Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Σχετικά έγγραφα
Structural Expression of Exo-Anomeric Effect

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Electronic Supplementary Information

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Electronic Supplementary Information

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Supporting Information for

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Supporting Information

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Electronic Supplementary Information (ESI) for

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Supporting Information for:

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Accessory Publication

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Supporting Information

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Supporting Information

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

SUPPORTING INFORMATION

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

Supporting Information

Electronic Supplementary Information for

Electronic Supplementary Information (ESI)

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Supporting Information

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Table of Contents 1 Supplementary Data MCD

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Amplification of a metallacyclic receptor out of a dynamic combinatorial library. - Supporting Information -

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Synthesis, characterization and luminescence studies of

Supporting Information

Disulfide-based metal free sulfanylation of ketones

Supplementary Figures

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information

Electronic Supplementary Information

Commiphoratones A and B, Two Sesquiterpene Dimers from Resina Commiphora

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Electronic Supplementary Information (ESI)

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic Supplementary Information (ESI)

Chemical Communications. Electronic Supporting Information

A turn-off emission based chemosensor for HSO formation of a hydrogen-bonded complex

Supplementary Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Butadiene as a Ligand in Open Sandwich Compounds

Supplementary Information for

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Electronic Supplementary Information (ESI)

Gelsekoumidines A and B: Two Pairs of Atropisomeric Bisindole Alkaloids from the Roots of Gelsemium elegans

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Electronic Supplementary Information:

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Supplementary materials

IV. ANHANG 179. Anhang 178

Transcript:

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Electronic Supporting Information Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine Elizabeth Kleisath, a,b Nathan J. Yutronkie, a,b Ilia Korobkov, a Bulat M. Gabidullin a and Jaclyn L. Brusso *,a,b a Department of Chemistry and Biomolecular Science and b Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. Contents (23 pages) Page S2 Page S15 Page S18 Page S23 NMR Spectra Crystallography UV-Vis and Computational Studies References S1

13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 0.58 2.00 1.99 2.05 2.04 2.09 3.15 12.254 8.860 8.857 8.856 8.854 8.848 8.845 8.844 8.842 8.355 8.352 8.350 8.335 8.333 8.330 8.161 8.157 8.142 8.138 8.122 8.118 7.834 7.832 7.822 7.819 7.815 7.812 7.803 7.800 3.741 3.723 3.705 3.687 1.552 1.534 1.516 Figure S1. 1 H NMR spectrum of 12 in MeCN-d3. S2

13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 0.49 2.00 1.98 2.06 2.04 3.15 12.340 8.866 8.864 8.862 8.860 8.854 8.852 8.850 8.848 8.343 8.341 8.338 8.324 8.321 8.318 8.166 8.162 8.146 8.142 8.127 8.123 7.838 7.835 7.826 7.823 7.819 7.816 7.807 7.804 3.425 Figure S2. 1 H NMR spectrum of 13 in MeCN-d3. S3

14 13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 2.00 2.07 2.01 2.00 6.12 3.14 8.723 8.721 8.720 8.718 8.702 8.700 8.699 8.697 8.653 8.651 8.650 8.648 8.646 8.626 8.625 8.623 8.622 8.620 8.600 8.598 8.596 8.595 8.594 8.130 8.124 8.109 8.103 8.098 8.082 8.078 4.465 3.244 Figure S3. 1 H NMR spectrum of [3,5-bis(N-methyl-2-pyridinium)-S-methyl-1,2,4,6- thiatriazine][otf]2 in MeCN-d3. S4

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm 2.00 2.06 2.10 2.08 2.21 3.32 8.724 8.721 8.715 8.712 8.709 8.706 8.406 8.403 8.402 8.399 8.380 8.376 8.376 8.373 7.935 7.929 7.909 7.908 7.903 7.902 7.883 7.877 7.525 7.521 7.509 7.505 7.500 7.495 7.484 7.480 3.169 3.144 3.119 3.095 1.346 1.321 1.297 Figure S4. 1 H NMR spectrum of 14 in MeCN-d3. S5

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm 2.00 2.06 2.10 2.08 3.32 8.726 8.723 8.721 8.717 8.711 8.708 8.705 8.702 8.436 8.432 8.429 8.409 8.406 8.405 8.402 7.939 7.933 7.914 7.913 7.908 7.907 7.888 7.882 7.525 7.521 7.509 7.505 7.499 7.495 7.484 7.480 2.759 Figure S5. 1 H NMR spectrum of 15 in MeCN-d3. S6

13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 2.00 2.01 2.07 2.07 2.09 3.13 8.570 8.568 8.566 8.564 8.558 8.556 8.554 8.552 8.413 8.411 8.408 8.393 8.391 8.388 8.003 7.999 7.984 7.979 7.964 7.960 7.567 7.564 7.555 7.552 7.548 7.545 7.536 7.533 3.254 3.236 3.217 3.199 1.390 1.371 1.353 Figure S6. 1 H NMR spectrum of 17 in MeCN-d3. S7

13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 2.00 2.04 2.02 2.04 3.06 8.598 8.595 8.594 8.591 8.586 8.584 8.581 8.579 8.421 8.418 8.416 8.401 8.398 8.396 8.003 7.999 7.984 7.980 7.964 7.960 7.567 7.564 7.555 7.552 7.548 7.545 7.536 7.533 2.851 Figure S7. 1 H NMR spectrum of 18 in MeCN-d3. S8

158.54 150.57 145.61 139.85 130.77 124.47 49.47 5.89 200 180 160 140 120 100 80 60 40 20 ppm Figure S8. 13 C NMR spectrum of 12 in MeCN-d3. S9

158.16 150.60 145.68 139.91 130.77 124.42 40.45 200 180 160 140 120 100 80 60 40 20 ppm Figure S9. 13 C NMR spectrum of 13 in MeCN-d3. S10

171.68 155.49 150.41 137.67 126.99 124.65 45.54 5.99 200 180 160 140 120 100 80 60 40 20 0 ppm Figure S10. 13 C NMR spectrum of 14 in MeCN-d3. S11

171.31 155.47 150.41 137.70 127.01 124.74 34.78 200 180 160 140 120 100 80 60 40 20 0 ppm Figure S11. 13 C NMR spectrum of 15 in MeCN-d3. S12

170.58 153.96 150.25 139.00 128.10 124.91 46.89 5.83 200 180 160 140 120 100 80 60 40 20 ppm Figure S12. 13 C NMR spectrum of 17 in MeCN-d3. S13

170.31 154.01 150.31 139.02 128.12 124.94 35.96 200 180 160 140 120 100 80 60 40 20 ppm Figure S13. 13 C NMR spectrum of 18 in MeCN-d3. S14

Table S1. Crystallographic data and selected collection parameters for 12, 14, [3,5-bis(N-methyl- 2-pyridinium)-S-methyl-1,2,4,6-thiatriazine][OTf]2 ([(MePy)2MeTTA][OTf]2) and 17. Parameters 12 14 [(MePy)2MeTTA][OTf]2 17 Empirical formula C14H14BF4N5S C14H13N5S C17H17F6N5O6S3 C14H13IN5NaS Formula weight 371.17 283.35 597.53 433.24 Crystal system orthorhombic orthorhombic triclinic triclinic Space group P212121 P212121 P 1 P 1 a (Å) 9.9995(2) 5.799(3) 8.938(4) 10.1629(3) b (Å) 10.0313(2) 14.641(9) 11.927(5) 10.3262(3) c (Å) 16.1233(4) 16.056(10) 12.900(5) 10.3488(3) α (deg) 90 90 96.902(19) 109.4798(8) β (deg) 90 90 108.004(18) 116.3682(8) γ (deg) 90 90 107.987(17) 102.2525(9) V (Å3) 1617.30(6) 1363.2(14) 1208.1(8) 829.69(4) Z 4 4 2 2 Dcalc (mg/m3) 1.524 1.381 1.643 1.734 T (K) 200(2) 258(2) 200(2) 200(2) μ (mm -1 ) 0.250 0.234 0.398 2.084 θ range for data 2.397 to 28.28 1.882 to 28.089 2.198 to 34.352 2.313 to 28.43 collection (deg) no. of total reflections 14055 11126 25311 8711 no. of unique reflections 3960 3294 9183 4062 Rint 0.0279 0.0331 0.0202 0.0109 R1, WR2 (on F2) 0.0424, 0.1191 0.0419, 0.0933 0.0485, 0.1266 0.0167, 0.0434 S15

Table S2. Bond length comparisons of the central TTA ring for compounds 12, 14, [3,5-bis(Nmethyl-2-pyridinium)-S-methyl-1,2,4,6-thiatriazine][OTf]2 ([(MePy)2MeTTA][OTf]2) and 17, as well as other previously reported TTA derivatives [3,5-bis(N-hydro-2-pyrinium)-Sbromo-1,2,4,6-thiatriazine][Br][Br3] ([(HPy)2BrTTA][Br][Br3]), 1 3,5-bis(pyridyl)-4-hydro- S-oxo-1,2,4,6-thiatriazine (Py2TTAH=O) 1 and Py2TTAH (11). 2 Bond numbers are in reference to the numbers shown in the schematic, and all lengths are reported in Angstroms (Å). Aromatic [(MePy) 2MeTTA] [OTf] 2 R2=Me, R3=Me [(HPy) 2BrTTA] [Br][Br 3] R2=Br, R3=Br Anti-Aromatic 14 R2=Et 17 R1=Na-I, 12 R1=H, 11 R1=H Py2TTAH=O R1=H, R2=Et R2=Et R2=O 1 1.3333(31) 1.3059(20) 1.3168(26) 1.3398(47) 1.2872(37) 1.279(2) 1.2854(43) 2 1.3394(32) 1.3571(17) 1.3409(17) 1.3378(52) 1.3556(31) 1.396(2) 1.3726(42) 3 1.3504(35) 1.3361(23) 1.3550(21) 1.3448(56) 1.3612(38) 1.391(2) 1.3671(42) 4 1.3157(31) 1.3195(22) 1.3117(26) 1.3181(48) 1.2858(37) 1.278(2) 1.2831(43) 5 1.6638(23) 1.6731(13) 1.6693(12) 1.6216(38) 1.6630(22) 1.693(2) 1.6865(27) 6 1.6544(23) 1.6705(18) 1.6521(19) 1.6027(42) 1.6728(25) 1.692(2) 1.6814(28) S16

Figure S14. Calculated twist angles between planes of the thiatriazine and pyridine rings of 14. The central plane was calculated without the S and N3 atoms, as this ring adopts a shallow boatlike arrangement. Figure S15. Calculated twist angles between planes of the thiatriazine and pyridine rings of [3,5- bis(n-methyl-2-pyridinium)-s-methyl-1,2,4,6-thiatriazine][otf]2. The central plane was calculated without the S11 and N22 atoms, as this ring adopts a shallow boat-like arrangement. Hydrogens removed for clarity (left). S17

Table S3: Frontier molecular orbitals and corresponding energies (in ev) for 14, 15, and 11. Energies were calculated at the B3LYP/6-311+G(2d,p) level of theory, and orbital probability diagrams were generated using GaussView 5.0 software. 3 14 15 11 LUMO+2-0.977226-1.12846-1.24710 LUMO+1-1.28628-1.49472-1.57227 LUMO -2.27324-2.53801-2.26861 HOMO -6.22216-6.60013-5.28364 HOMO-1-7.01592-7.30626-7.40014 HOMO-2-7.09891-7.38463-7.54545 S18

Table S4 TD DFT optical transitions a for 14 and 15, calculated at the B3LYP/6-311+G(2d,p) level of theory on geometry optimized structures with Gaussian 09 software. 3 k 14 15 E (ev) f E (ev) f 1 3.1469 0.0276 3.2206 0.0273 2 3.8194 0.0250 3.7961 0.0408 3 3.9578 0.0071 3.9157 0.0046 4 4.2397 0.0429 4.2561 0.1391 5 4.2852 0.0829 4.2670 0.0293 6 4.3775 0.2499 4.4441 0.0153 7 4.3898 0.0703 4.4444 0.2303 8 4.5744 0.1362 4.5399 0.1592 9 4.7329 0.0581 4.8148 0.0405 10 4.7701 0.0093 4.8729 0.0097 11 5.0354 0.0025 5.0133 0.0012 12 5.0839 0.0041 5.0669 0.0013 13 5.0906 0.0043 5.0793 0.0003 14 5.1081 0.0093 5.0827 0.084 15 5.1274 0.0200 5.0834 0.0002 16 5.1886 0.0501 5.1349 0.0686 17 5.3649 0.1191 5.3638 0.1637 18 5.3779 0.1082 5.4066 0.0727 19 5.4587 0.0232 5.5428 0.0277 20 5.5231 0.0153 5.5823 0.0111 a k = order of excitation energy and ƒ = oscillator strength. S19

Table S5 Selected TD DFT transitions for 14. Transitions shown are those with the greatest calculated oscillator strength, as well as the HOMO to LUMO transition. Calculations were performed at the B3LYP/6-311+G(2d,p) level of theory with acetonitrile solvation using Gaussian 09 software. 3 Calculated λ (nm) Transitions Oscillator Strength (f) 394 HOMO LUMO 0.0276 283 271 231 230 HOMO-6 LUMO HOMO-5 LUMO HOMO-4 LUMO HOMO-3 LUMO HOMO-2 LUMO HOMO-1 LUMO HOMO LUMO+1 HOMO-6 LUMO HOMO-5 LUMO HOMO-4 LUMO HOMO-3 LUMO HOMO-2 LUMO HOMO-1 LUMO HOMO LUMO+2 HOMO-8 LUMO HOMO-5 LUMO+1 HOMO-4 LUMO+1 HOMO-2 LUMO+1 HOMO LUMO+4 HOMO-8 LUMO HOMO-5 LUMO+1 HOMO-4 LUMO+1 HOMO-2 LUMO+1 HOMO LUMO+4 0.2499 0.1362 0.1191 0.1082 S20

Table S6 Selected TD DFT transitions for 15. Transitions shown are those with the greatest calculated oscillator strength, as well as the HOMO to LUMO transition. Calculations were performed at the B3LYP/6-311+G(2d,p) level of theory with acetonitrile solvation using Gaussian 09 software. 3 Calculated λ (nm) Transitions Oscillator Strength (f) 385 HOMO LUMO 0.0273 291 279 273 231 HOMO-6 LUMO HOMO-4 LUMO+1 HOMO-3 LUMO HOMO-2 LUMO+1 HOMO-5 LUMO HOMO-3 LUMO HOMO-1 LUMO HOMO-5 LUMO HOMO-4 LUMO HOMO-2 LUMO HOMO LUMO+2 HOMO-8 LUMO HOMO-5 LUMO+1 HOMO-4 LUMO+1 HOMO-2 LUMO+1 0.1391 0.2303 0.1592 0.1637 S21

Table S7 Comparative table for the measured molar coefficients of extinction a with the corresponding calculated oscillator strengths b for 14 and 15. 14 15 λ (nm) ε (μm -1 cm -1 ) Calculated λ 240 0.0161 275 0.0196 (nm) 230 0.1082 231 0.1191 271 0.1362 283 0.2499 390 0.0018 394 0.0276 240 0.0164 231 0.1637 275 0.0195 273 0.1592 279 0.2303 291 0.1391 390 0.0019 385 0.0273 a Optical measurements were performed on dilute MeCN solutions. b TD DFT/B3LYP/6-311+G(2d,p) level of theory on geometry optimized structures where f = oscillator strength using Gaussian 09 software. 3 f S22

References 1. A. A. Leitch, I. Korobkov, A. Assoud and J. L. Brusso, Chemical Communications, 2014, 50, 4934-4936. 2. N. J. Yutronkie, A. A. Leitch, I. Korobkov and J. L. Brusso, Crystal Growth & Design, 2015, 15, 2524-2532. 3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. S23