Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

Σχετικά έγγραφα
ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

The Free Internet Journal for Organic Chemistry

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information. Experimental section

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Divergent synthesis of various iminocyclitols from D-ribose

Electronic Supplementary Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Supporting Information

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information for

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information for. Copper-Catalyzed Radical Reaction of N-Tosylhydrazones: Stereoselective Synthesis of (E)-Vinyl Sulfones

Electronic Supplementary Information (ESI)

Supporting Information

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information for

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information. Experimental section

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Electronic Supplementary Information

Supporting Information

Supporting Information

Reusable Cu 2 O/PPh 3 /TBAB System for the Cross-Couplings of Aryl Halides and Heteroaryl Halides with Terminal Alkynes. Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Selective Synthesis of Indoles by Cobalt(III) Catalyzed. C H/N O Functionalization with Nitrones

Supporting Information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supplementary Material

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Supporting Information for

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supplementary!Information!

Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via ( )-Riboflavin-Mediated Electron Transfer

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

PS-BEMP as a Basic Catalyst for the Phospha-Michael Addition to Electron-poor alkenes

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting information

Supporting Information

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Transcript:

Electronic Supporting Information Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill Rico Thorwirth, Achim Stolle * and Bernd ndruschka Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller University Jena, Lessingstraße 12, D-07743 Jena, Germany * Fax: (+49)-3641-948-402; E-mail: bernd.ondruschka@uni-jena.de General information: All chemicals were purchased from Sigma Aldrich or Alfa Aesar and were used as received. Reactions were accomplished in a Fritsch Pulverisette 7 classic line planetary ball mill using 45 ml grinding beakers (agate, zircon oxide) and milling balls (six pieces 15 mm in diameter, agate or zircon oxide). GC-FID measurements were performed on a HP-6890 GC, GC-MS measurements were done on a Agilent Technologies GC 6890N with MS detector 5973 [Conditions GC-FID: HP 5, 30 m 0.32 mm 0.25 µm, H 2 10 psi, program: 70 C (hold for 3 min), 15 K min -1 up to 280 C (hold for 10 min), injector temperature: 280 C, detector temperature: 300 C. Conditions GC-MSD: HP 5, 30 m 0.32 mm 0.25 µm, He 10 psi, program: 70 C (hold for 3 min), 15 K min -1 up to 280 C (hold for 7 min), injector temperature: 280 C, detector: EI]. NMR spectra were recorded with a Bruker Avance 200 MHz system at room temperature in Chloroform-[ 2 H] 3 (CDCl 3 ) as solvent. Reaction Protocol: General procedure for the Sonogashira reaction in planetary ball mill: The grinding beakers were filled with the milling balls, Si2 (5 g), the acetylene compound (2.5 mmol), DABC (2.5 mmol, 280 mg), the aryl halide (2 mmol) and Pd(Ac)2 (5 mol%, 25 mg) were added in the given order. Milling was accomplished at 800 rpm for 20 min. After cooling to room temperature, the crude products were extracted on a frit with a thin silica layer using 1

chloroform (3 10 ml). The solvent was evaporated in vacuum, the crude products were dried and analyzed by GC-FID and GC-MS. Analytical samples for NMR investigation were isolated by column chromatography using n-hexane/toluene mixtures. Products were identified according to literature data. NMR data of Sonogashira coupling products: Diphenylethyne (3a): [1] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.61-7.53 (4 H, m), 7.41-7.31 ppm (6 H, m); 13 C-NMR (50 MHz, CDCl 3 ): δ = 131.45, 128.21, 128.11, 123.15, 89.44 ppm; GC- MS: m / z= 178 (100%). 1-Methyl-2-(phenylethynyl)benzene (3b): [1] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.59-7.48 (3 H, m), 7.39-7.32 (3 H, m), 7.26-7.16 (3 H, m), 2.53 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 140.15, 131.82, 131.48, 129.44, 128.32, 128.28, 128.14, 125.55, 123.54, 123.01, 93.32, 88.32, 20.70 ppm; GC-MS: m / z= 192 (100%). 1-Methyl-4-(phenylethynyl)benzene (3c, 3g): [1] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.77-7.69 (2 H, m), 7.64 (2 H, d, J = 8.2 Hz), 7.52-7.42 (3 H, m), 7.29 (2 H, d, J = 8.1 Hz), 2.49 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 138.14, 131.38, 128.99, 128.17, 127.92, 126.24, 123.38, 120.11, 89.60, 88.75, 21.28 ppm; GC-MS: m / z= 192 (100%). 2

1-Methoxy-2-(phenylethynyl)benzene (3d): [1] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.61-7.56 (2 H, m), 7.53 (1 H, dd, J = 7.5, 1.7 Hz), 7.39-7.26 (4 H, m), 7.00-6.85 (2 H, m), 3.90 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 159.89, 133.48, 131.57, 129.69, 128.17, 128.02, 123.53, 120.41, 112.41, 110.68, 93.37, 85.73, 55.72 ppm; GC-MS: m / z= 208 (100%). 1-Methoxy-4-(phenylethynyl)benzene (3e): [1] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.58-7.46 (4 H, m), 7.39-7.29 (3 H, m), 6.89 (2 H, d, J = 8.7 Hz), 3.80 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 159.56, 132.97, 131.37, 128.23, 127.85, 123.55, 115.30, 113.94, 89.38, 88.05, 55.14 ppm; GC-MS: m / z= 208 (100%). 1-Acetyl-4-(phenylethynyl)benzene (3f): [2] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.83 (2 H, d, J = 8.2 Hz), 7.55-7.44 (4 H, m), 7.33-7.23 (3 H, m), 2.47 (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 196.75, 135.84, 131.44, 131.35, 128.52, 128.16, 127.94, 127.75, 122.34, 92.47, 88.47, 26.16 ppm; GC-MS: m / z = 220 (100%). 1,2-Di-p-tolylethyne (3h): [2] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.49 (4 H, d, J = 8.1 Hz), 7.22 (4 H, d, J = 7.7 Hz), 2.43 ppm (6 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 138.04, 137.14, 129.01, 120.38, 88.90, 21.38 ppm; GC-MS: m / z = 206 (100%). 1-Methyl-4-(4 -methoxy-phenylethynyl)benzene (3j): [2] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.50-7.36 (4 H, m), 7.14 (2 H, d, J = 8.0 Hz), 7.18-7.09 (2 H, m), 6.87 (2 H, d, J = 9.0 Hz), 3

3.81 (3 H, s), 2.36 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 159.48, 137.97, 132.94, 131.13, 129.05, 120.502, 115.60, 113.95, 88.64, 88.18. 55.24, 21.44 ppm; GC-MS: m / z = 222 (100%). 1-Acetyl-4-(p-tolyl-ethynyl)benzene (3k): [4] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.85 (2 H, d, J = 8.4 Hz), 7.53 (2 H, d, J = 8.4 Hz), 7.41 (2 H, d, J = 8.0 Hz), 7.10 (2 H, d, J = 8.0 Hz), 2.49 (3 H, s), 2.31 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 196.62, 138.65, 137.44, 135.63, 131.32, 131.21, 128.90, 127.88, 119.26, 92.77, 87.89, 26.08, 21.15 ppm; GC-MS: m / z = 234 (100%). 1,2-bis(p-Methoxyphenyl)ethyne (3l): [5] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.49 (4 H, d, J = 8.1 Hz), 7.22 (4 H, d, J = 7.7 Hz), 2.43 ppm (6 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 138.04, 137.14, 129.01, 120.38, 88.90, 21.38 ppm; GC-MS: m / z = 238 (100%). 1-Acetyl-4-(4 -methoxy-phenylethynyl)benzene (3m): [5] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.83 (2 H, d, J = 8.2 Hz), 7.49 (2 H, d, J = 8.5 Hz), 7.41 (2 H, d, J = 8.7 Hz), 6.80 (2 H, d, J = 8.7 Hz), 3.72 (3 H, s), 2.49 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 196.96, 159.85, 135.62, 133.06, 131.21, 128.31, 128.02, 114.44, 113.91, 92.83, 87.39, 55.01, 26.25 ppm; GC- MS: m / z = 206 (100%); GC-MS: m / z = 250 (100%). F 1-Fluoro-4-(4 -methoxy-phenylethynyl)benzene (3n): [6] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.53-7.41 (4 H, m), 7.01 (2 H, t, J = 8.8 Hz), 6.86 (2 H, d, J = 8.9 Hz), 3.81 ppm (3 H, s); 13 C- NMR (50 MHz, CDCl 3 ): δ = 164.42, 159.47, 159.33, 132.99, 132.82, 132.63, 119.39, 119.32, 115.41, 114.98, 114.84, 113.70, 88.67, 86.62, 54.91 ppm; GC-MS: m / z = 226 (100%). 4

F 1-Acetyl-4-(4 -fluoro-phenylethynyl)benzene (3o): [6] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.86 (2 H, d, J = 8.5 Hz), 7.57-7.40 (4 H, m), 6.99 (2 H, t, J = 8.8 Hz), 2.52 ppm (3 H, s); 13 C- NMR (50 MHz, CDCl 3 ): δ = 196.87, 165.06, 160.08, 136.05, 133.58, 133.42, 131.41, 128.07, 118.64, 118.57, 115.79, 115.35, 91.43, 88.23, 26.25 ppm; GC-MS: m / z = 238 (100%). F 3 C 1-Trifluoromethyl-4-(phenylethynyl)benzene (3p): [7] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.61-7.57 (4 H, m), 7.56-7.50 (3 H, m), 7.29 ppm (2 H, t, J = 3.2 Hz); 13 C-NMR (50 MHz, CDCl 3 ): δ = 131.4, 129.88, 129.22, 128.46, 128.07, 126.77, 124.93, 124.88, 122.22, 91.39, 87.59 ppm; GC-MS: m / z = 192 (100%). 2 N 1-Nitro-4-(phenylethynyl)benzene (3q): [8] 1 H-NMR (200 MHz, CDCl 3 ): δ = 8.15 (2 H, d, J = 8.9 Hz), 7.61 (2 H, d, J = 8.3 Hz), 7.54-7.49 (3 H, m), 7.38-7.33 ppm (2 H, m); 13 C-NMR (50 MHz, CDCl 3 ): δ = 146.78, 132.15, 131.74, 130.10, 128.91, 128.05, 123.47, 121.88, 94.45, 87.27 ppm; GC-MS: m / z = 223 (100%). S 2-Phenylethynylthiophene (5): [3] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.58-7.50 (2 H, m), 7.39-7.25 (5 H, m), 7.04-6.98 ppm (1 H, m); 13 C-NMR (50 MHz, CDCl 3 ): δ = 132.46, 131.85, 131.37, 128.33, 127.20, 127.05, 123.30, 122.89, 93.03, 82.62 ppm; GC-MS: m / z = 184 (100%). 5

1-(4-Methoxyphenyl)-dec-1-yne (7a): [3] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.31 (2 H, d, J = 8.8 Hz), 6.79 (2 H, d, J = 8.8 Hz), 3.78 (3 H, s), 2.36 (2 H, t, J = 6.9 Hz), 1.68-1.16 (12 H, m), 0.87 (3 H, t, J = 6.5 Hz); 13 C-NMR (50 MHz, CDCl 3 ): δ = 158.96, 132.82, 116.29, 113.77, 88.80, 80.22, 55.22, 31.83, 29.18, 29.12, 28.93, 28.87, 22.64, 19.34, 14.07 ppm; GC-MS: m / z = 244 (100%). 1-(4-Acetylphenyl)-dec-1-yne (7b): [3] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.73 (2 H, d, J = 8.1 Hz), 7.31 (2 H, d, J = 8.2 Hz), 2.42 (3 H, s), 2.30 (2 H, t, J = 6.9 Hz), 1.58-1.04 (12 H, m), 0.78 (3 H, t, J = 6.6 Hz); 13 C-NMR (50 MHz, CDCl 3 ): δ = 196.41, 135.33, 131.26, 128.85, 127.78, 93.95, 79.89, 31.57, 28.84, 28.67, 28.33, 26.02, 22.38, 19.22, 13.78 ppm; GC-MS: m / z = 256 (100%). 1-(4-Methoxyphenyl)-dodec-1-yne (7c): [9] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.33 (2 H, d, J = 8.8 Hz), 6.79 (2 H, d, J = 8.8 Hz), 3.76 (3 H, s), 2.38 (2 H, t, J = 6.8 Hz), 1.71-1.16 (16 H, m), 0.90 (3 H, t, J = 6.6 Hz); 13 C-NMR (50 MHz, CDCl 3 ): δ = 158.89, 132.71, 116.31, 113.77, 88.53, 80.24, 54.96, 31.88, 29.56, 29.31, 29.15, 28.88, 22.64, 19.34, 14.02 ppm; GC- MS: m / z = 272 (100%). 1-(4-Acetylphenyl)-dodec-1-yne (7d): 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.73 (2 H, d, J = 8.2 Hz), 7.32 (2 H, d, J = 8.3 Hz), 2.42 (3 H, s), 2.29 (2 H, t, J = 6.9 Hz), 1.59-0.98 (16 H, m), 0.78 (3 H, t, J = 6.7 Hz); 13 C-NMR (50 MHz, CDCl 3 ): δ = 196.46, 135.37, 131.31, 128.90, 127.82, 93.99, 79.93, 31.69, 29.37, 29.11, 28.93, 28.72, 28.38, 26.07, 22.45, 19.27, 13.84 ppm; GC-MS: m / z = 284 (100%). 6

H 4-(4-Acetylphenyl)-2-methylbut-3-yn-2-ol (9a): [10] 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.83 (2 H, d, J = 8.3 Hz), 7.43 (2 H, d, J = 8.4 Hz), 2.53 (3 H, s), 2.43 (1 H, bs), 1.61 ppm (6 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 197.10, 136.33, 131.56, 128.35, 127.64, 93.95, 83.54, 68.81, 30.46, 26.53 ppm; GC-MS: m / z = 202 (100%). H 5-(4-Acetylphenyl)-3-methyl-pent-1-en-4-yn-3-ol (9b): 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.83 (2 H, d, J = 8.3 Hz), 7.44 (2 H, d, J = 8.5 Hz), 6.03 (1 H, dd, J = 10.2 Hz, J = 17.1 Hz), 5.53 (1 H, dd, J = 0.9 Hz, J = 17.1 Hz), 5.13 (1 H, dd, J = 0.9 Hz, J = 10.2 Hz), 2.78 (1 H, bs), 2.54 (3 H, s), 1.63 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 197.41, 141.64, 136.22, 131.68, 128.09, 127.48, 113.76, 94.36, 83.70, 68.47, 29.90, 26.49 ppm; GC-MS: m / z = 214 (100%). H 1-(4-Acetylphenyl)-3,7-dimethyl-oct-6-en-1-yn-3-ol (9c): 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.83 (2 H, d, J= 8.3 Hz), 7.43 (2 H, d, J= 8.3 Hz), 5.16 (1 H, t, J = 7.2 Hz), 2.54 (3 H, s), 2.45 (1 H, bs), 2.39-2.08 (2 H, m), 1.76 (2 H, t, J = 7.5 Hz), 1.65 (3 H, s), 1.61 (3 H, s), 1.54 ppm (3 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 197.30, 136.14, 132.49, 131.66, 128.10, 127.71, 123.67, 96.29, 82.66, 68.71, 43.31, 29.68, 26.47, 25.62, 23.69 ppm; GC-MS: m / z = 270 (100%). 7

1,3-(4-Acetylphenyl)benzene (11a): 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.92 (4 H, d, J = 8.6 Hz), 7.74-7.69 (1 H, m), 7.58 (4 H, d, J = 8.6 Hz), 7.54-7.46 (2 H, m), 7.34 (1 H, t, J = 7.7 Hz), 2.59 ppm (6 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 197.24, 136.44, 134.83, 131.86, 131.76, 128.67, 128.30, 127.90, 123.20, 91.57, 89.35, 26.61 ppm. 1,4-(4-Acetylphenyl)benzene (11b): 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.94 (4 H, d, J = 8.5 Hz), 7.60 (4 H, d, J = 8.4 Hz), 7.53 (4 H, s), 2.60 ppm (6 H, s); 13 C-NMR (50 MHz, CDCl 3 ): δ = 197.25, 136.50, 132.53, 131.75, 129.55, 128.32, 123.06, 91.18, 88.78, 26.62 ppm. 1,8-(4-Acetylphenyl)oct-1,7-diyne (11c): 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.83 (4 H, d, J = 8.5 Hz), 7.42 (4 H, d, J = 8.5 Hz), 2.54 (6 H, s), 2.48 (4 H, t, J = 6.5 Hz), 1.77 ppm (4 H, q, J = 3.2 Hz); 13 C-NMR (50 MHz, CDCl 3 ): δ = 197.27, 135.74, 131.60, 128.88, 128.12, 93.52, 80.48, 27.64, 26.50, 19.08 ppm. 1,9-(4-Acetylphenyl)non-1,8-diyne (11d): 1 H-NMR (200 MHz, CDCl 3 ): δ = 7.80 (4 H, d, J = 8.3 Hz), 7.40 (4 H, d, J = 8.3 Hz), 2.54 (6 H, s), 2.45 (4 H, t, J = 6.1 Hz), 1.71-1.58 (6 H, m); 13 C-NMR (50 MHz, CDCl 3 ): δ = 196.96, 135.36, 131.26, 128.60, 127.77, 93.58, 80.08, 27.67, 27.62, 26.17, 19.05 ppm. 8

[1] A. Carpita, A. Ribecai, Tetrahedron Lett. 2009, 204-207. [2] J. Mao, G. Xie, M. Wu, J. Guo S. Ji, Adv. Synth. Cat. 2008, 16, 2477-2482. [3] M. Wang, P. Li, L. Wang, Synth. Comm. 2004, 15, 2803-2812. [4] A.R. Gholap, K. Venkatesan, R. Pasricha, T. Daniel, R. J. Lahoti, K. V. Srinivasan, J. rg. Chem. 2005, 12, 4869-4872. [5] S. Mori, T. Yanase, S. Aoyagi, Y. Monguchi, T. Maegawa, H. Sajiki, Chem. Europ J. 2008, 23, 6994-6999. [6] V. Polshettiwar, M. N. Nadagouda, R. S. Varma, Chem. Comm. 2008, 6318-6320. [7] K. G. Thakur, G. Sekar, Synthesis 2009, 16, 2785-2789. [8] Y. Yamane, X. Liu, A. Hamasaki, T. Ishida, M. Haruta, T. Yokoyama, M. Tokunaga, rg. Lett. 2008, 22, 5162-5165. [9] B. H. Lipshutz, D. W. Chung, B. Rich, rg. Lett. 2008, 17, 3793-3796. [10] A. Komáromi, G. L. Tolnai, Z. Novák, Tetrahedron Lett. 2008, 7294-7298. 9