Convolution product formula for associated homogeneous distributions on R

Σχετικά έγγραφα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Pairs of Random Variables

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Matrices and Determinants

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

Class 03 Systems modelling

Section 8.3 Trigonometric Equations

DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION. Zhihao Ge

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

CRASH COURSE IN PRECALCULUS

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

CHAPTER 5. p(x,y) x

16 Electromagnetic induction

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Trigonometry 1.TRIGONOMETRIC RATIOS

Κύµατα παρουσία βαρύτητας

Example Sheet 3 Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Sequential Bayesian Search Appendices

derivation of the Laplacian from rectangular to spherical coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Space-Time Symmetries

Appendix A. Stability of the logistic semi-discrete model.

Second Order RLC Filters

2 Composition. Invertible Mappings

Sheet H d-2 3D Pythagoras - Answers

Review Exercises for Chapter 7

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Το άτομο του Υδρογόνου

March 14, ( ) March 14, / 52

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

C.S. 430 Assignment 6, Sample Solutions

The Finite Element Method

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Lectures on Topics in Mean Periodic Functions And The Two-Radius Theorem

Durbin-Levinson recursive method

Original Lambda Lube-Free Roller Chain

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

General theorems of Optical Imaging systems

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

ΕΝΙΣΧΥΣΗ ΠΛΑΚΩΝ ΚΑΙ ΔΟΚΩΝ ΣΕ ΚΑΜΨΗ ΜΕ ΜΑΝΔΥΕΣ Η ΕΛΑΣΜΑΤΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ.

Qualitative Analysis of SIR Epidemic Models in two Competing Species

Every set of first-order formulas is equivalent to an independent set

Homework 8 Model Solution Section

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Errata Sheet: Relativity Demystified (David McMahon, McGraw-Hill, 2006) Susan Larsen Friday, June 26, 2015

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

D Alembert s Solution to the Wave Equation

F19MC2 Solutions 9 Complex Analysis

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Section 7.6 Double and Half Angle Formulas

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS


3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 3 Solutions

ST5224: Advanced Statistical Theory II

Lossy Medium EE142. Dr. Ray Kwok

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Math221: HW# 1 solutions

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

SUFFICIENT BURN-IN FOR GIBBS SAMPLERS FOR A HIERARCHICAL RANDOM EFFECTS MODEL

UNIT 13: TRIGONOMETRIC SERIES

Additional Results for the Pareto/NBD Model

Strain gauge and rosettes

Math 6 SL Probability Distributions Practice Test Mark Scheme

Areas and Lengths in Polar Coordinates

Finite Field Problems: Solutions

Bit Error Rate in Digital Photoreceivers

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

Areas and Lengths in Polar Coordinates

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Cyclic or elementary abelian Covers of K 4

Lecture 26: Circular domains

Second Order Partial Differential Equations

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών


Harmonic Oscillations and Resonances in 3-D Nonlinear Dynamical System

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Approximation of distance between locations on earth given by latitude and longitude

Ενδιάµεση Εξέταση CCD. l s. l o. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Chapter 4 : Linear Wire Antenna

Transcript:

Cnvlutin prduct frmula fr assciatd hmgnus distributins n R Ghislain R. FRANSSENS Blgian Institut fr Spac Arnmy Ringlaan 3 B-80 Brussls Blgium E-mail: ghislain.franssns@arnmy.b Octbr 009 Abstract Th st f assciatd hmgnus distributins AHs basd n R H R cnsists f th distributinal gnralizatins f pwr-lg functins with dmain in R. This st cntains th majrity f th n-dimnsinal distributins n typically ncuntrs in physics applicatins. Rcnt wrk dn by th authr has shwn that th st f AHs n R admits a clsd cnvlutin structur H R prvidd that critical cnvlutin prducts ar dfind by a functinal xtnsin prcss. In this papr th gnral cnvlutin prduct frmula fr H R is drivd. Cnvlutin f AHs n R is fund t b assciativ xcpt fr crtain critical tripl prducts. Ths critical prducts ar shwn t b nn-assciativ in a minimal and intrsting way. Kywrds. Gnralizd functin Assciatd hmgnus distributin Cnvlutin Ral lin. AMS 000 MSC 46F0 46F 46F30. Intrductin Lt H R dnt th st f assciatd hmgnus distributins AHs basd n i.. with supprt in th ral lin R [4] [7]. Th lmnts f H R ar th distributinal gnralizatins f pwr-lg functins with dmain in R [0] []. A cmprhnsiv intrductin t AHs basd n R is givn in [4]. Fr structur thrms f AHs basd n R s [5]. Th st H R is imprtant fr th fllwing rasns. i H R cntains th majrity f th n-dimnsinal distributins n typically ncuntrs in physics applicatins such as th dlta distributin δ th ta distributin η a nrmalizd Cauchy s principal valu th stp distributins ± svral s calld psud-functins gnratd by taking Hadamard s finit part f crtain divrgnt intgrals assciatd Risz krnls gnralizd Hisnbrg distributins all thir gnralizd drivativs and primitivs and many familiar thrs []. ii H R cntains th krnls f th fractinal intgratin/drivatin pratrs n R. iii H R is a subst f th tmprd distributins S R and just as S R is als H R clsd undr Furir transfrmatin [0]. Ths rasns strngly mtivat th cnstructin f a cnvlutin structur fr H R. In tw prvius paprs by th authr [6] and [7] it was shwn hw th cnvlutin prduct can b dfind n H R and th rsulting cnvlutin structur was dntd by H R. Mr spcifically it was first fund in [6] that if f a and g b ar AHs with dgrs f hmgnity a and b whs supprt is nt bundd n th sam sid n can still cnstruct thir cnvlutin prvidd th rsulting dgr f hmgnity ab is nt a natural numbr. Th

cass fr which a b N ar calld critical cnvlutin prducts. In [7] it was thn shwn that critical cnvlutin prducts gnrat partial distributins i.. squntially cntinuus linar functinals nly dfind n a subspac S r f Schwartz spac S f smth functins f rapid dscnt [4] [7]. Sinc S is a Frécht spac [3 p. 84] [9 Appndix] S is lcally cnvx [3 p. 9] and th cntinuus xtnsin vrsin f th Hahn-Banach thrm applis [3 p. 56]. This thrm nsurs that in this cas partial distributins can b xtndd t distributins dfind n th whl f S hnc t a tmprd distributin [3 p. 90]. Basd n this justificatin critical cnvlutin prducts wr dfind in [7] as gnrally nn-uniqu xtnsins in H R. Cmbining th rsults frm [6] and [7] thn shws that H R is clsd. Onc such a structur bcms availabl crtain cnvlutin quatins dfind vr th whl lin.g. diffrntial quatins with cnstant cfficints intgral quatins with pwrlg krnls tc. rduc t algbraic quatins with rspct t th structur H R. Rcall that th classical fractinal intgratin/drivatin calculus is nly dfind vr half-lins [6]. Mrvr a substructur f H R can b idntifid that srvs t justify th distributinal fractinal intgratin/drivatin calculus vr th whl ral lin a rsult t b prsntd lswhr. By cmbining th structur H R and prprty iii abv tgthr with th gnralizd cnvlutin thrm [7 p. 9] [9 p. 0] nw als dfins a clsd multiplicatin prduct fr AHs n R. This givs us a multiplicatin structur H R. which is ismrphic t H R undr Furir transfrmatin. Th structur H R. is furthr studid in th frth cming papr [8]. Th imprtanc f H R. stms frm th fact that it nw bcms pssibl fr th first tim t giv a rigrus maning t distributinal prducts such as δ δ.δ and many intrsting thrs as a distributin fr instanc it is fund in [8] that δ cδ c C arbitrary. Attmpts t dfin a multiplicatin prduct fr th whl st f distributins such as in [] using rgularizatin squncs and passag t th limit r [] using th Furir transfrm fail t prduc maningful prducts f crtain AHs as a distributin.g. fr δ s [3 Chaptr ]. Othr apprachs allw t dfin a multiplicatin prduct fr a diffrnt class f gnralizd functins G such as in Clmbau s wrk which blngs t nn-standard analysis [3] and whr δ G but his δ has n assciatin in. Th hr adptd dfinitin fr multiplicatin f AHs maks that H R. is intrnal t Schwartz distributin thry in th sns that all ur prducts ar in H R S R R and this uniqu fatur maks ur multiplicatin prduct stand ut frm th abv apprachs. Furthr ur multiplicatin prduct fr AHs is nt in cntradictin with Schwartz impssibility thrm [5] fr rasns xplaind in [7] and [8]. Th structurs H R and H R. hav imprtant cnsquncs fr varius aras in th applid scincs. Fr instanc H R. maks it pssibl t us distributins frm H R in nn-linar mdls. istributinal prducts invlving.g. th dlta distributin th stp distributins tc. ccurring in fr instanc nn-linar shck wav prpagatin mdls nw acquir a rigrus maning within classical distributin thry. Furthr th st H R f n-dimnsinal AHs can b xtndd undr suitabl pullbacks alng scalar functins t highr dimnsinal AHs invariant undr crtain cntinuus grups. Th s cnstructd highr dimnsinal AHs inhrit thir algbraic structur frm th n-dimnsinal structurs H R and H R.. Ths invariant highr dimnsinal AHs play an imprtant rl in th thry f partial diffrntial quatins. Crtain particular AHs invariant undr O n rduc t th Laplac pratr fr a particular valu f thir dgr f hmgnity and ar thus imprtant in ptntial thry. Th inhritd cnvlutin structur thn prvids th justificatin fr algbraically slving Pissn s quatin and vn cmplx dgr gnralizatins f it. Ths AHs that ar invariant undr O 3 i.. th Lrntz grup play a rl in wav thry and mr gnrally ths invariant undr O p q ar th tls that svrally simplify th intgratin

f th gnralizd ultra-hyprblic quatin i.. th wav quatin in a flat univrs with p tim dimnsins and q spac dimnsins. Th lattr O p q-invariant substs f AHs ar f paramunt imprtanc in advancd analysis.g. fr dvlping Cliffrd Analysis vr psud- Euclidan spacs. Th lattr has dirct applicatins in physics and fr p and q 3 can b rgardd as a functin thry that is tailr-mad t slv prblms in lctrmagntism and quantum thry. In this papr w will mak th structur H R xplicit by driving th gnral cnvlutin prduct frmula fr AHs basd n R. In th fllwing sctins w first calculat a numbr f particular cnvlutin prducts f AHs which will b ndd t driv th final prduct frmula in a structurd way. Ths particular cnvlutin prducts ar intrsting and usful in thir wn right. Many f thm ar nw.g. Thrms and spcially 4. In sctin 5 w wrk ut th particular natur f th nn-assciativity f critical cnvlutin prducts. W us th ntatin and dfinitins intrducd in [4]. Cnvlutin prducts f δ k η k k! and sgn k! W hr cllct sm imprtant simpl prducts which will b ndd in subsqunt sctins. A dirct calculatin using th gnral rsults btaind in [6] and [7] prducs th symmtric cnvlutin prduct Tabl hlding k l N and with c C an arbitrary cnstant. Rcall that δ k is th gnralizd multiplicatin drivativ pratr f dgr k [4 q. 39]. Th pratr x l sgn l! is a gnralizd multiplicatin primitiv pratr f dgr l n R as is mad vidnt by ntry C..4 in Tabl if l < k. With ths bsrvatins mst rsults in Tabl ar asily undrstd. As an illustratin f hw ths rsults wr btaind w giv in Appndix th xplicit calculatin fr rsult C.3.3. Th wll-knwn rlatin C..3 shws that th gnralizd multiplicatin drivativs f a distributin mnmial fllw th sam rul as th rdinary drivativs f a functin mnmial. Th lss knwn rlatin C..4 with k l givs th gnralizd multiplicatin drivativs f a distributin mnmial f ppsit parity in a similar way. Rsult C.. rprducs a gnralizatin f th wll-knwn anti-invlutin prprty f th distributinal Hilbrt transfrmatin s als [6 q. 6]. Th rsults C..3 C..4 C.3.3 C.3.4 and C.4.4 dpnd n a linar cmbinatin f tw xtnsins which is rflctd by th ccurrnc f th arbitrary cnstant c. In particular fr k 0 C..3 and C..4 yild th Hilbrt transfrm pairs x l l! η x l sgn η l! x l c l! x l ln x c x l l! l!. Equatin shws that x l l N ar igndistributins f th Hilbrt pratr c C. This rsult als shws that th cmmnly statd prprtis fr th classical Hilbrt transfrmatin: i that th Hilbrt transfrmatin f a cnstant functin is zr and ii that th Hilbrt transfrmatin is a parity rvrsal pratin ar n lngr tru in gnral fr th distributinal Hilbrt transfrmatin. Th right-hand sid f is an l -th dgr primitiv f η. 3 Th cnvlutin prducts k! n z z ± W nd th fllwing spcial rsults t structur sm calculatins in th nxt sctin. 3

Prpsitin With z ± th hmgnus nrmalizd half-lin krnls givn by [4 q. 46] hlds that k n N and with c ± C arbitrary k! z n z ± k! n b b ± 0 b C\Z 3 zl 0 kl ± l n0 n>0 c ± l l N 4 k l! k! l n l l ± c ± k l! l Z 5 Prf. i Eq. 3. Using [4 qs. 50 and 5] and [6 q. 4] givs k N and z C\Z k! z ± k k k z ± 0. By [6 Thrm 6] thn hlds n N and z C\Z that k! n z z ± z n k! z ± 0. ii Eq. 4. ii. Lt k < l. W hav by [4 q. 47] l Z k Z [0l] k! l ± xk k! ±l δ l 0 by C..3 in Tabl. By 3 and [6 Thrm 6] thn hlds n N that k! z n z ± zl 0. ii. Lt l k. ii.. Fr n 0. W hav by a dirct calculatin using [4 q. 47] Nw with [4 q. 50] k l l kl 6 l k l kl. 7 k! l k k k l kl kl kl ; l k l! and k! l k k k l l kl kl kl l l k l!. 4

and ii.. Fr n Z. Frm [7 q. 7] fllws that k 0k;nl ;0 C 0n n0 cs n/ l sgn k l! S0n n0 α cs n/ l k l! q C n 0n nq z z zkl kl cs n q / z q z zkl q q S 0n nq z z zkl kl z q z zkl l nl;0k ;0 C n0 n0 cs n/ l sgn k l! Sn0 n0 α cs n/ l k l! q n C n0 nq z z zkl kl cs n q / z q z zkl q q S n0 nq z z zkl kl z q z. Hrin ar α ± C\ {i i} arbitrary and zkl C 0n nq S 0n nq nq 0 q n n q nq k0 nq k Enqk q Z [0n] n nq q q n n n nq nq 0 q n q k0 k Bnqk q Z [n] and C n0 nq S n0 nq nq 0 q n n q nq l0 l nq l Enql q Z [0n] n nq q n nq q n n nq nq q Z [n]. 0 q n q l0 l l B nql Only ths trms fr which n q is vn cntribut t th xprssins fr 0k;nl ;0 and. Fr n q vn hlds du t [4 q. 8] that th xprssins fr th cnstants nl;0k ;0 C 0n nq and Cn0 nq rduc t q Z [0n] C 0n nq qn C n0 nq qn Similarly du t [4 q. 9] hlds q Z [n] S 0n nq qn S n0 nq qn. 5

Thrfr and by using [4 qs. 50 5] w gt and k 0k;nl ;0 l sgn n0 k l! xkl k l! 0<n n z z zkl n0 kl 0<n n z z n0 S0n n0 α cs n/ zkl n0 S0n n0 α cs n/ l k l! l k l! z n z zkl n0 S0n n0 α x cs n/ kl k l! 8 l nl;0k n0 ;0 l sgn k l! xkl k l! 0<n kl z n z zkl kl n0 kl 0<n n z z n0 Sn0 n0 α cs n/ n0 Sn0 n0 α cs n/ zkl l k l! l k l! kl z n z zkl n0 Sn0 n0 α x cs n/ kl k l!. 9 Furthr k N l Z [0k] and with c c C arbitrary w hav by [7 q. 70] and 8 9 that k k z n z zl k 0k;nl ;0 k l c k l! z n z zkl n0 S0n n0 α cs n/ k l c k l! 0 and n z z zl k nl;0k ;0 kl l c k l! k z n z zkl l n0 Sn0 n0 α cs n/ k l c k l!. Nw using [4 q. 50] hlds that k! z n z zl k k k n z z z n z zl zkl k k n z z 6 zl

and k! z n z k zl k k z n z zl z n z zl k k z n z zkl. Substituting hrin th rsults 0 givs k! z n z zl n0 S0n n0 α cs n/ k l c k l! k! z n z zl l n0 Sn0 n0 α cs n/ k l c k l!. This can b rcast in th fllwing frm k! z n z n0 zl S 0n k! z n z zl l n>0 S 00 0 α k c n0 α cs n/ k c n0 n>0 S 00 0 α k c S n0 n0 α cs n/ k c l k l! l k l!. Fr n 0 th cnstants α and c bcm rlatd bcaus k l acquirs a uniqu valu du t th cmpact supprt f l. Similarly th cnstants α and c bcm rlatd bcaus l k acquirs a uniqu valu du t th cmpact supprt f l. Ths rlatins ar asily btaind frm quating 0 with 6 7. W btain S 00 0 α ± k c ±. Thn k! z n z ± zl ±l n0 n>0 c l ± k l! whrin w dfind c ± ± S 0n n0 α ± cs n/ S 00 0 α ±. iii Eq. 5. Using [4 q. 50] w hav l Z and k! n l l k! n l l k k k l n l zkl k k n l l n z z k k k l n l l n l k k z n z Similarly as fr 0 w nw btain l Z k k z n z n l l zkl n0 S0n n0 α cs n/ k c 7 zkl. 3 l k l! 4

and l n l k k z n z zkl l n0 Sn0 n0 α cs n/ k l c k l!. 5 Hrin ar α ± C\ {i i} and c ± C fur arbitrary cnstants. Substitutin f 4 5 in 3 givs k! n l l n0 S0n n0 α cs n/ k l c k l! k! n l l l n0 Sn0 n0 α cs n/ k l c k l!. Cntrary t cas ii.. abv fr n 0 th cnstants α ± and c ± ar n lngr rlatd sinc l ± ds nt has cmpact supprt s th prducts k l and l k ar als fr n 0 nn-uniqu xtnsins. Thrfr with arbitrary c ± C. k! n l l ± c ± 4 Th cnvlutin prducts l k l! k! n z z Th fllwing rsults will b ndd in th prduct frmula which is drivd in sctin 7. Prpsitin With n z z th nrmalizd parity krnls f th first kind givn by [4 qs. 85 86] hlds that k n N and with c c c C arbitrary and k! n b b 0 b C\Z 6 n0 l l/ l c l l N 7 n>0 c k l! k! n w w wl l k k! w n w wq c q q N 8 k q! k! n w w wq c q q N 9 k q! k! n w w wl l k k! n b b 0 b C\Z 0 n0 l l/ l c k! n w w wq c k! w n w wq c n>0 c l l N k l! q q N k q! q q N. 3 k q! 8

Prf. Lt k N. A. Fr z. i Eq. 6 b C\Z. With [4 qs. 50 and 85] k! b k k k b b cs /b kb k kb cs /b k k b b k Using [6 qs. 40 and 4] this rducs t k! b kb k kb cs /b k k kb k kb 0. Thn by [6 Thrm 6] and n N. ii Eq. 7 b l N. Frm 4 fllws that k! n b b 0. k! q w w w q w wl k<l0 l k q0 l q>0 c l k l! 4 with c C arbitrary. Put Using [4 q. 307] and 4 w gt E n x B n x n a q x q 5 q0 n b q x q. 6 q0 k! n w w wl k! i/n l l/ E n w i/ w w i l l/ B n w l l/ n q0 a qi/ nq i l l/ n q0 b qi/ nq l l/ n q0 a qi/ nq i l l/ n q0 b qi/ nq r sinc a 0 E n and E 0 i/ w w wl k! q w w w q w wl k<l0 l k q0 l q>0c k! n w w wl k<l 0 l k l l/ i/ n E n n>0 l c l c l k n0 l l/ l c n>0 c 9 l k l! l k l! l k l!

with arbitrary c c c C. iii Eq. 8 b q Z. Using [4 q. 9] 5 and C.3.3 in Tabl with arbitrary c ± c c C givs k! q q k! w w w w wq c x q q c c q k q! c c q r k! q cxkq with c C arbitrary. iv Eq. 9 b q Z. Using [4 q. 94] and C.3.4 in Tabl w gt k! q k! x q sgn q q! c q k q! with c C arbitrary. Applying [7 qs. 7 and 60] [4 qs. 303 and 305] and linarity t th rsults btaind in iii and iv yilds 8 9 n N and l Z. B. Fr z. i Eq. 0 b C\Z. With [4 qs. 50 and 86] k! b k k k b b sin /b kb k kb sin /b k k b b k Using [6 qs. 40 and 4] this rducs t k! b kb k kb sin /b k k kb k kb 0. ii Eq. b l N. Frm 4 fllws that k! q w w w q w wl k<l0 l k q0 l q>0 c l k l! 7 with c C arbitrary. Using [4 q. 307] 5 6 and 7 w gt k! n w w wl k! i/n l l/ E n w i/ i l l/ B n w l l/ n q0 a qi/ nq i l l/ n q0 b qi/ nq l l/ n q0 a qi/ nq i l l/ n q0 b qi/ nq i/ w w w w wl k! q w w w q w wl k<l0 l k q0 l q>0c 0. l k l!

r k! n w w wl k<l 0 l k l l/ i/ n E n n>0 l c l c n0 l l/ l c l l k n>0 c k l! with arbitrary c c c C. iii Eq. b q Z. Using [4 q. 99] and C.3.4 w gt k! q k! q cq. x q sgn q! l k l! with c C arbitrary. iv Eq. 3 b q Z. Using [4 q. 97] 5 and C.3.3 with arbitrary c ± c c C givs k! q q k! w w w w wq c x q q c c q k q! c c q r k! q cxkq with c C arbitrary. Applying [7 qs. 7 and 60] [4 qs. 304 and 306] and linarity t th rsults btaind in iii and iv yilds 3 n N and l Z. In particular fr l 0 Thrm givs with c C arbitrary. k! n w w w0 n0 n>0 c k! n w w w0 c k! 8 k!. 9 5 Assciativity f critical cnvlutin prducts W nw rturn t th qustin f assciativity in cas at last n f th cnvlutin prducts is critical. Thrm 3 Lt critical cnvlutin prducts b dfind by xtnsins as in [7 q. 69]. Thn with z ± th hmgnus nrmalizd half-lin krnls givn by [4 q. 46] hlds that i j k N and a b c C a i a j b b c k c a i a j b b c k c 30 c k c a i a j b b c k c a i a j b b. 3

Prf. I. Eq. 30. A. W first prf a b c a b c b a c. 3 i Fr b c n bc Z. i. a n bc / Z. W hav by dfinitin [7 q. 69] a b c a b;c ; with b;c ; cs b n bc n bc n bc z sin b z n bc zn z z bc zn bc rx n bc and r C arbitrary. By 3 w gt a b;c ; cs b a n bc n bc an bc sin b a z z n bc zn z z bc zan bc. W hav frm [6 q. 40] and using [6 Thrm 6] a z z lim zn bc b n bc b sina Substituting bth ths rsults givs a n bc n bc an bc sinb sina b ab sina sina b ab an bc n bc csa an bc n bc z z a b;c sin b ; sina an bc n sin a b bc an bc sina sin c sin a b sin a b c sin a b c which du t [6 q. 3] quals a b;c ; a b c. i. a n bc n Z. W hav by dfinitin [7 q. 69] a b c a b;c ; zan bc. with b;c ; cs b n bc n bc n bc z sin b z n bc zn z z bc zn bc r x n bc and r C arbitrary. Nw with a Z and using 4 5 w gt a b;c cs b a n bc ; n bc n sin b a z z n bc zn z z bc zn r x n 33

with r C arbitrary. W hav by dfinitin [7 q. 69] a n bc a;n bc ; 34 a z z 0a;n bc zn bc ;. 35 Frm th gnral xprssins [7 qs. 7 and 8 9] w gt th fllwing tw particular xprssins. a a;n bc ; cs a n n n z sin a z n bc zn z z rx zn n with r C arbitrary. Sinc a Z this rducs t with r 3 C arbitrary. b with a;c ; cs a n n n r3 x n 36 0a;n bc ; sin a C 0 x n sgn 0 n! S0 0 α x n n! C 0 z z n z z zn cs a z z n z z sin a S 0 C 0 S 0 z z n z z z z n z z zn zn zn C 0 q S 0 q q q l 0 q q c 0 l E ql l0 q c 0 q q q q 0 q l0 l q c 0 l B ql. Sinc a Z this rducs t 0a;n bc ; cs a C 0 z z n z z z z n z z S 0 zn zn. Mr xplicitly using c 0 q q and B B /6 w find that C 0 S 0 c 0 c 0 0 B. Thn c0 0 E 0 and 0a;n bc ; cs a z z. 37 zn 3

Substituting xprssins 34 35 36 and 37 in 33 givs a b;c ; cs b cs a n 3 n n sin b cs a z z n zn z z cs b r r x n n! cs b cs a n n n sin b cs a z z n zn z z cs b r r cs b cs a x n n! r sinc a Z zn zn a b;c ; cs b cs a sin b sin a n n n sin b cs a cs b sin a z z n zn z z rx n zn with r C arbitrary. Idntificatin with ab;c ; cs a b n n n z sin a b z n bc zn z z zn rx n givs a b;c ; ab;c ;. ii Fr b c / Z but a b c n Z. W hav by [6 q. 3] and dfinitin [7 q. 69] sinc a b c a sinb c bc sinb sinb c bc sinc sinb c a;bc ; sinb sinb c n. Substituting hrin th xprssin a;bc ; cs a n n n z sin a z n bc zn z z with r C arbitrary givs a b c zn sinc cs a n sinb c n n n sinb sinb c sinc sin a z z sinb c n bc zn z z sinc sinb c rxn. 4 zn rx n n n

Fr a b c Z hlds that sin a c sinc cs a csc sin a n sinb. W can thrfr writ a b c csc sin a n sinb c n n csc sin a n sinb c n n sinc cs a n sinb c n n sin a c sinb c n n sinc sin a z z sinb c n bc zn z z zn csc sin a sinb c sinc sinb c r x n n!. Th scnd lin f this xprssin bcms Thn csc sin a n sinb c n n sinc cs a n sinb c n n sin a c sinb c n n sin a c n sinb c n n. a b c csc sin a n sinb c n n sinc sin a z z sinb c n bc zn z z csc sin a sin a c sinb c sinb c sinc sinb c r zn x n n!. Fr a b c Z hlds that csc sin a sinb c sinc sin a sinb c cs a b sin a b s w btain a b c cs a b n n n sin a b z z n bc zn z z r x n zn 5

with r C arbitrary. Idntificatin yilds again a b c ab;c ;. Cllcting rsults w hav nw prvd th first quality in 3. By symmtry in th paramtrs a and b th scnd quality in 3 immdiatly fllws. B. u t [7 q. 7] th gnral quatin 30 fllws. II. Eq. 3. Similarly. Thrm 3 cmbind with linarity shws that if critical cnvlutin prducts ar dfind as an xtnsin in th sns f [7] thn fm a fm b fm c 3 f b m fm a fm c 3 and f a m fm b fm c 3 fm a fm b fm c 3 H diffr by a distributin f th frm rx with r C arbitrary. Hwvr if an intrmdiat prduct is critical whil th final prduct is nt say a b N whil a b c / N thn th intrmdiat indtrminacy ds nt prpagat int th final prduct du t 3. Summarizing th cnvlutin prduct f critical tripls f AHs basd n R is nt assciativ. Hwvr its dviatin frm assciativity is asily quantifiabl and has th fllwing bautiful intrprtatin. If a b c N w d nt nd t pay attntin t th rdr in which th prduct fm a fm b fm c 3 is valuatd sinc w can always cmpnsat fr any ffct that a chang f rdr inducs by a chang f xtnsin f th final rsult. In thr wrds if a b c N calculating f a m f b m f c m 3 in diffrnt rdrs mrly rsult in diffrnt xtnsins f th critical tripl prduct. This rsult can als b statd as fllws. By cnsidring xtnsins f partial distributins as an quivalnc st thn Thrm 3 affirms that th cnvlutin prduct f critical tripls f quivalnc sts f AHs basd n R is assciativ. f b m Obviusly whn rgardd as a partial distributin dfind n S {k} th prduct fm a fm c 3 with a b c N acquirs a uniqu maning indpndnt f th rdr in which th cnvlutins ar takn bcaus thn assciativity hlds xactly fr th partial distributins. Lt us illustrat this by an xampl. Cnsidr th thr distributins δ and cmmnly usd t illustrat th lack f assciativity f th cnvlutin prduct fr distributins [7 p. 8]. On classically writs δ δ δ 0 0 δ δ undfind undfind. Rsults btaind in sm f ur prcding paprs allw us t cmplt th third xprssin. Frm [4 q. 5] fllws x and frm [7 q. ] with c C arbitrary s that ; ; x c x x x x c x x sgn c x cx and c C arbitrary. Using δ x w can nw rplac th abv classical argumnt with δ 0 c with c δ 0 c with c 0 δ 0 c with c C arbitrary. 6

Thus w can attribut t th prduct f this tripl in arbitrary rdr th fllwing maning δ 0 c fr sm cmplx cnstant c. In this xampl n f th factrs δ is f cmpact supprt and its prduct with any f th thr factrs givs ris t a distributin fr which th cnvlutin with th rmaining factr is uniquly dfind. This accidntly maks th prducts δ and δ uniqu and th cnstant c acquirs a uniqu valu in ths tw cass. Th third prduct hwvr δ is th mr intrsting as it rvals th gnral structur f th distributin δ. Fr th tripl δ and w still hav an intrmdiat critical prduct but th final prduct is nt critical sinc its dgr is / N. Nw w gt δ δ δ 0 0 0 δ δ cx 0. Mr gnrally if nn f th thr factrs is f cmpact supprt and th rsulting dgr a b c is a natural numbr thn thir prduct in arbitrary rdr is a distributin that has maning as a nn-uniqu xtnsin and which w can rgard as an quivalnc st. 6 Cnvlutin prducts f m a a and m b b Th rsults btaind in this sctin ar fundamntal t prf th gnral cnvlutin prduct frmula in th nxt sctin. Thrm 4 With z n z th nrmalizd parity krnls f th first kind givn by [4 qs. 85 86] hlds that m n N and a b C a m a b n b z mn z zab 38 a m a b n b z mn z zab 39 a m a b n b z mn z zab 40 whrin m z z at z Z is rplacd by any xtnsin m z z and m z z at z Z is rplacd by any xtnsin m z z in th sns f [7 q. 60]. Prf. Th cass which d nt rquir xtnsins hav alrady bn prvd in [6 Thrm ]. W hr nly prf th rmaining cass whr a b r a b is a psitiv intgr f th in [6 Thrm ] xcludd parity typ. I. Cmbining with [4 qs. 93 94 and 98 99] givs p η p 4 p η p. 4 II. Using 4 4 calculat th fllwing p q N and with c c c C arbitrary cnstants. A. Eq. 38. i a C\Z and b q. W gt using assciativity hlding in this cas by [6 Thrm 0] a q a η p a η p a p ap. 7

ii a k N. By Thrm 3 and with [4 qs. 95 and 309 30] w gt th fllwing. ii. Fr b q Z k q k k/ δ k k k/ η k η q k k/ δ k η k k/ η k η q k q c q k k/ η δ k k k/ δ δ k q k q c q k k/ η k k/ δ δ k q k q c q k k/ η k k/ δ k k/ kq k k/ kq k q c q k k/ k k/ η kq k q c q k kq k kq k q c q. k k/ k k/ kq u t 7 w can absrb any indtrminat trm ccurring in th right-hand sid in th lft-hand sid factr q by a chang f xtnsin. Thrfr k q k kq k kq. ii. Fr b q Z k q k k/ δ k k k/ η k q k k/ δ k k/ η δ k q k k/ δ k k/ η k k q c q k k/ k k/ kq k k q c q k kq k r by a chang f xtnsin f kq kq k k/ kq k k q c q k k/ kq k k/ k k/ η kq k k q c q k q k kq k kq Th cas k Z ] was alrady cvrd by [6 Thrm ]. iii a Z. W gt iii. fr a p Z p q η p η q η η p q c x pq δ c x pq pq pq c x pq 8.

r du t 8 and ntry C.3.3 f Tabl which lt us absrb any indtrminat trm ccurring in th right-hand sid in bth lft-hand sid factrs by a chang f xtnsin p q pq. iii. Fr a p Z p q p η q η p q c x pq η pq c x pq pq c x pq pq by a chang f xtnsin. iv Fr a b / Z : a b p Z. Using [4 q. 85] and [7 q. 70] w hav a b cs a/ cs b/ cs a/ cs b/ ab ab a b b a ab ab a;b ;0 b;a ;0 c c x p p!. Frm [7 q. 7] fllws a;b ;0 C 00 0 cs a x p sgn p! sin a z z z z and bcaus cs b cs a and sin b sin a b;a ;0 C 00 0 cs a x p sgn p! sin a z z z z S 00 0 α cs a zp S 00 0 α cs a zp. Thus with [4 q. 50] and bcaus cs b/ p sin a/ x p p! x p p! a b p sin a x p p! S 00 p z z z z p 0 c x p p! with c C arbitrary. Hnc a b B. Eq. 39. B. 0 α S 00 0 α cs a c c sin a z z z z zp c p. x p p! zp x p p! 9

i a C\Z. W gt using assciativity hlding in this cas by [6 Thrm 0] a q a η q η a q η aq aq. ii a k N. By Thrm 3 and with [4 qs. 95 and 309 30] w gt th fllwing. ii. Fr b q Z k q k k/ δ k k k/ η k q k k/ δ k k/ η δ k q k k/ δ k k/ η k k q c q k k/ k k/ kq k k q c q k kq k r by a chang f xtnsin kq k k/ kq k k q c q k k/ kq k k/ k k/ η kq k k q c q k q k kq k kq Th cas k Z ] was alrady cvrd by [6 Thrm ]. ii. Fr b q Z k q k k/ δ k k k/ η k η q k k/ δ k η k k/ η k η q k q c q k k/ η δ k k k/ δ δ k q k q c q k k/ η k k/ δ δ k q k q c q k k/ η k k/ δ k k/ kq k k/ kq k q c q k k/ k k/ η kq. k k/ k k/ kq k q c q k kq k kq k q c q k kq k kq k k q c q. u t w can absrb any indtrminat trm ccurring in th right-hand sid in th lft-hand sid factr by a chang f xtnsin q k q k kq 0 k kq.

iii a Z. W gt iii. Fr a p Z p q η q η η p q c x pq δ pq c x pq pq c x pq ; η p r du t and ntry C.3.3 f Tabl which lt us absrb any indtrminat trm ccurring in th right-hand sid in bth lft-hand sid factrs by a chang f xtnsin p q pq. iii. Fr a p Z p q p η q η p q c x pq η pq c x pq pq c x pq pq by a chang f xtnsin. iv Fr a b / Z : a b p Z. Using [4 q. 85] and [7 q. 70] w hav a b sin a/ cs b/ sin a/ cs b/ Frm [7 q. 7] fllws ab ab a b b a a;b ;0 C 00 0 cs a x p sgn p! S00 sin a z z z z and bcaus cs b cs a and sin b sin a b;a ;0 C 00 0 cs a x p sgn p! S00 sin a z z z z ab ab a;b ;0 b;a ;0 c c 0 α cs a zp 0 α cs a zp. x p p! x p p! x p p! Thus with [4 qs. 50 and 97] and bcaus cs b/ p cs a/. a b p sin a x p p! S 00 p z z z z p 0 c x p p! 0 α S 00 0 α cs a c c sin a z z z z zp c x p p! zp x p p!

with c C arbitrary. Hnc a b p B. i b C\Z. W gt using assciativity which hlds in this cas by [6 Thrm 0] p b η p b η p b η. pb. pb ii b l N. By Thrm 3 and with [4 qs. 300 and 309 30] w gt th fllwing. ii. Fr a p Z p l η p l l/ η l l l/ δ l p l l/ η η l l l/ η δ l l p c x pl p l l/ δ l δ l l/ δ l η l p c x pl p δ l l l/ δ l l/ η l p c x pl l l/ pl l l/ pl l l/ δ l l/ η l p c x pl l l/ l l/ pl l p c x pl l pl l r by a chang f xtnsin f ii. Fr a p Z pl p l l/ l l/ η pl l pc x pl p l l pl l pl p l p l l/ η l l l/ δ l p δ l l l/ η l l/ δ l l p c x pl l l/ pl l l/ pl l l/ η l l/ δ l l p c x pl l l/ l l/ η pl l l p c x pl l pl l pl l l p c x pl r by a chang f xtnsin f p pl l l. l l/ l l/ pl pl l pl.

Th cas l Z was alrady cvrd by [6 Thrm ]. iii b Z. W gt iii. Fr b q Z p q by a chang f xtnsin. iii. Fr b q Z p q q η p q c x pq η pq c x pq pq c x pq η p pq η p η q η η p q c x pq δ pq c x pq pq c x pq r by a chang f xtnsin f bth factrs in th lft-hand sid p q pq. iv Fr a b / Z : a b p Z. By cmmutativity this cas is quivalnt t th cas B. iv. C. Eq. 40. i a C\Z. W gt using assciativity which hlds in this cas by [6 Thrm 0] a q a η q η a q η aq aq. ii a k N. By Thrm 3 and with [4 qs. 300 and 309 30] w gt th fllwing. ii. Fr b q Z k q k k/ η k k k/ δ k q k k/ η k k/ δ δ k q k k/ η k k/ δ k k q c q k k/ k k/ η kq k k/ kq k k q c q k k/ kq k k/ k k/ kq k k q c q k kq k kq k k q c q r by a chang f xtnsin f kq k q k kq 3 k kq.

Th cas k Z was alrady cvrd by [6 Thrm ]. ii. Fr b q Z k q k k/ η k k k/ δ k η q k k/ η k η k k/ δ k η q k q c q k k/ δ δ k k k/ η δ k q k q c q k k/ δ k k/ η δ k q k q c q k k/ δ k k/ η k k/ kq k k/ kq k q c q k k/ k k/ kq k q c q k kq k r by a chang f q iii a Z. iii. Fr a p Z kq k k/ k k/ η kq k q c q k q k kq k p q r by a chang f xtnsin f kq. p η q η p q c x pq η pq c x pq q pq c x pq ; p q pq. iii. Fr a p Z p q η p η q η η p q c x pq δ pq c x pq pq c x pq. r by a chang f bth factrs in th lft-hand sid p q pq. iv Fr a b / Z : a b p Z. Using [4 q. 85] and [7 q. 70] w hav a b sin a/ sin b/ sin a/ sin b/ ab ab a b b a ab ab a;b ;0 b;a ;0 c c x p p!. 4

Frm [7 q. 7] fllws a;b ;0 C 00 0 cs a x p sgn p! sin a z z z z and sinc cs b cs a and sin b sin a b;a ;0 C 00 0 cs a x p sgn p! sin a z z z z S 00 0 α cs a zp S 00 0 α cs a zp. Thus with [4 q. 50] and sinc cs b/ p sin a/ x p p! x p p! a b p sin a x p p! S 00 0 α S 00 0 α cs a c c sin a z z z z p z z z z zp c x p p! p 0 c x p p! with c C arbitrary. Hnc a b p. zp III. Applying th pratr a m b n and using jintly cntinuity at a b Z m n N as shwn in [5 Thrm 5] and [7 Thrm 7] rsults in th quatins 38 40. Th distributins z and z ar knwn in fractinal calculus thry as th krnls f th cnvlutin pratrs that gnrat th Risz ptntial z ϕ and cnjugat Risz ptntial z ϕ f a functin ϕ S [6 p. 4]. Mr gnrally n culd call z m z ϕ th assciatd Risz ptntial and z m z ϕ th assciatd cnjugat Risz ptntial bth f rdr m f a functin ϕ S. Th cnvlutin prducts givn in Thrm 4 rval that ths assciatd krnls satisfy a bautiful algbraic prprty which is an ntirly nw rsult. In particular by using 0 η Thrm 4 yilds th fllwing Hilbrt transfrm pairs p N η z n z zp z n z 43 zp η z n z zp z n z zp ; 44 and x p p! η z n z zp z n z zp 45 η z n z zp z n z 46 zp with c C arbitrary. This cmplts th rsults givn in [6 qs. 49 50]. Equatins 43 44 45 46 rval th nn-assciativity f th Hilbrt transfrmatin btwn n z z and n z z at z p z p as a cnsqunc f. 5

Crllary 5 With z n z x±i0 th nrmalizd cmplrnls givn by [4 qs. 349 35] hlds that m n N and a b C a m a xi0 b n b xi0 z mn z xi0 zab 47 a m a xi0 b n b xi0 0 48 a m a xi0 b n b xi0 z mn z xi0 zab 49 whrin z m z x±i0 at z Z is rplacd by any xtnsin z m z x±i0 in th sns f [7 q. 60]. Prf. Th crllary fllws frm using linarity [4 q. 350] and Thrm 4. Cmbining 43 46 with [4 q. 350] givs k Z η k m k x±i0 i k m k x±i0. 50 Equatin 50 cmplts [6 q. 60]. 7 Cnvlutin prduct frmula Th nrmalizd parity rprsntatin [5 Thrm 4] can du t [6 qs. 49 50] and 43 46 b writtn as z C m fm z α n z z n z 5 with cfficint distributins n0 α n z q n z δ q n z η H 0 and whrin th functins q n and q n n Z [0m] satisfy th prprtis [5 qs. 30 3]. In 5 it is undrstd that z n z at z k Z stands fr any xtnsin k n k and n z z at z k Z stands fr any xtnsin k n k. This als allws us t absrb any trm f th frm c c C pssibly prsnt in fm k in ithr k r k. W will us this in th fllwing. Thrm 6 Lt f a m g b n m α p a a p a 5 p0 n β q b q b b. 53 q0 Th cnvlutin prduct f fm a by with f a m and gn b a Ω a C b Ω b C and m n N is givn mn gn b γ t t0 m γ t a b z t z zab 54 p0 q0 n pqt α p β q. 55 In 54 z m z at a b k Z stands fr any xtnsin k m k and m z z at a b k Z stands fr any xtnsin k m k. 6

Prf. Th prpsitin fllws as a cnsqunc f linarity [4 q. 85 and 86] Thrm 3 and Thrm 4. Thrm 6 clarly shws that th cnvlutin prduct f tw assciatd hmgnus distributins is mst asily calculatd using th nrmalizd parity rprsntatin givn in [5 Thrm 4]. Undr th cnvlutin prduct th distributins a n a and if a k Z k n k bhav lik rdinary mnmials f dgr n undr rdinary multiplicatin. Th algbra f th cfficint distributins is an assciativ cnvlutin algbra vr R ismrphic t th bicmplx numbrs which cntains zr divisrs s [4 Sctin 5.6]. A Appndix A. Th cnvlutin prduct Lt k l C. By [4 q. 50] w hav k! xl l! k k k x l k! l! l kl kl kl l l k k l l l Using [7 q. 70] th mixd-supprt prducts hrin ar givn by k l l k;l ;0 c kl k l! k l;k ;0 c ll k l! with arbitrary c c C and th cnvlutin prduct thrfr bcms k. k! xl l! kl kl kl k k;l ;0 l l;k ;0 c c l. 56 k l! Althugh w d nt nd thm fr this calculatin it is intrsting t calculat th rsidus f k;l ; and l;k ;. Thy ar btaind frm [7 q. 0] as k;l ; sin k l ω k l! 0 l;k ; sin l l ω k l! 0. Thus a;b ; at a b Z ds xist as a distributin dfind n S which w dnt by k;l ;. Hr w thus hav an xampl f a critical cnvlutin prduct that w d nt nd l;k ; t xtnd. In this cas w culd dfin k l l k;l ; k;l ;0 57 k l;k ; l;k ;0 58 instad f using th gnral rul [7 q. 0]. In this way n nn-uniqunss is intrducd at this stag. 7

Th analytic finit parts ar btaind frm [7 q. ] as ;0 kl sgn k l! α /α α /α k l! k;l ;0 ll sgn k l! α /α α /α l;k l l k l! 59. 60 Ths analytic finit parts ar nt uniqu sinc thy dpnd n th arbitrary cmplx cnstant α α which paramtrizs th dirctin alng which th limit a b k l is takn s [7] and th indtrminacy is prprtinal t l. S ntwithstanding that w avidd th nn-uniqunss stmming frm th prcss f xtnding a partial distributin t a distributin dfind n S w still gt an indtrminacy frm th nn-uniqunss f th analytic finit part. W nw cntinu with ur calculatin. Substituting 59 60 givs fr th mixd-supprt trms in 56 k k whrin w dfind c c c α/α l l l k xkl sgn x k l! α/α α /α kl kl kl Substituting bth ths rsults in 56 w btain r k! xl l! l c k l! α /α. By [4 q. 5] w hav xkl sgn x. k l! kl kl kl k k l l l xkl sgn x k l! xkl sgn x k l! l c k l! with c C arbitrary. Equatin 6 is rsult C.3.3 in Tabl. Rfrncs k k! x l l! c l k l! 6 [] W. Ambrs Prducts f distributins with valus in distributins J. Rin Angw. Math. 35 980 73 9. [] P. Antsik J. Mikusinski and R. Sikrski Thry f distributins. Th squntial apprach Elsvir Amstrdam 973. [3] J.F. Clmbau Nw Gnralizd Functins and Multiplicatin f istributins Math. Studis 84 NrthHlland Amstrdam 984. [4] G.R. Franssns Algbras f AHs basd n th lin I. Basics prprint: http://www.arnmi.b/dist/franssns/ah ALG.pdf 007. [5] G.R. Franssns Structur thrms fr assciatd hmgnus distributins basd n th lin Math. Mthds Appl. Sci. 3 009 986 00. [6] G.R. Franssns Th cnvlutin f assciatd hmgnus distributins n R Part I Appl. Anal. 88 009 309 33. 8

[7] G.R. Franssns Th cnvlutin f assciatd hmgnus distributins n R Part II Appl. Anal. 88 009 333 356. [8] G.R. Franssns Multiplicatin prduct frmula fr assciatd hmgnus distributins n R submittd 009. [9] G. Fridlandr and M. Jshi Intrductin t Th Thry f istributins nd d. Cambridg Univ. Prss Cambridg 998. [0] I.M. Gl fand and G.E. Shilv Gnralizd Functins Vl. I Acadmic Prss Nw Yrk 964. [] R.P. Kanwal Gnralizd Functins Thry and Tchniqu nd d. Birkhausr Bstn 998. [] W. Rudin Principls f Mathmatical Analysis McGraw-Hill Nw Yrk 976. [3] W. Rudin Functinal Analysis McGraw-Hill Nw Yrk 99. [4] L. Schwartz Théri ds istributins Vls. I&II Hrmann Paris 957. [5] Schwartz L. Sur l impssibilité d la multiplicatin ds distributins C. R. Math. Acad. Sci. Paris 39 954 847 848. [6] S.G. Samk A.A. Kilbas and O.I. Marichv Fractinal Intgrals and rivativs Taylr/Francis Lndn 00. [7] A.H. Zmanian istributin Thry and Transfrm Analysis vr Nw Yrk 965. 9

δ l η l x l l! δ k δ kl C.. η kl C.. k l η k δ kl C.. k l c k! c sgn k! x lk lk! x lk lk! l kl! x l sgn l! C..3 l<k δ kl k l C..3 l<k η kl k l C.3.3 c l C.3.4 kl! l sgn kl! c x lk sgn C..4 lk! x lk lk! l kl! Tabl : Sm particular cnvlutin prducts f hmgnus distributins. ln x c C..4 C.4.4 30