d 2 u(t) dt 2 = u 16.4 ε(u) = 0 u(x,y) =?

Σχετικά έγγραφα
Homework 8 Model Solution Section

Partial Differential Equations in Biology The boundary element method. March 26, 2013

w o = R 1 p. (1) R = p =. = 1

D Alembert s Solution to the Wave Equation

Other Test Constructions: Likelihood Ratio & Bayes Tests

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Numerical Analysis FMN011

EE512: Error Control Coding

ST5224: Advanced Statistical Theory II

Local Approximation with Kernels

Example Sheet 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Finite difference method for 2-D heat equation

Second Order Partial Differential Equations

Fractional Colorings and Zykov Products of graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Solutions to Exercise Sheet 5

Concrete Mathematics Exercises from 30 September 2016

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Srednicki Chapter 55

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

1 String with massive end-points

Areas and Lengths in Polar Coordinates

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Trigonometric Formula Sheet

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

2 Composition. Invertible Mappings

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Areas and Lengths in Polar Coordinates

The Simply Typed Lambda Calculus

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

6.3 Forecasting ARMA processes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

10.7 Performance of Second-Order System (Unit Step Response)

C.S. 430 Assignment 6, Sample Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Discretization of Generalized Convection-Diffusion

On the Galois Group of Linear Difference-Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Problem Set 3: Solutions

Matrices and Determinants

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Math221: HW# 1 solutions

CRASH COURSE IN PRECALCULUS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Parametrized Surfaces

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Differentiation exercise show differential equation

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Mean-Variance Analysis

From the finite to the transfinite: Λµ-terms and streams

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Reminders: linear functions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order RLC Filters

ADVANCED STRUCTURAL MECHANICS

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Statistical Inference I Locally most powerful tests

PARTIAL NOTES for 6.1 Trigonometric Identities

Approximation of distance between locations on earth given by latitude and longitude

Section 7.6 Double and Half Angle Formulas

Spherical Coordinates

Wavelet based matrix compression for boundary integral equations on complex geometries

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Durbin-Levinson recursive method

Graded Refractive-Index

Iterated trilinear fourier integrals with arbitrary symbols

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Elements of Information Theory

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Finite Field Problems: Solutions

Section 8.3 Trigonometric Equations

Exercises to Statistics of Material Fatigue No. 5

Lecture 34 Bootstrap confidence intervals

12. Radon-Nikodym Theorem

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

An Inventory of Continuous Distributions

Calculating the propagation delay of coaxial cable

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

5.4 The Poisson Distribution.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Transcript:

d 2 u(t) dt 2 = 9.8 u(t) = 4.9t 2 +v 0 t+u 0 10.4 2 u 16.4 ε(u) = 0 u(x,y) =?

Find u H 2 (Ω) s.t. (a(x,y) u)+b(x,y) u+c(x,y)u = f(x,y) in Ω a(x,y) u n = g N (x,y) on Ω N u = g D (x,y) on Ω D Here Ω R d is a bounded domain, n is the unit normal vector, a is a d d spd matrix, b is a vector of length d, and [a] i,j, [b] i, c, f, g N, and g D are scalar functions. Find u h S h H 1 (Ω) s.t. u h = u D + n k=1 U kψ k ψ k

Partition Ω n i=1 t i triangles into p subsets, T 1,...,T p such that T i T j i,j and δ h (T 1,...T p ) = min T 1,..., T p δ h ( T 1,..., T p ) T k = 268 δ h = 43 T k = 268 δ h = 111 Equal parts Minimize cut

Find u 1 H 2 (Ω 1 ) s.t. Lu 1 = f 1 in Ω 1 Bu 1 = g 1 on Ω 1 \Γ 1 u 1 = u 2 on Γ 1 Find u 2 H 2 (Ω 2 ) s.t. Lu 2 = f 2 in Ω 2 Bu 2 = g 2 on Ω 2 \Γ 2 Define L as the differential operator u 2 = u 1 on Γ 2 Lu (a(x,y) u)+b(x,y) u+c(x,y)u Define B as the boundary operator { a(x,y) u n on ΩN Bu u on Ω D Communicate Γ 1 and Γ 2.

[ A1 A 1,2 A 2,1 A 2 ][ U1 U 2 ] = [ B1 B 2 ] [ ][ ] k [ ] [ A1 0 U1 B1 = 0 A 2 U 2 B 2 0 0 A 2,1 0 DU k = (E +F)U k 1 +B U k = ( D 1 (E +F) ) U k 1 +C [ ][ ] k [ ] [ A1 0 U1 B1 = 0 A 2 U 2 B 2 (D E)U k = FU k 1 +B 0 0 A 2,1 0 U k = ( (D E) 1 F ) U k 1 +C ][ ] k 1 [ U1 0 A1,2 U 2 0 0 ][ ] k [ U1 0 A1,2 U 2 0 0 ][ U1 U 2 ] k 1 ][ U1 U 2 ] k 1

Find u 1 H 2 (Ω 1 ) s.t. Lu 1 = f 1 in Ω 1 Bu 1 = g 1 on Ω 1 \Γ a u 1 n = λ on Γ Find u 2 H 2 (Ω 2 ) s.t. Constrain u 1 = u 2 on Γ Update λ Lu 2 = f 2 in Ω 1 Bu 2 = g 2 on Ω 2 \Γ a u 2 n = λ on Γ Communicate λ Communicate Γ

A II 1 A IB A BI 1 A BB 1 0 0 0 1 0 0 I 0 0 Ā II 2 Ā IB 2 0 Ā BB 0 0 Ā BI 2 0 I 0 I 0 2 I δu I 1 δu B 1 δūi 2 δūb 2 λ = R I 1 R B 1 R I 2 R B 2 U B 2 U B 1 A II 1 A IB 1 0 A BI 1 A BB 1 +ĀBB 2 0 Ā IB 2 Ā BI 2 Ā II 2 δu I 1 δu B 1 δūi 2 = R I 1 R1 B +R2 B +ĀBB 2 (U2 B U1 B ) Ā IB 2 (U2 B U1 B )

Equal parts Minimize cut

Solving a PDE (1) Find n unknowns instead of u(x,y) (2) Partition with equal parts and minimize cut. (3) Domain Decomposition Method with iterations. When a PDE has strong convection or anistropic diffusion, directional dependence exists and a partition that favors this direction is desirable. Incorporating this information into (2) reduces DD iterations.

K (1) ɛ K (2) ɛ U k = ( D 1 (E +F) ) U k 1 +C ρ(d 1 (1) (E (1) +F (1) )) ρ(d 1 (2) (E (2) +F (2) )) u 1 = 0 λ = λ [ β 0 0 1 ] u 1 = 0 β > 1 m+1))) Um 2 (1+ 1 β(1+cos( mπ m+1))) Um 2 1(1+ 1 β(1+cos( mπ > m+1))) Um 2 (1+β(1+cos( mπ m+1))) Um 2 1(1+β(1+cos( mπ [ β u+ 0 ] u 1 = 0 βh > 1 ( 1+ (1 βh) 2 2 + 1 βh βh (1+cos( mπ Um 1 2 ( Um 1+ (1 βh) 2 2 2 βh m+1)) + 1 βh (1+cos( m+1)) ) mπ ) > ( 1+ (1 βh) 2 2 + βh βh(1+cos( mπ Um 1 2 ( Um 1+ (1 βh) 2 2 2 βh ) m+1)) + βh(1+cos( m+1)) ) mπ where U k ( ) is the k th Chebyshev polynomial of the second kind

Aspect ratio θ versus growth factor β β = δ h( δ h ( rect K ɛ ) square K 1+θ ɛ ) 2 θ θ 1 2 3 4 5 6 10 14 25 β 1.00 1.06 1.15 1.25 1.34 1.43 1.74 2.00 2.60 rectangle DD time increase = α+β α+1 where α = Tcomp T comm

Define edge weight w(e k ) = q s (ˆn k ˆb) with q s (r) = (sr) s +1 and ˆb is the direction of convection or u and ˆn k is the unit normal to triangle side k. ˆn k ˆb ˆnk+1 w(e k ) = q s (0.94) w(e k+1 ) = q s (0.17)

with s = 1.83 e k+1 e k e k+2 w(e k ) = 4 w(e k+1 ) = 2.6 w(e k+2 ) = 1

b = [ 1 1 ] b = [ 0.5 y x 0.5 ] u+b u = 1 on Ω = [0,1] [0,1] R 2

w(e k ) = q s (ˆn k ˆb) q s (r) = (sr) s +1 s = 2 s = 2.75 s = 4

{ Ak+1,k + A k+1,k+3 Define w(e k ) = max 2 A k+1,k+1 { Ak+2,k + A k+2,k+3 +max 2 A k+2,k+2, A k,k+1 2 A k,k, A k,k+2 2 A k,k + A } k+3,k+1 2 A k+3,k+3 + A } k+3,k+2 2 A k+3,k+3 where A is the Finite Element Stiffness Matrix and indices k,k +1,k +2,k +3 are defined in the Figure below.

α [ α 0 0 1 ] u 1 = 0-1 2+2α α w(e y ) = A k,k 1 + A k,k+1 A k,k A k,k 1 A k,k m A k,k A k,k+m -1 A k,k+1 w(e y ) = 2+βh 4+βh 1 w(e x ) = 2 4+βh 0 (for triangles w(e x ) 1 4 ) -1-1 e y 4-1 -1 w(e y ) = 2α 2+2α 1 2 w(e x ) = 2+2α 0 (for triangles w(e x ) 1 4 ) w(e y ) = 1 2-1 e x 1 βh 4+βh -1-1 w(e x ) = 1 2 u 1 = 0 u+ [ β 0 ] u 1 = 0

c c c c function geta(i,j,nb,ndf,map,a,ja,jap) use mthdef implicit real(kind=rknd) (a-h,o-z) implicit integer(kind=iknd) (i-n) integer(kind=iknd), dimension(*) :: ja,jap integer(kind=iknd), dimension(ndf) :: map real(kind=rknd), dimension(*) :: a this routine returns A(i,j) nb_low = map(i) nb_high = map(j) if (nb_low == nb_high) then geta = a(nb_low) endif l_shift = 0 if (nb_low > nb_high) then l_shift = ja(nb+1)-ja(1) nb_low = map(j) nb_high = map(i) endif if (nb_low /= nb_high) then n_index = -1 do k=ja(nb_low),ja(nb_low+1)-1 if (nb_high == ja(k)) n_index=k enddo if (n_index /= -1) then geta = a(jap(n_index)+l_shift) else geta = 0.0 endif endif return end do i=1,ntf i1=itdof(1,i) i2=itdof(2,i) i3=itdof(3,i) alpha=100.0 beta=0.5 wght(1,i)= + MAX((abs(geta(i1,i2,nb,ndf,map,a,ja,jns)) + + abs(geta(i1,i3,nb,ndf,map,a,ja,jns))) + /2.0/abs(geta(i1,i1,nb,ndf,map,a,ja,jns)), + abs(geta(i2,i1,nb,ndf,map,a,ja,jns)) + /2.0/abs(geta(i2,i2,nb,ndf,map,a,ja,jns)) + + abs(geta(i3,i1,nb,ndf,map,a,ja,jns)) + /2.0/abs(geta(i3,i3,nb,ndf,map,a,ja,jns))) if (wght(1,i)>1.0) wght(1,i)=1.0 wght(1,i)=alpha*wght(1,i)+beta wght(2,i)= + MAX((abs(geta(i2,i1,nb,ndf,map,a,ja,jns)) + + abs(geta(i2,i3,nb,ndf,map,a,ja,jns))) + /2.0/abs(geta(i2,i2,nb,ndf,map,a,ja,jns)), + abs(geta(i1,i2,nb,ndf,map,a,ja,jns)) + /2.0/abs(geta(i1,i1,nb,ndf,map,a,ja,jns)) + + abs(geta(i3,i2,nb,ndf,map,a,ja,jns)) + /2.0/abs(geta(i3,i3,nb,ndf,map,a,ja,jns))) if (wght(2,i)>1.0) wght(2,i)=1.0 wght(2,i)=alpha*wght(2,i)+beta wght(3,i)= + MAX((abs(geta(i3,i2,nb,ndf,map,a,ja,jns)) + + abs(geta(i3,i1,nb,ndf,map,a,ja,jns))) + /2.0/abs(geta(i3,i3,nb,ndf,map,a,ja,jns)), + abs(geta(i2,i3,nb,ndf,map,a,ja,jns)) + /2.0/abs(geta(i2,i2,nb,ndf,map,a,ja,jns)) + + abs(geta(i1,i3,nb,ndf,map,a,ja,jns)) + /2.0/abs(geta(i1,i1,nb,ndf,map,a,ja,jns))) if (wght(3,i)>1.0) wght(3,i)=1.0 wght(3,i)=alpha*wght(3,i)+beta enddo real(kind=4) :: ubvec real(kind=4), dimension(nproc) :: tpwgts integer(kind=4) :: nvtxs,ncon,nparts,objval integer(kind=4), dimension(ntf+1) :: xadj,vwgt,part,vs integer(kind=4), dimension(3*ntf) :: adjncy,adjwgt integer(kind=4), dimension(40) :: options external METIS_METIS_SetDefaultOptions external METIS_PartGraphRecursive common /chris/wght(3,400000) call METIS_SetDefaultOptions(options) options(8) = 10 index = 1 nvtxs = ntf ncon = 1 nparts = nproc ubvec = 1.001 do i=1,nproc tpwgts(i) = 1.0/nproc enddo do i=1,ntf do j=1,3 if (itedge(j,i)/4>0) then adjncy(index)=itedge(j,i)/4-1 n=itedge(j,i)/4 m=itedge(j,i)-4*n adjwgt(index)=wght(j,i)+wght(m,n) index=index+1 endif enddo xadj(i+1)=index - 1 vwgt(i)= 1 enddo call METIS_PartGraphRecursive(nvtxs,ncon,xadj,adjncy, + vwgt,vs,adjwgt,nparts,tpwgts,ubvec,options,objval,part) go to 50

Find u H 2 (Ω) s.t. u [10 4 0] T u 1 = 0 on Ω = [0,1] [0,1] R 2 u = 0 on Ω

Find u H 2 (Ω) s.t. u [10 6 0] T u 1 = 0 on Ω = [0,1] [0,1] R 2 u = 0 on Ω D = {0,1} [0,1] n u = 0 on Ω N = [0,1] {0,1} DD convergence of r k and δu k were Weighted: 0.29 and 0.28 Unweighted: 0.50 and 0.44 STOP DD when δu k L 2 (Ω) < 1 10 u u h L 2 (Ω) Find u H 2 (Ω) s.t. u [10 4 0] T u f(x,y) = 0 on Ω = [0,2π] [0,2π] R 2 u = 0 on Ω f(x,y) = 2sin(x)sin(y) 10 4 cos(x)sin(y) DD convergence of r k and δu k were Weighted: 0.30 and 0.29 Unweighted: 0.48 and 0.41

Find u H 2 (Ω) s.t. a u 1 = 0 on Ω = [0,1] 2 u = 0 on Ω where a = 1 [ 1 1 2 1 1 ][ α 0 0 1 ][ 1 1 1 1 ] α unweighted convergence r k / r 0 weighted convergence r k / r 0 unweighted convergence δ k / u 0 weighted convergence δ k / u 0 iteration reduction log/log 10 2 0.65 0.52 0.58 0.50 0.79 10 1 0.57 0.47 0.53 0.47 0.85 2 0.48 0.40 0.45 0.36 0.78 1.75 0.44 0.42 0.40 0.37 0.92 1 0.43 0.43 0.37 0.37 1.0 λ 1 λ 2 (a) 2

b h b unweighted convergence r k+1 / r k weighted convergence r k+1 / r k unweighted convergence δu k+1 / δu k weighted convergence δu k+1 / u k iteration reduction log/log 347 10 6 0.50 0.29 0.44 0.28 0.64 34.7 10 5 0.50 0.28 0.44 0.28 0.64 3.47 10 4 0.45 0.24 0.39 0.24 0.66 1.10 10 3.5 0.29 0.21 0.25 0.19 0.83 0.347 10 3 0.26 0.27 0.16 0.17 1.0 0.0347 10 2 0.33 0.38 0.23 0.28 1.2 b h b unweighted convergence r k+1 / r k weighted convergence r k+1 / r k unweighted convergence δu k+1 / δu k weighted convergence δu k+1 / u k iteration reduction log/log 2450 10 7 0.67 0.50 0.55 0.45 0.75 245 10 6 0.67 0.50 0.55 0.45 0.75 24.5 10 5 0.67 0.50 0.55 0.45 0.75 2.45 10 4 0.58 0.39 0.47 0.35 0.72 0.245 10 3 0.26 0.30 0.18 0.19 1.0 0.0245 10 2 0.39 0.34 0.20 0.24 1.1 Find u H 2 (Ω) s.t u [β 0] T u 1 = 0 on Ω = [0,1] 2 u = 0 on Ω D n u = 0 on Ω N Vary b and number of processors. b h b unweighted convergence r k+1 / r k weighted convergence r k+1 / r k unweighted convergence δu k+1 / δu k weighted convergence δu k+1 / u k iteration reduction log/log 173 10 6 0.72 0.56 0.59 0.47 0.70 17.3 10 5 0.72 0.55 0.59 0.47 0.70 1.73 10 4 0.62 0.38 0.51 0.33 0.61 0.173 10 3 0.29 0.31 0.18 0.21 1.1 0.0173 10 2 0.36 0.59 0.26 0.43 1.3 b h b unweighted convergence r k+1 / r k weighted convergence r k+1 / r k unweighted convergence δu k+1 / δu k weighted convergence δu k+1 / u k iteration reduction log/log 123 10 6 0.73 0.61 0.60 0.51 0.76 12.3 10 5 0.73 0.61 0.59 0.50 0.76 1.23 10 4 0.62 0.42 0.51 0.35 0.64 0.123 10 3 0.30 0.33 0.19 0.25 1.2 0.0123 10 2 0.38 0.66 0.28 0.48 1.7 Keep number of unknowns per proc constant = 2.0 10 5 b h a 1

Find u H 2 (Ω) s.t u [β 0] T u 1 = 0 on Ω = [0,1] 2 u = 0 on Ω Vary b h and rectangle aspect ratio.

Find u H 2 (Ω) s.t. [ ] α 0 u+1 = 0 on Ω = [0,1] 2 0 1 u = 0 on Ω Vary α and rectangle aspect ratio.

Find u H 2 (Ω) s.t. u [ 10 5 0 ] T u 1 = 0 on Ω = [0,1] 2 u = 0 on Ω Vary unknowns per processor and number of processors. Keep b h constant by adjusting β.

Find u H 2 (Ω) s.t. u [10 5 0] T u 1 = 0 on Ω = [0,κ] [0,1] R 2 u = 0 on Ω Vary domain s aspect ratio. Keep b h constant by adjusting β. κ = 1 4 κ = 1 κ = 2 κ = 4 κ = 8

u 10 5 u x 1 = 0 Convection Anisotropic diffusion 10u xx u yy 1 = 0

2log 2 h 1 3 4 h h

Define triangle weight w(t k ) = z(p(t k )) s where p(t k ) = (x,y) center of triangle t k and flow function z(x,y) : Ω [0,1]+ɛ For example, z(x,y) = x+10 3 with Ω = [0,1] [0,1] and s = 1.5

w(t k ) = z(p(t k )) s z(x,y) = x+10 3 Ω = [0,1] [0,1] s = 0 s = 0.5 s = 0.75 s = 1 s = 1.5 s = 2

Find u H 2 (Ω) s.t. Lu = f on [0,1] R u(0) = u(1) = 0 u(x) Find u h S h H 1 (Ω) s.t. u h = 5 k=1 U kψ k

Define triangle weight w(t k ) = (u u h ) L2 (t k ) (u 2 u 1 ) L2 (t k ) where u k is the usual Lagrange interpolant For example, u [β 0] T u 1 = 0 in Ω u = 0 on Ω

Find u H 2 (Ω) s.t. u [10 6 0] T u 1 = 0 on Ω = [0,1] [0,1] R 2 u = 0 on Ω D = {0,1} [0,1] n u = 0 on Ω N = [0,1] {0,1} STOP DD when δu k L 2 (Ω) < 1 10 u u h L 2 (Ω) DD convergence of r k and δu k were Weighted: 0.34 and 0.20 Unweighted: 0.50 and 0.44 Error u u h L2 (Ω) reduction: 0.40 Find u H 2 (Ω) s.t. u [10 4 0] T u f(x,y) = 0 on Ω = [0,2π] [0,2π] R 2 u = 0 on Ω f(x,y) = 2sin(x)sin(y) 10 4 cos(x)sin(y) DD convergence of r k and δu k were Weighted: 0.20 and 0.14 Unweighted: 0.48 and 0.41 Error u u h L2 (Ω) increase: 1.33

Find u H 2 (Ω) s.t u [β 0] T u 1 = 0 on Ω = [0,1] 2 u = 0 on Ω s = 0 s = 0.5 s = 0.75 Vary b h and flow parameter. s = 1 s = 1.5 s = 2

flow function convergence convergence r k / r 0 δ k / u 0 figure z(x,y) = x+ɛ 0.36 0.21 1 z(x,y) = x 0.5 +ɛ 0.35 0.29 2 z(x,y) = x 1 +ɛ 0.42 0.26 3 z(x, y) = 1 0.50 0.44 - z(x,y) = y +ɛ 0.70 0.51 4 z(x,y) = y 0.5 +ɛ 0.68 0.53 5 z(x,y) = y 1 +ɛ 0.70 0.51 6 Find u H 2 (Ω) s.t. u [10 6 0] T u 1 = 0 on Ω = [0,1] [0,1] R 2 u = 0 on Ω D = {0,1} [0,1] n u = 0 on Ω N = [0,1] {0,1} flow parameter s = 1 0.29 & 0.28 0.64 & 0.51

Find u H 2 (Ω) s.t. u [ 10 5 0 ] T u 1 = 0 on Ω = [0,1] 2 u = 0 on Ω Vary unknowns per processor and number of processors. Keep b h constant by adjusting β. Ω = [0,κ] [0,1] R 2

DD convergent rate of δu k L2 (Ω) s c s f = 0.0 0.5 0.75 1.0 1.5 2.0 0.0 0.34 0.31 0.28 0.20 0.09 0.09 1.0 0.28 0.25 0.22 0.19 0.12 0.13 1.56 0.23 0.21 0.16 0.16 0.13 0.11 1.83 0.22 0.21 0.17 0.15 0.15 0.12 2.0 0.25 0.21 0.18 0.17 0.15 0.13 2.23 0.25 0.21 0.18 0.15 0.18 0.15 DD iterations reduction factor Find u H 2 (Ω) s.t. u [10 5 0] T u 1 = 0 on Ω = [0,1] 2 u = 0 on Ω flow function z(x,y) = x+10 3 Vary flow parameter and convection weighting parameter. s c s f = 0.0 0.5 0.75 1.0 1.5 2.0 0.0 1.0 0.92 0.85 0.67 0.45 0.45 1.0 0.85 0.78 0.71 0.65 0.51 0.53 1.56 0.73 0.69 0.59 0.59 0.53 0.49 1.83 0.71 0.69 0.61 0.57 0.57 0.51 2.0 0.78 0.69 0.63 0.61 0.57 0.53 2.23 0.78 0.69 0.63 0.57 0.63 0.57 s c = 2 and s f = 1

Domain Decomposition converges faster when applying the Edge or Triangle Weighting schemes presented today. Specifically, convection dominated and anisotropic diffusion elliptic PDEs converge faster regardless of boundary conditions, forcing functions, reaction terms, number of processors, problem size, or domain aspect ratio. Expect a reduction in DD iterations between 0.25 and 0.75

If Error Weighting can be applied, use it (or Flow Weighting). (Don t use Flow Weighting otherwise.) Don t combine Edge and Triangle Weighting. If Error Weighting cannot be applied, use Stiffness Matrix Weighting (or Convection or Gradient Weighting). For Edge Weighting, adjust rectangle aspect ratio if rp > 400 (where r is the domain aspect ratio in the direction of dependence and P is the number of processors).