calculated twist angles between planes of the thiatriazine and pyridine rings of [3,5- bis(n-methyl-2-pyridinium)-s-methyl-1,2,4,6-thiatriazine][otf]2. The central plane was calculated without the S11 and N22 atoms, as this ring adopts a shallow boat-like arrangement. Hydrogens removed for clarity (left). S17
Table S3: Frontier molecular orbitals and corresponding energies (in ev) for 14, 15, and 11. Energies were calculated at the B3LYP/6-311+G(2d,p) level of theory, and orbital probability diagrams were generated using GaussView 5.0 software. 3 14 15 11 LUMO+2-0.977226-1.12846-1.24710 LUMO+1-1.28628-1.49472-1.57227 LUMO -2.27324-2.53801-2.26861 HOMO -6.22216-6.60013-5.28364 HOMO-1-7.01592-7.30626-7.40014 HOMO-2-7.09891-7.38463-7.54545 S18
Table S4 TD DFT optical transitions a for 14 and 15, calculated at the B3LYP/6-311+G(2d,p) level of theory on geometry optimized structures with Gaussian 09 software. 3 k 14 15 E (ev) f E (ev) f 1 3.1469 0.0276 3.2206 0.0273 2 3.8194 0.0250 3.7961 0.0408 3 3.9578 0.0071 3.9157 0.0046 4 4.2397 0.0429 4.2561 0.1391 5 4.2852 0.0829 4.2670 0.0293 6 4.3775 0.2499 4.4441 0.0153 7 4.3898 0.0703 4.4444 0.2303 8 4.5744 0.1362 4.5399 0.1592 9 4.7329 0.0581 4.8148 0.0405 10 4.7701 0.0093 4.8729 0.0097 11 5.0354 0.0025 5.0133 0.0012 12 5.0839 0.0041 5.0669 0.0013 13 5.0906 0.0043 5.0793 0.0003 14 5.1081 0.0093 5.0827 0.084 15 5.1274 0.0200 5.0834 0.0002 16 5.1886 0.0501 5.1349 0.0686 17 5.3649 0.1191 5.3638 0.1637 18 5.3779 0.1082 5.4066 0.0727 19 5.4587 0.0232 5.5428 0.0277 20 5.5231 0.0153 5.5823 0.0111 a k = order of excitation energy and ƒ = oscillator strength. S19
Table S5 Selected TD DFT transitions for 14. Transitions shown are those with the greatest calculated oscillator strength, as well as the HOMO to LUMO transition. Calculations were performed at the B3LYP/6-311+G(2d,p) level of theory with acetonitrile solvation using Gaussian 09 software. 3 Calculated λ (nm) Transitions Oscillator Strength (f) 394 HOMO LUMO 0.0276 283 271 231 230 HOMO-6 LUMO HOMO-5 LUMO HOMO-4 LUMO HOMO-3 LUMO HOMO-2 LUMO HOMO-1 LUMO HOMO LUMO+1 HOMO-6 LUMO HOMO-5 LUMO HOMO-4 LUMO HOMO-3 LUMO HOMO-2 LUMO HOMO-1 LUMO HOMO LUMO+2 HOMO-8 LUMO HOMO-5 LUMO+1 HOMO-4 LUMO+1 HOMO-2 LUMO+1 HOMO LUMO+4 HOMO-8 LUMO HOMO-5 LUMO+1 HOMO-4 LUMO+1 HOMO-2 LUMO+1 HOMO LUMO+4 0.2499 0.1362 0.1191 0.1082 S20
Table S6 Selected TD DFT transitions for 15. Transitions shown are those with the greatest calculated oscillator strength, as well as the HOMO to LUMO transition. Calculations were performed at the B3LYP/6-311+G(2d,p) level of theory with acetonitrile solvation using Gaussian 09 software. 3 Calculated λ (nm) Transitions Oscillator Strength (f) 385 HOMO LUMO 0.0273 291 279 273 231 HOMO-6 LUMO HOMO-4 LUMO+1 HOMO-3 LUMO HOMO-2 LUMO+1 HOMO-5 LUMO HOMO-3 LUMO HOMO-1 LUMO HOMO-5 LUMO HOMO-4 LUMO HOMO-2 LUMO HOMO LUMO+2 HOMO-8 LUMO HOMO-5 LUMO+1 HOMO-4 LUMO+1 HOMO-2 LUMO+1 0.1391 0.2303 0.1592 0.1637 S21
Table S7 Comparative table for the measured molar coefficients of extinction a with the corresponding calculated oscillator strengths b for 14 and 15. 14 15 λ (nm) ε (μm -1 cm -1 ) Calculated λ 240 0.0161 275 0.0196 (nm) 230 0.1082 231 0.1191 271 0.1362 283 0.2499 390 0.0018 394 0.0276 240 0.0164 231 0.1637 275 0.0195 273 0.1592 279 0.2303 291 0.1391 390 0.0019 385 0.0273 a Optical measurements were performed on dilute MeCN solutions. b TD DFT/B3LYP/6-311+G(2d,p) level of theory on geometry optimized structures where f = oscillator strength using Gaussian 09 software. 3 f S22
References 1. A. A. Leitch, I. Korobkov, A. Assoud and J. L. Brusso, Chemical Communications, 2014, 50, 4934-4936. 2. N. J. Yutronkie, A. A. Leitch, I. Korobkov and J. L. Brusso, Crystal Growth & Design, 2015, 15, 2524-2532. 3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. S23