Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices"

Transcript

1 Supplementary Material For Testing Homogeneity of High-dimensional Covariance Matrices Shurong Zheng, Ruitao Lin, Jianhua Guo, and Guosheng Yin 3 School of Mathematics & Statistics and KLAS, Northeast Normal University, China Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A. 3 Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong, China This Supplementary Material contains the proofs of the theorems and additional simulation results. In particular, Figure presents the simulation results for three samples with Gamma populations. For ease of exposition, the proof of Theorem is given first and that of Theorem is given later. We first provide two lemmas which are essential to the proofs of Theorems and. Lemmas Lemma Under Assumptions (A) (A), we have σ A {tr[(s S ) ] ˆµ µ A } N(0, )

2 where ˆµ = = (n n )n (n ) (trs ), and µ A = tr[(σ Σ ) ] + = n + (n ) tr(σ ) + = β n (n ) (e T l Σ e l ) σa = 4[n tr(σ )] + 4[n tr(σ )] + 8n +4[n tr(σ 4 ) + β n n [tr(σ Σ )] (e T l Σ e l ) ] +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n +4n [tr(σ 4 ) + β (e T l Σ e l ) ] +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l ] (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l ]. Proof. Define r i = n / w i and w i = (w i,..., w pi ) T for i =,..., n and =,. We have (n ) n n tr(s ) = tr[( Σ / r ir T iσ / i= ) ] + n ( r T Σ r ) n r T Σ n r i r T iσ r, i= where r = n n i= r i for =,..., K. First, we will consider the bounded spectral norm case, that is, the maximum eigenvalue of Σ is bounded for =,. When tr(σ q ) = O(pq ) holds for q =,, 3, 4 and at least one integer in the index set {, }, we only need to consider the CLT of n /3 tr[(s S ) ], and its proof is almost the same as the proof for the CLT of tr[(s S ) ] when Σ and Σ have the bounded spectral norms. Specifically, for the bounded spectral norm case, the proof can be completed through the following steps.

3 Step. We will prove n r T Σ r = n n n i= rt i Σ r i. As E(n i<j rt i Σ r j ) = 0 and we have n Var(n n i= E(n i<j trσ +o p (). We have n r T Σ r = n r T iσ r j ) 4E(r T Σ r r T Σ r ) = 4n tr(σ ) 0, i<j rt i Σ r j = o p (). Moreover, as E(n n r T iσ r i ) = n E[(rT Σ r n i= rt i Σ r i ) = n trσ ) ] = n [tr(σ )+β i<j rt i Σ r j + trσ and (e T j Σ e j ) ] 0 from (.5) of Bai and Silverstein (004), we have n n i= rt i Σ r i n trσ = o p (), and thus Step. We have n r T Σ n i= Step.. We have n n i= r i r T iσ r = n n r T Σ r = n trσ + o p (). i j l +n r T iσ r i r T iσ r i = n n i j i= n +n (n i= r T iσ r j r T jσ r l + n r T iσ r i r T iσ r j + n (r T iσ r i n trσ ) j= r T iσ r j r T jσ r i i j n r T iσ r i r T iσ r i. i= trσ )(r T iσ r i n trσ ) + (n trσ ). As n n i= E[(rT i Σ r i n trσ ) ] = n [trσ + β p j= (et j Σ e j ) ] 0, we have n n i= (rt i Σ r i n Var[n n i= trσ ) = o p (). As n (r T iσ r i n n i= E(rT i Σ r i n trσ )] = n 3 [trσ + β we have n n i= (rt i Σ r i n trσ ) = o p (), and thus n n i= trσ ) = 0 and (e T j Σ e j ) ] 0, r T iσ r i r T iσ r i = (n trσ ) + o p (). (.) 3 j=

4 Step.. We have n i j l E(rT i Σ r j r T j Σr l) = 0 and E(n i j l r T i Σr j r T j Σr l ) 0n tr(σ 4 ) + (n 3 + 4n 4 )[tr(σ 4 ) + β (e T j Σ e j ) + (trσ ) ] +4n 4 β (e T j Σ e j ) + 8n 4 β j= j= This leads to n i j l (rt i Σ r j r T j Σ r l ) = o p (). Step.3. We have n j= (e T j Σe l ) 4 0. i j ErT i Σ r j r T j Σ r i = (n )n tr(σ ) and n E( r T iσ r j r T jσ r i ) i j 6n 5 (n )β j= (e T j Σ e j ) + n 5 +n 5 (n )(n )(n 3)[tr(Σ )] +n 5 (n )(n )[tr(σ 4 ) + β (n )β As a result, we have Var(n i j rt i Σ r j r T j Σ r i ) 0; that is, Step.4. We have n i j j= (e T j Σ e l ) 4 (e T j Σ e j ) + (trσ ) ]. j= r T iσ r j r T jσ r i (n )n tr(σ ) = o p (). n = n r T iσ r i r T iσ r j i j i j (r T iσ r i n trσ )r T iσ r j + (n trσ ) i j r T iσ r j, and further, n (r T iσ r i n trσ )r T iσ r j i j n i (r T iσ r i n Then, we have n i j rt i Σ r i r T i Σ r j = o p (). trσ ) + n r T iσ r j r T jσ r i. 4 i j

5 Thus, we have tr(s ) = n n (n ) tr[( Σ / r ir T iσ / ) ] n + n (n ) (trσ ) n tr(σ ) + o p (). i= As trs = n (n ) ( n i= rt i Σ r i n r T Σ r ), we have n trs = n (n ) r T iσ r i (n ) trσ + o p (). i= As shown in Bai and Silverstein (004, pp ), n tr[( Σ / r ir T iσ / i= n )q ] tr[( i= where r i = n / w i, w i = ( w i,..., w pi ) T, Σ / r i r T iσ / )q ] = o p (), q =, w li = [Var(w li δ { wli n η n })] / [w li δ { wli n η n } E(w li δ { wli n η n })], w li c n η n, E w li = 0, E( w li ) = and E( w4 li ) < for l =,..., p and i =,..., n with η n 0, nη n and c being a positive constant. For simplicity, we rename the variable w li simply as w li and proceed by assuming that w li n η n, Ew li = 0, E(w li ) = and E(w4 li ) < with η n 0 and n η n. Let B = n i= Σ/ r ir T i Σ/, then trs = n (n ) trb (n ) trσ + o p () and tr(s ) = n (n ) tr(b ) n + n (n ) (trσ ) n tr(σ ) + o p (). (.) Step 3. In this step, we show that tr[(s S ) ] Etr[(S S ) ] = n (n ) [tr(b ) Etr(B )] + n (n ) [tr(b ) Etr(B )] n n (n ) (n ) [tr(b B ) Etr(Σ Σ )] + o p () is asymptotically normal. When Σ = Σ = Σ, we have Etr(S ) + Etr(Σ ) Etr(S S ) 5

6 = = n + (n ) tr(σ ) + = n n n (n ) (trσ) + = β n (n ) (e T l Σ e l ), where p Etr(S ) = n (n ) + tr(σ p(n ) ) + n n pn (n ) (trσ ) + β wn p(n ) (e T l Σ e l ) = p tr(σ ) + n + p(n ) tr(σ ) + n n pn (n ) (trσ ) + β wn p(n ) (e T l Σ e l ). Since = (n n )n (n ) (trσ), we need to establish the CLT of tr(s S ) ˆµ, where ˆµ = = (n n )n (n ) (trs ). Let E l be the conditional expectation given {x,..., x l } and E l,s be the conditional expectation given {x,..., x l, S }. Based on the martingale difference central limit theory, it can be derived that conditional on S, σ / A [tr(s ) Etr(S ) tr(s S ) + tr(σ S ) n n n (n ) {(trs ) (trσ ) d }] N(0, ), where (.3) σ A = σ 0A + 4σ 0A 4σ 0A + 4n (trσ ) σ 330A 4n (trσ )σ 30A + 8n (trσ )σ 30A, with σ 0A = σ 0A = σ 330A = σ 0A = n n [(E l E l )tr(b )], [(E l,b E l,b )tr(b B )], n [(E l,b E l,b )tr(b )], n [(E l E l )tr(b )][(E l,b E l,b )tr(b B )], 6

7 σ 30A = σ 30A = n n [(E l E l )tr(b )][(E l,b E l,b )trb ], [(E l,b E l,b )(trb )][(E l,b E l,b )tr(b B )]. Moreover, we have σ / A [tr(s ) Etr(S ) [tr(σ S ) tr(σ Σ )] n n n (n ) {(trs ) (trσ ) d }] N(0, ), where (.4) σ A = σ 440A + 4σ 550A + 4n (trσ ) σ 660A 4σ 450A 4n (trσ )σ 460A + 8n (trσ )σ 560A, with σ 440A = σ 550A = σ 660A = σ 450A = σ 460A = σ 560A = n n [(E l E l )tr(b )], [(E l E l )tr(b Σ )], n [(E l E l )trb ], n [(E l E l )tr(b )][(E l E l )tr(b Σ )], n [(E l E l )tr(b )][(E l E l )trb ], n [(E l E l )tr(b Σ )][(E l E l )trb ]. Step 4. Next, we show that µ A = Etr(S ) + Etr(S ) tr(σ Σ ) = n n n (n ) (trσ ) = tr[(σ Σ ) ] + n + (n ) tr(σ ) + n + (n ) tr(σ ) + β n (n ) = (e T Σ e ) + β n (n ) = (e T Σ e ). 7

8 Moreover, we have σ 0A = σ 0A = n [(E l E l )tr(b )] = 4n [tr(σ 4 ) + β (e T l Σ e l ) ] + (n trσ ) n [tr(σ ) + β +4[n tr(σ )] + 8(n trσ )n [tr(σ 3 ) + β +(n trσ ) n [tr(σ ) + β n [(E l,b E l,b )tr(b B )] = n tr[(σ B ) ] + β n = σ 330A = = σ 0A = σ 30A = (e T l Σ e l ) ], (e T l Σ / B Σ / e l ) [tr(σ Σ )] + [n tr[(σ Σ ) ] + β n n n n n n [(E l,b E l,b )trb ] E(r T l Σ r l ) = n tr(σ ) + β n e T l Σ e l e T l Σ e l ] (e T l Σ e l ), [(E l E l )tr(b )][(E l,b E l,b )tr(b B )] = n [tr(σ 3 B ) + β [ +(n trσ )n tr(σ B ) + β = [n tr(σ 3 Σ ) + β n = e T l Σ / B Σ / e l e T l Σ e l )] [ +(n trσ )n tr(σ Σ ) + β n n (e T l Σ e l ) ] (e T l Σ / Σ Σ / e l ) ] + o p (), ] e T l Σ e l e T l Σ / B Σ / e l e T l Σ / Σ Σ / e l e T l Σ e l ] [(E l E l )tr(b )][(E l,b E l,b )tr(trb )] [(E l E l )tr(b )][(E l E l )trb ] 8 e T l Σ e l e T l Σ / Σ Σ / e l ] + o p (), l

9 σ 30A = = (n tr(σ 3 ) + β n = = σ 440A = σ 550A = σ 660A = σ 450A = e T l Σ e l e T l Σ e l ) +(n trσ )[n tr(σ ) + β n n n (e T l Σ e l ) ], [(E l,b E l,b )(trb )][(E l,b E l,b )tr(b B )] [(E l E l )trb ][(E l,b E l,b )tr(b B )] n E l,b (r T l Σ r l n trσ )[r T l Σ / B Σ / r l n tr(σ B )] = [n tr(σ Σ ) + β n n [(E l E l )tr(b )] = 4n [tr(σ 4 ) + β (e T l Σ e l )(e T l Σ / Σ Σ / e l )], (e T l Σ e l ) ] + (n trσ ) n [tr(σ ) + β +4[n tr(σ )] + 8(n trσ )n [tr(σ 3 ) + β +(n trσ ) n [tr(σ ) + β n [(E l E l )tr(b Σ )] = [n tr[(σ Σ ) ] + β n n n (e T l Σ e l ) ], e T l Σ e l e T l Σ e l ] (e T l Σ / Σ Σ / e l ) ], [(E l E l )trb ] = [n tr(σ ) + β n [(E l E l )tr(b )][(E l E l )trb Σ ] = n [tr(σ 3 Σ ) + β [ +(n trσ )n tr(σ Σ ) + β (e T l Σ e l ) ], e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ e l e T l Σ / Σ Σ / e l ], (e T l Σ e l ) ] l 9

10 σ 460A = σ 560A = n [(E l E l )tr(b )][(E l E l )trb ] = [n tr(σ 3 ) + β n e T l Σ e l e T l Σ e l ] [ +(n trσ ) n tr(σ ) + β n n Thus, we have (e T l Σ e l ) ], [(E l E l )trb Σ ][(E l E l )trb ] = [n tr[(σ Σ )] + β n (e T l Σ e l )(e T l Σ / Σ Σ / e l )]. σ A = σ 0A + 4σ 0A + 4n (trσ ) σ 330A 4σ 0A 4n (trσ )σ 30A + 8n (trσ )σ 30A = 4[n tr(σ 4 ) + β n (e T l Σ e l ) ] + 4[n tr(σ )] + 8n (n trσ Σ ) n and +4[n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n (e T l Σ / Σ Σ / e l ) ] e T l Σ / Σ Σ / e l e T l Σ e l ], σ A = σ 440A + 4σ 550A + 4n (trσ ) σ 660A 4σ 450A 4n (trσ )σ 460A + 8n (trσ )σ 560A = 4n [tr(σ 4 ) + β (e T l Σ e l ) ] + 4[n tr(σ )] +4[n tr[(σ Σ ) ] + β n 8(n tr(σ 3 Σ ) + β n Step 5. According to (.3) and (.4), we have (e T l Σ / Σ Σ / e l ) ] e T l Σ / Σ Σ / e l e T l Σ e l )]. σ A {tr[(s S ) ] ˆµ µ A } N(0, ), where µ A = tr[(σ Σ ) ] + = n + (n ) tr(σ ) + = β n (n ) (e T l Σ e l ) 0

11 and σ A = σ A + σ A = 4[n tr(σ )] + 4[n tr(σ )] + 8n n [tr(σ Σ )] [ ] +4 n tr(σ 4 ) + β n (e T l Σ e l ) +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n +4n [ tr(σ 4 ) + β ] (e T l Σ e l ) +4{n tr[(σ Σ ) ] + β n 8[n tr(σ 3 Σ ) + β n As a result, the proof of Lemma is completed. (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l ] (e T l Σ / Σ Σ / e l ) } e T l Σ / Σ Σ / e l e T l Σ e l )]. Lemma Under Assumptions (A) (A), we have σ A σ A 3 σ A 3 σa 3 j / tr(s S ) ˆµ µ A tr(s S 3 ) ˆµ 3 µ A 3 where 0 = (0, 0) T and I is the identity matrix with N(0, I ), ˆµ ij = (n n )n (n ) (trs ), =i,j µ Aij = tr[(σ i Σ j ) ] + =i,j σ Aij = 4[n i tr(σ i )] + 4[n j +4[n i tr(σ 4 i ) + β i n i n + (n ) tr(σ ) + β n (n ) =i,j tr(σ j)] + 8n i n j [tr(σ i Σ j )] (e T l Σ i e l ) ] +4{n i tr[(σ i Σ j ) ] + β i n i (e T l Σ / i Σ j Σ / i e l ) } (e T l Σ e l ),

12 . 8[n i tr(σ 3 i Σ j ) + β i n i +4[n j tr(σ 4 j) + β j n j e T l Σ / i Σ j Σ / i e l e T l Σ i e l ] (e T l Σ je l ) ] +4{n j tr[(σ j Σ i ) ] + β j n j 8(n j tr(σ 3 jσ i ) + β j n j σ A 3 = 4[n tr(σ )] + 4[n tr(σ 4 ) + β n 4[n tr(σ 3 Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n (e T l Σ / j Σ i Σ / j e l ) } e T l Σ / j Σ i Σ / j e l e T l Σ je l )], +4[n tr(σ Σ Σ 3 Σ ) + β n (e T l Σ e l ) ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ]. Proof. Similar to Lemma, we first consider Σ with the bounded spectral norm for all =,, 3. When tr(σ q ) = O(pq ) for q =,, 3, 4 and at least one in the index set {,, 3 }, the proof mimics that in the bounded spectral norm case. Similar to the proof of Lemma, it can be shown that tr(s S ) ˆµ µ A and tr(s S 3 ) ˆµ 3 µ A 3 are asymptotically distributed as a bivariate normal distribution with the asymptotic variances σa, σa 3 and asymptotic covariance σ A 3. For simplicity of presentation, we consider the computation of σ A3, which is given by where σ A3 = σ 0A σ 30A σ 0A + 4 σ 30A + 4n (trσ ) σ 660A (n trσ )σ 460A +4(n trσ )σ 560A (n trσ )σ 460A + 4(n trσ )σ 760A, σ 760A = n [(E l E l )tr(b B 3 )][(E l E l )tr(b )],

13 σ 0A = σ 0A = σ 30A = σ 30A = n n [(E l E l )tr(b )], [(E l E l )tr(b )][(E l E l )tr(b B )], n [(E l E l )tr(b )][(E l E l )tr(b B 3 )], n [(E l E l )tr(b B )][(E l,b3 E l,b3 )tr(b B 3 )]. Then, we have σ 760A = σ 0A = σ 0A = σ 30A = n [(E l E l )tr(b B 3 )][(E l E l )tr(b )] = [n tr(σ 3 Σ ) + β n n [(E l E l )tr(b )] = 4n [tr(σ 4 ) + β (e T l Σ e l )(e T l Σ / Σ 3 Σ / e l )], (e T l Σ e l ) ] + 4(n trσ ) n [tr(σ ) + β +4[n tr(σ )] + 8(n trσ )n [tr(σ 3 ) + β n [(E l E l )tr(b )][(E l E l )tr(b B )] = n [tr(σ 3 B ) + β +(n trσ )n [tr(σ B ) + β = n [tr(σ 3 Σ ) + β +(n trσ )n [tr(σ Σ ) + β n (e T l Σ e l ) ] e T l Σ e l e T l Σ e l ], e T l Σ / B Σ / e l e T l Σ e l ] e T l Σ e l e T l Σ / B Σ / e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] [(E l E l )tr(b )][(E l E l )tr(b B 3 )] = n [tr(σ 3 B 3 ) + β e T l Σ e l e T l Σ / Σ Σ / e l ] + o p (), e T l Σ / B 3 Σ / e l e T l Σ e l ] 3

14 σ 30A = +(n trσ )n [tr(σ B 3 ) + β = n [tr(σ 3 Σ 3 ) + β +(n trσ )n [tr(σ Σ 3 ) + β n Thus, we obtain e T l Σ e l e T l Σ / B 3 Σ / e l ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] [(E l E l )tr(b B )][(E l,b3 E l,b3 )tr(b B 3 )] = n [tr(b Σ B 3 Σ ) + β = [n tr(σ Σ Σ 3 Σ ) + β n e T l Σ e l e T l Σ / Σ 3 Σ / e l ] + o p (), e T l Σ / B Σ / e l e T l Σ / B 3 Σ / e l ] σ A3 = 4[n tr(σ )] + 4n [tr(σ 4 ) + β +4(n trσ ) n [tr(σ ) + β +8(n trσ )n [tr(σ 3 ) + β 4[n tr(σ 3 Σ 3 ) + β n e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ] + o p (). (e T l Σ e l ) ] (e T l Σ e l ) ] l e T l Σ e l e T l Σ e l ] 4(n trσ )[n tr(σ Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n 4(n trσ )[n tr(σ Σ ) + β n +4[n tr(σ Σ Σ 3 Σ ) + β n e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ e l e T l Σ / Σ 3 Σ / e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] +4(n trσ ) [n tr(σ ) + β n 4(n trσ )[n tr(σ 3 ) + β n 4 e T l Σ e l e T l Σ / Σ Σ / e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ] (e T l Σ e l ) ] e T l Σ e l e T l Σ e l ]

15 4(n trσ )(n trσ )[n tr(σ ) + β n +4(n trσ )[n tr(σ Σ ) + β n 4(n trσ )[n tr(σ 3 ) + β n (e T l Σ e l ) ] (e T l Σ e l )(e T l Σ / Σ Σ / e l )] e T l Σ e l e T l Σ e l ] 4(n trσ )(n trσ )[n tr(σ ) + β n +4(n trσ )[n tr(σ 3 Σ ) + β n = 4[n tr(σ )] + 4[n tr(σ 4 ) + β n 4[n tr(σ 3 Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n +4[n tr(σ Σ Σ 3 Σ ) + β n (e T l Σ e l ) ] (e T l Σ e l )(e T l Σ / Σ 3 Σ / e l )] (e T l Σ e l ) ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ]. Generally, σ A 3 is obtained by replacing n i, Σ i and β i by n i, Σ i and β i in σ A3. That is, σ A 3 = 4[n tr(σ )] + 4[n tr(σ 4 ) + β n 4[n tr(σ 3 Σ 3 ) + β n 4[n tr(σ 3 Σ ) + β n +4[n tr(σ Σ Σ 3 Σ ) + β n The proof of Lemma is completed. (e T l Σ e l ) ] e T l Σ / Σ 3 Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ e l ] e T l Σ / Σ Σ / e l e T l Σ / Σ 3 Σ / e l ]. 5

16 Proofs of Theorem and By Lemma and the delta method, under the conditions of Lemma, we have σ AK (T K ˆµ K µ AK ) d N(0, ), where ˆµ K = ω ˆµ = < K < K and µ AK = i<j K ω ijµ Aij and [ ω (n n )n (n ) (trs ) ], =, σ AK = ωijσ Aij + ω ij ω j σ Aijj i<j K + i<j< ω ij ω j σ Aijj + i<<j j<i< ω ij ω j σ Aijj, with the weights {ω ij, i, j K} and ω ij = ω ji. By (3) and (33) in Cai, Liu and Xia (03), we have a.s. a.s. max l l p δ l l s(n, n, p) 0.5 max i j p 0.5 max i j p (σ ij σ ij) ˆθ ij/n + ˆθ ij/n (σ ij σ ij) θ ij/n + θ ij/n s(n, n, p) 4 log p log log p s(n, n, p) 4 log p log log p Then, there exists a pair of, K satisfying (σ ij σ ij) 0.5 max s(n, n, p) + 4 log p. i j p θ ij/n + θ ij/n Then we have and max δ l l s(n, n, p) a.s. 0.5 log log p l l p max δ l l s(n, n, p) a.s. > 0 l l p 6

17 Therefore, we have That is, T K a.s. = K 0. Then, we have max {I{ max δ ijl l > s(n i, n j, p)}} a.s. =. i<j K l l p σ AK (T K K 0 ˆµ K µ AK ) d N(0, ). We first focus on the proof of the case with K =, and that of K 3 can be shown in a similar way. When K =, the power function is g (Σ, Σ ) = P HA (T ˆµ > ˆµ + z αˆσ ) ( T ˆµ µ A = P HA > ˆµ ) µ A + z αˆσ σ A > P HA ( T ˆµ µ A σ A > z αˆσ σ A Step. When p tra 0 and tra > c 0 for some positive constant c 0, σ A /ˆσ. That is, (z αˆσ )/σ A z α = o p (). Then, when n, n are large enough, we have g (Σ, Σ ) > α. Step. We have g (Σ, Σ ) > P HA ((T ˆµ µ A )σ A > (ˆµ µ A + z αˆσ )σ A ). When tr(a ), we have (ˆµ µ A )σ A in probability. Then, the power function satisfies g (Σ, Σ ). Step 3. We have σ A ). g (Σ, Σ ) = P HA (T ˆµ > ˆµ + z αˆσ ) ( T ˆµ µ A = P HA > ˆµ ) µ A + z αˆσ σ A > P HA ( T ˆµ µ A σ A > z αˆσ σ A > P HA ( T ˆµ µ A σ A σ A ) + T K σ A > z αˆσ σ A ). Because T ˆµ µ A σ A is asymptotically normal under H and T K a.s. = K 0, if (σ ij σ ij) 0.5 max s(n, n, p) + 4 log p, i j p θ ij/n + θ ij/n 7

18 then the power function g (Σ, Σ ) tends to one. The proof of Theorem is completed. Moreover, Theorem is a special case of Theorem. 8

19 References Bai, Z. D. and Silverstein, J. W. (004). CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab., 3, Schott, J. R. (007). A test for the equality of covariance matrices when the dimension is large relative to the sample sizes. Comput. Stat. Data Anal., 5, Srivastava, M. S. and Yanagihara, H. (00). Testing the equality of several covariance matrices with fewer observations than the dimension. J. Multivar. Anal., 0,

20 (a) Size, n =n =n 3 =00 Percentage T 3 T 3 SC SY p (b) Power, n =n =n 3 =00 Percentage p (c) Size, n =60, n =00, n 3 =50 Percentage p (d) Power, n =60, n =00, n 3 =50 Percentage p Figure : Simulation results for testing the equality of three covariance matrices with Gamma populations under Scenarios 4 in comparison with two existing tests of Schott (007) (SC) and Srivastava and Yanagihara (00) (SY). 0

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL Department of Statistics, University of Poona, Pune-411007, India. Abstract In this paper, we estimate the reliability

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Exercise 2: The form of the generalized likelihood ratio

Exercise 2: The form of the generalized likelihood ratio Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα