Additional Proofs for: Crump, R., V. J. Hotz, G. Imbens and O. Mitnik, Nonparametric Tests for Treatment Effect Heterogeneity

Σχετικά έγγραφα
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

w o = R 1 p. (1) R = p =. = 1

2 Composition. Invertible Mappings

Srednicki Chapter 55

ST5224: Advanced Statistical Theory II

Section 8.3 Trigonometric Equations

Matrices and Determinants

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Homework 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

Every set of first-order formulas is equivalent to an independent set

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Space-Time Symmetries

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.6 Autoregressive Moving Average Model ARMA(1,1)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

6.3 Forecasting ARMA processes

A Note on Intuitionistic Fuzzy. Equivalence Relation

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Tridiagonal matrices. Gérard MEURANT. October, 2008

Math221: HW# 1 solutions

Section 7.6 Double and Half Angle Formulas

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Uniform Convergence of Fourier Series Michael Taylor

F19MC2 Solutions 9 Complex Analysis

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

derivation of the Laplacian from rectangular to spherical coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 21: Properties and robustness of LSE

Solutions to Exercise Sheet 5

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Problem Set 3: Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Congruence Classes of Invertible Matrices of Order 3 over F 2

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

Lecture 2. Soundness and completeness of propositional logic

5. Choice under Uncertainty

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Areas and Lengths in Polar Coordinates

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

Inverse trigonometric functions & General Solution of Trigonometric Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

Partial Differential Equations in Biology The boundary element method. March 26, 2013

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

CRASH COURSE IN PRECALCULUS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Numerical Analysis FMN011

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Appendix to Technology Transfer and Spillovers in International Joint Ventures

Math 6 SL Probability Distributions Practice Test Mark Scheme

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Risk! " #$%&'() *!'+,'''## -. / # $

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

A General Note on δ-quasi Monotone and Increasing Sequence

PARTIAL NOTES for 6.1 Trigonometric Identities

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Second Order Partial Differential Equations

Solution Series 9. i=1 x i and i=1 x i.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Fractional Colorings and Zykov Products of graphs

SOME PROPERTIES OF FUZZY REAL NUMBERS

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Partial Trace and Partial Transpose

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Derivation of Optical-Bloch Equations

Homework 8 Model Solution Section

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Lecture 13 - Root Space Decomposition II

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Concrete Mathematics Exercises from 30 September 2016

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING

( ) 2 and compare to M.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Example of the Baum-Welch Algorithm

Transcript:

Aitional Proofs for: Crump, R., V. J. Hotz, G. Imbens an O. Mitnik, Nonparametric Tests for Treatment Effect Heterogeneity Final Draft: December 007

Aitional Proofs Proof of Lemma A. We will generalize the proof in Imbens, Newey an Rier 006. For i we will show [ E ˆΩ Ω ] C ζk K/N so that the result follows by Markov s inequality. [ E ˆΩ Ω ] [ E tr ˆΩ ] tr E [ˆΩ + tr Ω tr E + tr Ω ] tr ˆΩ Ω ] tr E [ˆΩ Ω Note first that E[ˆΩ ] Ω so that, [ˆΩ ] tr Ω. B. The first term of equation B. is ] tr E [ˆΩ N E w W i R kk X i R lk X i N w k l N i k l i j N E [ w W i w W j R kk X i R lk X i R kk X j R lk X j ]. We may partition this epression into terms with i j, N E [ w W i R kk X i R lk X i ] k l i B. an with terms i j, E [ w W i R kk X i R lk X i ] E [ w W j R kk X j R lk X j ]. k l i j B.3 For a ranom variable U with E U < an an event G with Pr G > 0, then E [U G] E [U G] Pr G. Using this we may rewrite equations B. an B.3 as, ] N tr E [ˆΩ π w k l E [ R kk X R lk X W w ] + π w N N N w trω. B.4 []

To eal with the first term of equation B.4 consier, E [ [ R kk X R lk X ] K W w E R kk X k l k l K ζk l K R lk X W w E [ R lk X W w ] ζk tr Ω λ ma Ω ζk K C ζk K. ] B.5 B.6 Equation B.5 follows by, K ζk sup R K sup RkK which then implies that RkK ζk. k k Equation B.6 follows since the maimum eigenvalue of Ω is O see below. Thus, the first term of equation B.4 is π w N N w k l E [ R kk X R lk X ] W w C ζk KN. B.7 To eal with secon term of equation B.4 an the secon term of equation B. we have, trω λ ma Ω K λma Ω K C K. Thus, πw N N trω N + o O K O KN. B.8 Combining the results from equations B.7 an B.8 yiels, [ E ˆΩ Ω ] O ζk KN + O KN O ζk KN. For ii, first note that for any two positive semi-efinite matrices A an B, an conformable vectors a an b, if A B in a positive semi-efinite sense, then for an λ min A min a a a Aa a Aa, λ min B min b b b Bb b Bb, λ ma A ma a a a Aa ā Aā, we have that, λ ma B ma b b b Bb b B b, λ min A λ min B B.9 []

an λ ma A λ ma B. B.0 Now, let f w f X W W w an efine q f 0 /f an note that by Assumptions.3 an 3. we have that 0 < q q q <. Thus we may efine q q + q so that, Ω 0,K E [R K R K W 0] R K R K f 0 R K R K qf R K R K q + q f q R K R K f + R K R K qf q Ω,K + R K R K qf q Ω,K + Q Q is a positive semi-efinite matri, which implies that Ω 0,K q Ω,K in a positive semi-efinite sense. Thus by equation B.9 λ min Ω 0,K q λ min Ω,K q an the minimum eigenvalue of Ω 0,K is boune away from zero. Net, observe that 0 q q q < an so by the above we have that Ω 0,K q Ω,K + R K R K qf q Ω,K + q q R K R K f q Ω,K, in a positive semi-efinite sense. Now by equation B.0 we have λ ma Ω 0,K λ ma q Ω,K q an the maimum eigenvalue of Ω 0,K is boune. Both the minimum an maimum eigenvalue of Ω,K are boune away from zero an boune, respectively, by construction. For iii consier the minimum [3]

eigenvalue of ˆΩ, λ min ˆΩ min min Ω + ˆΩ Ω ˆΩ min Ω + min λ min Ω + λ min ˆΩ Ω λ min Ω ˆΩ Ω ˆΩ Ω B. λ min Ω O p ζkk / N / B. Where B. follows since for a symmetric matri A A tr A λ min A, an since the norm is nonnegative an A λ min A A λ min A for all values of λ min A. Finally, B. follows by part i. Net, consier the maimum eigenvalue of ˆΩ. λ ma ˆΩ ma ma Ω + ˆΩ Ω ˆΩ ma Ω + ma λ ma Ω + λ ma ˆΩ Ω λ ma Ω + ˆΩ Ω ˆΩ Ω B.3 λ ma Ω + O p ζkk / N / B.4 Where B.3 follows by similar arguments as above an B.4 follows by part i. efine For iv let us first Σ R D R N w, D iag { w W i ε w,i; i,..., N }. Net recall that for matrices A an B we have that A + B A + B. [4]

Thus, E ˆΣ Σ E ˆΣ Σ + Σ Σ E ˆΣ Σ + E Σ Σ R ˆD D R E N w + E Σ Σ B.5 B.6 Before we eal with equations B.5 an B.6, we nee to establish conitions for consistency of the estimate errors. Note that, ˆε w,i ε w,i X i Y i ˆµ w X i Y i µ w X i µ w X i ˆµ w X i an so by Lemma A.6 v sup ˆε w,i ε w,i O p ζ K KN + O ζ K K s/. Moreover, ˆε w,i ε w,i ε w,i ˆε w,i ε w,i + O p ζ K KN + O ζ K K s/. an so, for M R ++ Pr ˆε w,i ε w,i > M E ˆε w,i ε w,i M E ε w,i ˆε w,i ε w,i + O p ζ K KN + O ζ K K s/ M O p ζ K KN + O ζ K K s/ an so E ε w,i ˆε w,i ε w,i M C sup + M ˆε w,i ε w,i E ε w,i M + O p ζ K KN + O ζ K K s/ ζ K K s/, O p ζ K KN + O ˆε w,i ε w,i O p ζ K KN + ζ K K s/. B.7 We begin with equation B.6 first. E Σ Σ E [tr Σ ] tr E [ Σ tr tr E ] First note that E [ Σ Σ an so, tr Σ Σ E + tr Σ ] [ Σ ] Σ + tr Σ [ Σ ] tr Σ. B.8 [5]

The first term of equation B.8 is ] tr E [ Σ N w + N w N N w + N k l i j k l i k l i j k l N N N w Equation B.9 may be rewritten as, N k l N N w N N w C C N E [ w W i w W j ε i ε jr kk X i R lk X i R kk X j R lk X j ] N E [ w W i ε 4 w,ir kk X i R lk X i ] E [ w W i ε w,ir kk X i R lk X i ] E [ {Wjw}ε w,jr kk X j R lk X j ] E [ w W ε 4 wr kk X R lk X ] k l E [ w W ε 4 wr kk X R lk X ] k l k l N k l N k l B.9 [ E w W ε wr kk XR lk X ]. B.0 E [ w W E [ ε 4 w X, w W ] R kk X R lk X ] E [ w W E [ ε 4 ] w X RkK X R lk X ] E [ w W R kk X R lk X ] E [ R kk X R lk X ] W w. Thus by equation B.7 we have that equation B.9 is, N E [ w W ε 4 wr kk X R lk X ] C ζk KN. k l B. Equation B.0 an the secon term of equation B.8 are, N N N w k l πw N N π w N w N N N w [ E w W ε wr kk XR lk X ] tr Σ k l [ E σ w X R kk XR lk X ] W w tr Σ tr Σ. B. The first factor is, πw N N N + o. [6]

By Assumption 3. the secon factor is, tr Σ λma Σ K σ4 λ ma Ω K C K B.3 an so equation B. is, N N N w k l [ E w W ε wr kk XR lk X ] tr Σ O KN. Thus, by equations B. an B.3 we have, E Σ Σ O ζk KN + O KN O ζk KN. B.4 Now consier equation B.5. E R N w ˆD D N w N k l i j Then, by equation B.7 we have, N N k l i j R N E [ w W i w W j ˆε i ε i ˆε j ε jr kk X i R lk X i R kk X j R lk X j ]. E [ w W i w W j ˆε i ε i ˆε j ε jr kk X i R lk X i R kk X j R lk X j ] [O p ζ K KN + ζ K K s/] N k l i j [O p ζ K KN + O N E [ w W i w W j R kk X i R lk X i R kk X j R lk X j ] ζ K K s/] ] tr E [ˆΩ. From the proof of i, we have that ] tr E [ˆΩ O ζ K KN + O KN + O K O K, an so we have, E R D D N w R [O p ζ K KN + O ζ K K s/] O K. B.5 [7]

Combining equations B.4 an B.5 yiels, E ˆΣ Σ E Σ Σ + E R D D O ζk KN + [O p ζ K KN + O N w R ζ K K s/] O K O ζk KN + [O p ζ K 4 K N + O ζ K K s/ + O p ζ K 3 KK s/ N ] O K O ζk KN + O p ζ K 4 K 3 N + O ζ K KK s/ + O p ζ K 3 K K s/ N O p ζ K 4 K 3 N + O ζ K KK s/, an the result follows. For v note that, σ Ω Σ σ Ω in a positive semi-efinite sense. Thus, Similarly, λ min Σ λ min σ Ω σ λ min Ω σ min q,. λ ma Σ λ ma σ Ω σ λ ma Ω σ ma q,. For vi consier, λ min ˆΣ min min [ Σ + Σ ˆΣ ˆΣ min Σ + min λ min Σ + λ min Σ ˆΣ λ min Σ Σ ˆΣ ] Σ ˆΣ λ min Σ O p ζ K K 3/ N O p ζ K K / K s/. Net, λ ma ˆΣ ma ma [ Σ + Σ ˆΣ ˆΣ ma Σ + ma λ ma Σ + λ ma Σ ˆΣ λ ma Σ + Σ ˆΣ ] Σ ˆΣ λ ma Σ + O p ζ K K 3/ N + O p ζ K K / K s/. [8]

Proof of Lemma A. For this proof we nee two results. matri an B a conformable matri, then Let A be a symmetric positive efinite λ min B AB λ min A λ min B B, λ ma B AB λ ma A λ ma B B. Using the above result we have, λ min Ω Σ Ω λ min Σ λ min Ω σ min q, [λ ] ma Ω σ min q, [λ ma Ω ] σ min q, [ma q, ], B.6 an, λ ma Ω Σ Ω λ ma Σ λ ma Ω σ ma q, [λ ] min Ω σ ma q, [λ min Ω ] σ ma q, [min q, ]. B.7 Now consier, λ min N V min π 0 Ω 0,K π Σ 0,KΩ 0,K + Ω,K 0 π Σ,KΩ,K min Ω 0,K Σ 0,KΩ π 0 λ min Ω 0,K Σ 0,KΩ 0,K 0,K + min π Ω + λ min Ω,K π Σ,KΩ,K,K Σ,KΩ,K which is boune away from zero by equation B.6 an Assumption.3. λ ma N V ma Ω 0,K π Σ 0,KΩ 0,K + Ω,K 0 π Σ,KΩ,K ma π 0 Ω 0,K Σ 0,KΩ 0,K + ma π π 0 λ ma Ω 0,K Σ 0,KΩ 0,K,,K Σ,KΩ,K Ω + λ ma Ω,K π Σ,KΩ,K, Finally, consier [9]

which is boune by equation B.7 an Assumption.3. For ii we have, ˆΩ λ ˆΣ min ˆΩ λ min ˆΣ ˆΩ λ min [λ min Σ O p ζ K K 3/ N O p ζ K K / K s/] ˆΩ λ min [λ min Σ O p ζ K K 3/ N O p ζ K K / K s/] [λ min O p ζ K K / N /] Ω λ min Σ [λ min Ω ] + Op ζ K K 3/ N + O p ζ K K / K s/. In aition, ˆΩ λ ˆΣ ma ˆΩ λ ma ˆΣ ˆΩ λ ma [λ ma Σ + O p ζ K K 3/ N + O p ζ K K / K s/] ˆΩ λ ma [λ ma Σ + O p ζ K K 3/ N + O p ζ K K / K s/] [λ ma Ω + O p ζ K K / N /] ] λ ma Σ [λ ma Ω + Op ζ K K 3/ N + O p ζ K K / K s/. B.8 B.9 Thus, λ min N ˆV N min N ˆΩ ˆΣ 0,K ˆΩ 0,K 0,K + N 0 N ˆΩ ˆΣ,K ˆΩ,K,K N N 0 min ˆΩ ˆΣ 0,K ˆΩ 0,K 0,K N N 0 λ min ˆΩ 0,K ˆΣ 0,K ˆΩ 0,K + N N min ˆΩ ˆΣ,K ˆΩ,K,K + N N λ min ˆΩ,K ˆΣ,K ˆΩ,K is boune away from zero in probability by equation B.8, Assumption.3 an Assumptions 3. an 3.3. Finally, λ ma N ˆV N ma N ˆΩ ˆΣ 0,K ˆΩ 0,K 0,K + N 0 N ˆΩ ˆΣ,K ˆΩ,K,K N ma ˆΩ N ˆΣ 0 0,K ˆΩ 0,K 0,K + N ma ˆΩ N ˆΣ,K ˆΩ,K,K N N 0 λ ma ˆΩ 0,K ˆΣ 0,K ˆΩ 0,K + N N λ ma ˆΩ,K ˆΣ,K ˆΩ,K which is boune in probability by equation B.9, Assumption.3 an Assumptions 3. an 3.3. Proof of Lemma A.6 For i note that we woul like to provie regressors up to a certain power, say n, incluing cross prouct terms. However, we woul like to relate the number of covariates,, an the uppermost power esire, n, to the number of terms in the series, K. We may o so by, n i + n + K n +. i n i0 [0]

Then note that, n + n +! n n!! n + n + n j + j n +. Thus, we have that K C n +, or equivalently that n C K / an so n s C s K s/ for some C, C R ++. Finally, by Lorentz 986, Theorem 8 we have that sup µw R K γ 0 O n s O K s/, as esire. The proofs of ii an iv may be foun in Imbens, Newey an Rier 006. For iii consier, ˆγK γk 0 N ˆΩ R Y w w N ˆΩ R R γ 0 w N R Yw R γ 0 w λ ma R Yw R γ 0. By Lemma A., the first factor is, λ ma λ ma ˆΩ / Ω / N w ˆΩ / + O p ζ K K / N / O + O p ζ K K / N /. B.30 The secon factor may be broken up into, N ˆΩ / R Yw R γ 0 w N ˆΩ / R Yw µ w X + µ w X R γ 0 w N ˆΩ / R ε w B.3 w + R µw X R γ 0. B.3 N w ˆΩ / []

For equation B.3 we have, E N ˆΩ / R ε w w [ E tr ε wr ˆΩ [ E tr N w N w tr σ E N w σ R ε w ] R R R R ε w ε w ] [ ] E R R R R E [ε w ε w X] N w K C KN, [ ] tr R R R R an so N w ˆΩ / R ε w O p K / N / B.33 by Markov s inequality. For equation B.3 we have, R µw X R γ 0 N w ˆΩ / µw X R γ 0 R R N R R µw X R γ 0 w µw X R γ 0 µw X R γ N 0 w sup µw R K γk 0 O K s/, by i, an so N ˆΩ / R w µw X R γ 0 O K s/ B.34 Note that the thir line of the penultimate isplay follows since R R R R is a projection matri. Combining equations B.30, B.33 an B.34 yiels, [ ˆγK γk 0 O + O p ζ K K / N /] [ O p K / N / + O K s/] O p K / N / + O K s/ + O p ζ K KN + O p ζ K K / K s/ N / O K s/ + O p ζ K KN + O p ζ K K / K s/ N /. However, by Assumption 3.3, we have that, O p ζ K K / K s/ N / o p K s/ o p an so ˆγ K γk 0 Op ζ K KN + O K s/, []

as esire. sup Finally, for v we have, µ w ˆµ sup The first term is O K s/ by i. sup µ 0 w ˆµ sup RK γ 0 ˆγ sup R K γ 0 ˆγ [ ζ K O p ζ K KN + O O p ζ K KN + O µw µ 0 + sup For the secon term we have, K s/] ζ K K s/, µ 0 w ˆµ. where we use the efinition of ζ K an the result from iv. Thus, sup µ w ˆµ O K s/ + O p ζ K KN + O ζ K K s/ O p ζ K KN + O ζ K K s/, as esire. Proof of Lemma A.7 Aitional Details Equation A.4 is / [ˆΩ ˆΣ ] / ˆΩ ˆΩ ε [ˆΩ R ˆΣ ] / ˆΩ ˆΩ R ε w ] / [ˆΣ / ˆΩ ˆΩ / R ε ε w / The first factor is, / [ˆΣ ] ˆΩ ˆΩ / / ˆΣ ˆΣ / λ ˆΩ/ ma ˆΣ / ˆΩ/ λ ma λ ma K / [λ ma Σ / + O p ζ K K 3/ N + O p ζ K K / K s/] [λ ma Ω / + O p ζkk / N /] K / λ ma Σ / λ ma Ω / K / + O p ζ K K N + O ζ K KK s/ O K / + O p ζ K K N + O p ζ K KK s/. [3]

For the secon factor we have, E ˆΩ R ε ε w / [ ε ] E tr N ε w R ˆΩ R ε ε w w [ ε E ε w R R ] R R ε ε w [ ε ] E ε w ε ε w B.35 [ µw E X R γ µw X R γ ] N w sup µw R K γ N w sup µw R K γ 0 + RK γ 0 R K γ N w O K s + O ζkk K s B.36 O N O ζkk K s Thus, ˆΩ / R ε ε w / N / w O p ζkk / K s/ N / by Markov s inequality. Equation B.35 follows by the fact that R R R R is a projection matri an equation B.36 follows from Lemma A.6 i an iv. Then equation A.4 is / [ˆΩ ˆΣ ] / ˆΩ ˆΩ ε [ˆΩ R ˆΣ ] / ˆΩ ˆΩ R ε w [ O K / + O p ζ K K N + O p ζ K KK s/] [ O p ζkk / K s/ N /] O p ζkkk s/ N / + O p ζk 3 K 5/ K s/ N / + O p ζk K 3/ K s/ N / O p ζk K 3/ K s/ N /, by Assumption 3.3. Net, equation A.5 is / [ˆΩ ˆΣ ] / [ˆΩ ] / ˆΩ ˆΩ R ε w Σ Ω ˆΩ R ε w ] / [ ] / [ˆΣ ˆΩ Σ Ω N / w ˆΩ / R ε w The first factor is ] / [ ] / [ˆΣ ˆΩ Σ Ω O p ζ K K N +O p ζ K KN / +O p ζ K KK s/ [4]

by Lemma B.. The secon factor is, E ˆΩ R ε w / N w [ ] E tr ε N wr ˆΩ R ε w w [ E tr ε ] wr R R R ε w [ ] E tr R R R R ε w ε w [ ] tr E R R R R E [ε w ε X] σ w ] tr E [R R R R [ σ w ] E tr R R R R [ R σ w ] E tr R R R σ w tr I K σ w K. Thus, the the secon factor is O p K / by Markov s inequality. Putting this together yiels, / [ˆΩ ˆΣ ] / [ˆΩ ] / ˆΩ ˆΩ R ε w Σ Ω ˆΩ R ε w [O p ζ K K N + O p ζ K KN / + O p ζ K KK s/] O p K / O p ζ K K 3/ N / + O p ζ K K 3/ K s/. Finally, equation A.6 is / [ˆΩ [ Σ Ω Σ Ω ] / ˆΩ / ] / [ ] / ˆΩ R ε w Ω Σ Ω Ω R ε w Ω / / The first factor is, [ / Σ Ω] C I O K /. R ε w [5]

The secon factor is O p ζ K K / N / by Lemma A.. E R ε w / N w [ E tr ] ε N wr R ε w w [ E tr ] R N ε w ε wr w tr E [ R N E [ε w ε ] w X] R w σ w tr E [ R R ] /N w σ w tr Ω σ w K λ ma Ω C K For the thir factor consier, Thus, the thir factor is O p K / by Assumption 3., Lemma A. ii an Markov s inequality. Putting this together yiels, / [ˆΩ ] / [ ] / Σ Ω ˆΩ R ε w Ω Σ Ω Ω R ε w O p ζ K K 3/ N /. Before proving Theorem 3/3. we nee the following lemma. Lemma B. We may partition ˆV an V analogously to the partition of ˆV P an V P in Section 3.4. ˆV00 ˆV0 ˆV ˆV 0 ˆV an V00 V V 0 V 0 V where ˆV 00 an V 00 are scalars, ˆV 0 an V 0 are K vectors, ˆV 0 an V 0 are K vectors an ˆV an V are K K matrices. Then, λ min [N V ] λ min [N V ], λ ma [N V ] λ ma [N V ] an if O p ζ K K 3/ N + O p ζ K K / K s/ o p, [ λ min N ˆV ] [ λ min N ˆV ] [, λ ma N ˆV ] [ λ ma N ˆV ] with probability approaching one. Proof The proof follows by the interlacing theorem, see, for eample, Li an Mathias 00: If A is an n n positive semi-efinite Hermitian matri with eigenvalues λ... λ n, B is a k k principal submatri of A with eigenvalues λ... λ k, then λ i λ i λ i+n k, i,..., k. [6]

In our case, N ˆV an N V are positive semi-efinite, symmetric an thus positive semi-efinite, Hermitian. So then, by the interlacing theorem λ min N V λ min N V λ ma [N V ] λ ma [N V ] an λ ma N V λ ma N V λ min [N V ] λ min [N V ]. Moreover, by Lemma A., N ˆV is nonsingular with probability approaching one so that again by the interlacing theorem we obtain λ min N ˆV λ min N ˆV [ λ ma N ˆV ] [ λ ma N ˆV ] an λ ma N ˆV λ ma N ˆV [ λ min N ˆV ] [ λ min N ˆV ]. Proof of Theorem 3.3 When the conitional average treatment effect is constant we may choose the two approimating sequences, γ0,k 0 an γ0,k, to iffer only by way of the first element the coefficient of the constant term in the approimating sequence. To simplify notation, efine ˆδ K ˆγ,K ˆγ 0,K, δ K γ,k γ 0,K. We may again follow the logic of Lemmas A.3, A.4, an A.5 to conclue that / T ˆδK δk ˆV ˆδK δk K K N 0, We nee only show that T T o p to complete the proof. First, note that γ w,k γw,k 0 γ w,k,i γw,k,i 0 i i γ w,k,i γw,k,i 0 + γ w0,k γw0,k 0 γ γ 0 O KK s/, B.37 by Lemma A.6 ii an ˆγw,K γw,k 0 ˆγw,K,i γw,k,i 0 i i ˆγw,K,i γw,k,i 0 + ˆγw0,K γw0,k 0 ˆγ γ 0 [ O p ζ K KN + O K s/]. B.38 [7]

by Lemma A.6 iii. We may choose the last K elements of the approimating sequence to be equal, γ,k 0 γ0 0,K. This allows us to boun, ˆδ K ˆγ,K ˆγ 0,K ˆγ,K γ,k 0 + γ0,k 0 ˆγ 0,K ˆγ,K γ,k 0 + γ 0 0,K ˆγ 0,K O p ζ K KN + O K s/ B.39 by equation B.38. Also, δk γ,k γ0,k γ,k γ,k 0 + γ0,k 0 γ0,k γ,k γ,k 0 + γ 0 0,K γ0,k O K / K s/ B.40 by equation B.37. T T Net note that, ˆδK δk First consier, δk ˆV δ K tr δk ˆV K δ N δ [ tr K N ˆV ] δ K [ N λ ma N ˆV ] δk / ˆV ˆδK δk ˆδ K ˆV ˆδ K K δk ˆV δ K ˆδ K ˆV K/ δ K B.4 [ N λ ma N ˆV ] δk B.4 N [O + O p ζ K K 3/ N / + O p ζ K K 3/ K s/] O KK s/ O p ζ K K 5/ K s/ N /, B.43 where equation B.4 follows by Lemma B. an equation B.43 follows from Lemma B. an the proof [8]

of Theorem 3.. Now consier, ˆδ K ˆV δ K tr ˆδ K ˆV K δ [ N ˆδ tr K N ˆV ] δ K N λ ma [ N ˆV ] ˆδK δ K N λ ma [ N ˆV ] ˆδK δ K B.44 N [O + O p ζ K K 3/ N / + O p ζ K K 3/ K s/] [ O p ζ K KN + O K s/] [ O K / K s/] O ζ K K K 3s/ N B.45 where equation B.44 follows by Lemma B. an equation B.45 follows from Lemma B. an the proof of Theorem 3.. Thus, we have that equation B.4 is, T T O K / [ O p ζ K K 5/ K s/ N / ] + O p ζ K K K 3s/ N O p ζ K K K s/ N / + O p ζ K K 3/ K 3s/ N which is o p uner Assumptions 3. an 3.3. Proof of Theorem 3.4 First, note that we may partition R K as R R K. R K Net, consier ρ N sup sup µ µ 0 τ X sup X sup X sup X RK γ,k 0 µ + sup RK γ0,k 0 µ 0 X RK ˆγ 0,K R K γ0,k 0 RK ˆγ,K R K γ,k 0 + sup X + sup + sup X R K ˆγ,K R K ˆγ 0,K + R ˆγ 0,K R ˆγ 00,K τ X RK γ0,k 0 µ 0 + sup RK γ,k 0 µ X + sup R K ˆγ0,K γ0,k 0 + sup R K ˆγ,K γ 0,K X X + sup R K ˆγ,K ˆγ 0,K + R ˆγ 0,K R ˆγ 00,K τ X RK γ0,k 0 µ 0 + sup RK γ,k 0 µ X +ζk ˆγ0,K γ0,k 0 + ζk ˆγ,K γ,k 0 + ζk ˆγ,K ˆγ 0,K + R ˆγ 0,K R ˆγ 00,K τ. [9]

Thus, ˆγ,K ˆγ 0,K ζk ρ N sup ζk sup RK γ0,k 0 µ 0 X X ζk sup RK γ,k 0 µ ˆγ0,K γ0,k 0 ˆγ,K γ,k 0 X ζk R ˆγ 0,K R ˆγ 00,K τ. We may follow the steps of the proof of Theorem 3. to obtain, for any M, Pr N / ζ K / K / ˆγ,K ˆγ 0,K > M. Net, we show that this implies that C ˆγ,K ˆγ 0,K V Pr ˆγ,K ˆγ 0,K K > M, K B.46 B.47 for an arbitrary constant C R ++. Denote λ min [N V ] an λ ma [N V ] by λ an λ, respectively an note that by Lemma A. an Lemma B. it follows that λ is boune away from zero an λ is boune. C ˆγ,K ˆγ 0,K V Pr ˆγ,K ˆγ 0,K K > M K C N ˆγ,K ˆγ 0,K [N V ] ˆγ,K ˆγ 0,K K Pr > M K Pr C N ˆγ,K ˆγ 0,K [N V ] ˆγ,K ˆγ 0,K > M K + K Pr λ C N ˆγ,K ˆγ 0,K ˆγ,K ˆγ 0,K > M K + K Pr Nζ K K ˆγ,K ˆγ 0,K ˆγ,K ˆγ 0,K > λ C [ ζ K K M ] K / + K / Pr N / ζ K / K / ˆγ,K ˆγ 0,K > λ C / ζ K M K K / + K / Since for any M, for large enough N, we have / λ C / ζ K M K K / + K / < λ C / it follows that this probability is for large N boune from below by the probability Pr N / ζ K / K / ˆγ,K ˆγ 0,K > λ C / which goes to one by B.46. To conclue we must show that this implies that PrT ˆγ,K ˆγ 0,K ˆV > M Pr ˆγ,K ˆγ 0,K K > M. K Let ˆλ λ min [N ˆV ] for simplicity of notation. Let A enote the event that ˆλ > λ / which satisfies Pr A as N by Lemmas A., A., an B. along with Assumptions 3. an 3.3. Also efine the event A, λ / N ˆγ,K ˆγ 0,K ˆγ,K ˆγ 0,K K K > M. [0]

Note that C ˆγ,K ˆγ 0,K V Pr ˆγ,K ˆγ 0,K K > M K C N ˆγ,K ˆγ 0,K [N V ] ˆγ,K ˆγ 0,K K Pr > M K λ C N ˆγ,K ˆγ 0,K ˆγ,K ˆγ 0,K K Pr > M K which goes to one as N by equation B.47. Since C was arbitrary we may choose C λ / λ an so Pr A as N. Thus, Pr A A as N. Finally, note that the event A A implies that T ˆγ,K ˆγ 0,K ˆV ˆγ,K ˆγ 0,K K K N ˆγ,K ˆγ 0,K [ N ˆV ] ˆγ,K ˆγ 0,K K K ˆλ N ˆγ,K ˆγ 0,K ˆγ,K ˆγ 0,K K K > λ / N ˆγ,K ˆγ 0,K ˆγ,K ˆγ 0,K K K > M. Hence PrT > M. Lemma B. Suppose Assumptions.-.3 an 3.-3. hol. Then i, ˆΣ ˆΩ Σ Ω O p ζ K K N + O p ζ K KN / + O p ζ K KK s/, an ii ˆΩ ˆΣ ˆΩ Ω Σ Ω O p ζ K K 3/ N / + O p ζ K K 3/ K s/. Proof For i note that, ˆΣ ˆΩ Σ Ω ˆΣ ˆΩ Σ ˆΩ + Σ ˆΣ Σ ˆΩ + Σ ˆΩ Ω ˆΩ Σ Ω B.48 B.49 First, consier equation B.48, ˆΣ Σ Op ζ K K 3/ N + O p ζ K K / K s/ by Lemma A.. Net, ˆΩ K / ˆΩ λ ma O K / + O p ζ K KN /. []

For equation B.49 we have that, Σ K / λ ma Σ O K /. Also, we have ˆΩ Ω O p ζ K K / N / B.50 by Lemma A.. Thus, ˆΣ ˆΩ Σ Ω [O p ζ K K 3/ N + O p ζ K K / K s/] [ O K / + O p ζ K KN /] [ + O K /] [ O p ζ K K / N /] O p ζ K K N + O p ζ K KN / + O p ζ K KK s/. For ii note that, ˆΩ ˆΩ ˆΩ + Ω ˆΣ ˆΩ Ω Σ Ω ˆΣ ˆΩ Ω ˆΣ ˆΩ + Ω ˆΣ ˆΩ Ω Σ Ω Ω ˆΣ ˆΩ ˆΣ ˆΩ Σ Ω B.5 B.5 For equation B.5 the first factor is O p ζ K K / N / by equation B.50 an the secon factor is ˆΣ ˆΩ λ ma ˆΣ ˆΩ λ ma ˆΣ λ ma ˆΩ K / λ ma Σ λ ma Ω K / + O p ζ K K N + O p ζ K KK s/ O K / + O p ζ K K N + O p ζ K KK s/. Thus, equation B.5 is ˆΩ Ω ˆΣ ˆΩ For equation B.5 the first factor is, Ω λ ma Ω I O K /. O p ζ K KN / + O p ζ K K 3/ K s/ N /. The secon factor is ˆΣ ˆΩ Σ Ω O p ζ K K N + O p ζ K KN / + O p ζ K KK s/ by i. Thus, equation B.5 is Ω ˆΣ ˆΩ Σ Ω O p ζ K K 3/ N / + O p ζ K K 3/ K s/ []

Finally, ˆΩ ˆΣ ˆΩ Ω Σ Ω O p ζ K KN / + O p ζ K K 3/ K s/ N / + O p ζ K K 3/ N / + O p ζ K K 3/ K s/ O p ζ K K 3/ N / + O p ζ K K 3/ K s/. [3]

Aitional References Imbens, Guio, Whitney Newey an Geert Rier, Mean-square-error Calculations for Average Treatment Effects, unpublishe manuscript, Department of Economics, Harvar University 006. Li, Chi-Kwong, an Roy Mathias, Interlacing Inequalities for Totally Nonnegative Matrices, Linear Algebra an its Applications 34 January 00, 35-44. Lorentz, George, Approimation of Functions New York: Chelsea Publishing Company, 986. [4]