Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Σχετικά έγγραφα
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Electronic Supplementary Information (ESI)

IV. ANHANG 179. Anhang 178

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting information for

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information for

Supporting Information

Supporting Information

Supporting Information. for

Supporting Information

Supporting Information

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

The Free Internet Journal for Organic Chemistry

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supporting Information

Supporting Information. Experimental section

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of. Arenediazonium Salts to gem-difluoromethylene Azo Compounds

Supporting Information

Supporting information

Supporting Information

Supporting Information. Experimental section

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

Electronic Supplementary Information

Supporting information

multicomponent synthesis of 5-amino-4-

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Divergent synthesis of various iminocyclitols from D-ribose

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supplementary Information for

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information for

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

gem-dichloroalkenes for the Construction of 3-Arylchromones

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Supplementary Material

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Enantioselective Organocatalyzed Direct α-thiocyanation of. Cyclic β-ketoesters by N-Thiocyanatophthalimide

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Transcript:

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins Guolin Cheng, Tuan-Jie Li, and Jin-Quan Yu* Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 Table of Contents 1. General Information S2 2. Experimental Section S3-S29 2.1 Optimization of Reaction Conditions S3-S5 2.2 Procedure for Synthesis of 2p S6 2.3 Procedure for Gram-Scale Alkylation of 1a S6 2.4 Procedure for Synthesis of 5 S6 2.5 Procedure for Synthesis of 6a S7 2.6 General Procedure for Alkylation of Benzoic Acids with Epoxides S7-S23 2.7 Coupling Reactions Using Chiral (S)-(+)-epichlorohydrin S23 3. 1 H and 13 C NMR Spectra S24 S65 4. X-ray Crystallographic Data of 4q S66 S73 5. X-ray Crystallographic Data of 4r S74 S82 S1

1. General Information Other solvents and chemicals were from Sigma-Aldrich, Acros and Alfa Aesar and used directly without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel s permanganate. Preparative TLC was performed on 1.0 mm silica gel (Analtech). NMR spectra were recorded on a Varian Inova 400 instrument (400 MHz for 1 H; 100 MHz for 13C), Bruker DRX-500 instrument (500 MHz for 1 H; 125 MHz for 13 C). Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of chloroform-d. Melting points were obtained from a Mel-temp II apparatus (uncorrected). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). S2

2. Experimental Section 2.1 Optimization Reaction Conditions 2.1.1 Solvent Screening a S3

2.1.2 Counter Cation Screening a S4

2.1.3 Ligand Screening a S5

2.2 Procedure for Synthesis of 2p m-chloroperoxybenzoic acid (70-75%, 295.0 mg, 1.2 mmol) was added to a solution of ((2- methylallyl)sulfonyl)benzene (196.0 mg, 1.0 mmol) in dry dichloromethane (5.0 ml). The solution was stirred for 48 h at room temperature. After the reaction finished, the organic layer was washed with saturated aqueous sodium bicarbonate (10.0 ml), dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (ethyl acetate/hexane = 1/4) to yield the desired 2- methyl-2-((phenylsulfonyl)methyl)oxirane 2p as white solid (171.7 mg, 81%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.93 (d, J = 7.8 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.59 (t, J = 7.7 Hz, 2H), 3.54 (d, J = 14.2 Hz, 1H), 3.06 (d, J = 14.2 Hz, 1H), 2.61 (q, J = 4.7 Hz, 2H), 1.54 (s, 3H); 13 C NMR (101 MHz, CDCl 3 ) δ 139.76, 134.03, 129.37, 127.98, 63.65, 52.91, 51.97, 21.41; HRMS (ESI-TOF) Calcd for C 10 H 13 O 3 S [M+H] + : 213.0580; found: 213.0580; m.p. = 54-55 C. 2.3 Procedure for Gram-Scale Alkylation of 1a A suspension of m-toluic acid 1a (1.36 g, 10.0 mmol), epoxide 2a (3.28 g, 20 mmol), KOAc (0.98 g, 10 mmol), Ac-t-leu-OH (17.3 mg, 0.1 mmol), Pd(OAc) 2 (11.2 mg, 0.05 mmol) and hexafluoroisopropanol (25 ml) in a sealed tube was stirred at 75 o C. After 48 hours, the reaction mixture was concentrated and purified by column chromatography (ethyl acetate/hexane 1/4) to give the product 3a as colorless oil (2.62 g, 93% yield). 2.4 Procedure for Synthesis of 5 S6

m-toluic acid 1a (136.0 mg, 1.0 mmol) was treated with KOH (32.0 mg, 0.8 mmol) in water (1.0 ml) at room temperature for 0.5 h. Then water was removed in a rotary evaporator, the white solid was washed with CH 2 Cl 2 (2.0 ml 3) to remove excess of m-toluic acid and dried under vacuum at 100 C to get potassium m-toluate (105.0 mg, 60% yield). Palladium acetate (112.0 mg, 0.5 mmol) was added to a suspension of potassium m-toluate (87.0 mg, 0.5 mmol) in 1,4-dioxane (5.0 ml, then the mixture was heated to 100 C for 2 h. The reaction mixture was filtered, and the dark residue was washed with CH 2 Cl 2 (5 ml 3) and dried under vacuum to get the palladacycle 5 (84.8 mg, 50% yield). 1 H NMR (400 MHz, DMSO) δ 7.59 (d, J = 7.8 Hz, 1H), 7.04 (s, 1H), 6.98 (d, J = 8.0 Hz, 1H), 2.33 (s, 3H), 1.85 (s, 3H); 13 C NMR (125 MHz, DMSO) δ 178.84, 176.04, 143.57, 142.08, 133.57, 132.10, 131.14, 129.68, 25.67, 21.31. 2.5 Procedure for Synthesis of 6a A suspension of m-toluic acid 1a (13.6 mg, 0.1 mmol), epoxide 2a (32.8 mg, 0.2 mmol), KOAc (9.8 mg, 0.1 mmol), Ac-t-leu-OH (3.46 mg, 0.02 mmol), Pd(OAc) 2 (2.23 mg 0.01 mmol,) and hexafluoroisopropanol (0.25 ml) in a sealed tube was stirred at room temperature. After 48 hours, the reaction mixture was concentrated and purified by preparative thin-layer chromatography (acetic acid/ethyl acetate/hexane 1/8/16) to give the product 6a as white solid (15.9 mg, 53% yield). 1 H NMR (500 MHz, CDCl 3 ) δ 7.76 (s, 1H), 7.35 7.31 (m, 4H), 7.30 7.24 (m, 2H), 7.16 (d, J = 7.8 Hz, 1H), 4.56 (s, 2H), 4.08 4.13 (m, 1H), 3.56 (dd, J = 9.6, 4.0 Hz, 1H), 3.48 (dd, J = 9.6, 6.8 Hz, 1H), 3.16 3.06 (m, 2H), 2.33 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 172.21, 137.85, 136.80, 136.37, 133.37, 131.93, 131.83, 129.64, 128.40, 127.76, 127.73, 73.75, 73.34, 71.80, 37.30, 20.76; HRMS (ESI-TOF) Calcd for C 18 H 21 O 4 [M+Na] + : 301.1434; found: 324.1435; m.p. = 105-106 C. 2.6 General Procedure for the Alkylation of Benzoic Acid S7

A suspension of benzoic acid 1 (0.1 mmol), epoxide 2 (2 equiv), KOAc (9.8 mg, 0.1 mmol), Pd(OAc) 2 (n mol%), Ac-t-leu-OH (2n mol%), and hexafluoroisopropanol (0.25 ml) in a sealed tube was stirred at 75 o C. After 24 hours, the reaction concentrated and purified by preparative thin-layer chromatography to give the product 3 or 4. 3-(benzyloxy)-2-hydroxypropyl 3-methylbenzoate (3a`) Substrate 3a` was obtained as main product when DMF or DMSO were used as solvent. After purification by preparative TLC, 3a` was obtained as colorless oil. 1 H NMR (400 MHz, CDCl 3 ) δ 7.82 (m, 2H), 7.41 7.26 (m, 7H), 4.59 (s, 2H), 4.44 4.38 (m, 2H), 4.22 4.14 (m, 1H), 3.65 (dd, J = 9.6, 4.4 Hz, 1H), 3.59 (dd, J = 9.6, 6.0 Hz, 1H), 2.59 (d, J = 5.0 Hz, 1H), 2.40 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 166.83, 138.19, 137.66, 133.91, 130.19, 129.72, 128.48, 128.28, 127.87, 127.76, 126.83, 73.53, 70.89, 69.05, 65.92, 21.26; HRMS (ESI-TOF) Calcd for C 18 H 21 O 4 [M+H] + : 301.1434; found: 301.1435. 3-((benzyloxy)methyl)-7-methylisochroman-1-one (3a) Substrate 3a was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3a was obtained as colorless oil (27.1 mg, 96%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.90 (s, 1H), 7.39 7.26 (m, 6H), 7.14 (d, J = 7.7 Hz, 1H), 4.73 4.58 (m, 3H), 3.79 (dd, J = 10.3, 4.7 Hz, 1H), 3.73 (dd, J = 10.3, 5.2 Hz, 1H), 3.11 (dd, J = 16.3, 11.5 Hz, 1H), 2.93 (dd, J = 16.3, 3.3 Hz, 1H), 2.38 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.19, 137.65, 137.45, 135.74, 134.63, 130.46, 128.42, 127.80, 127.68, 127.36, 124.64, 77.25, 73.63, 71.09, 29.67, 20.94; HRMS (ESI-TOF) Calcd for C 18 H 19 O 3 [M+H] + : 283.1329; found: 283.1329; m.p. = 125-126 C. 3-((benzyloxy)methyl)-6-methylisochroman-1-one (3b) S8

Substrate 3b was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3b was obtained as colorless oil (22.3 mg, 79%). 1 H NMR (500 MHz, CDCl3) δ 7.97 (d, J = 7.9 Hz, 1H), 7.39 7.28 (m, 5H), 7.19 (d, J = 8.0 Hz, 1H), 7.05 (s, 1H), 4.72 4.60 (m, 3H), 3.80 (dd, J = 10.3, 4.7 Hz, 1H), 3.74 (dd, J = 10.4, 5.3 Hz, 1H), 3.13 (dd, J = 16.4, 11.5 Hz, 1H), 2.93 (dd, J = 16.4, 3.4 Hz, 1H), 2.40 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.09, 144.77, 138.76, 137.69, 130.34, 128.53, 128.44, 128.03, 127.82, 127.71, 122.27, 77.08, 73.66, 71.10, 30.09, 21.74; HRMS (ESI-TOF) Calcd for C 18 H 19 O 3 [M+H] + : 283.1329; found: 283.1327. 3-((benzyloxy)methyl)-8-methylisochroman-1-one (3c) Substrate 3c was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3c was obtained as colorless oil (17.0 mg, 60%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.39 7.33 (m, 5H), 7.33 7.29 (m, 1H), 7.19 (d, J = 7.7 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 4.65 4.58 (m, 3H), 3.79 (dd, J = 10.3, 4.8 Hz, 1H), 3.72 (dd, J = 10.3, 5.4 Hz, 1H), 3.11 (dd, J = 16.0, 11.7 Hz, 1H), 2.94 (dd, J = 16.1, 2.9 Hz, 1H), 2.67 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 164.29, 142.99, 139.84, 137.73, 132.69, 131.05, 128.46, 127.84, 127.75, 125.32, 123.62, 76.50, 73.65, 71.09, 31.40, 22.16; HRMS (ESI-TOF) Calcd for C 18 H 19 O 3 [M+H] + : 283.1329; found: 283.1329. 3-((benzyloxy)methyl)-6-(tert-butyl)isochroman-1-one (3d) Substrate 3d was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3d was obtained as colorless oil (29.2 mg, 90%). 1 H NMR (400 MHz, CDCl 3 ) δ 8.01 (d, J = 8.2 Hz, 1H), 7.44 7.22 (m, 7H), 4.75 4.59 (m, 3H), 3.81 (dd, J = 10.3, 4.7 Hz, 1H), 3.75 (dd, J = 10.3, 5.3 Hz, 1H), 3.16 (dd, J = 16.3, 11.6 Hz, 1H), 2.97 (dd, J = 16.4, 3.3 Hz, 1H), 1.33 (s, 9H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.07, 157.76, 138.57, 137.72, 130.15, 128.44, 127.81, 127.69, 124.89, 124.35, 122.24, 77.18, 73.64, 71.17, 35.19, 31.02, 30.45; HRMS (ESI-TOF) Calcd for C 21 H 25 O 3 [M+H] + : 325.1798; found: 325.1798. S9

3-((benzyloxy)methyl)-7-methoxyisochroman-1-one (3e) Substrate 3e was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3e was obtained as colorless oil (23.8 mg, 80%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.58 (d, J = 2.7 Hz, 1H), 7.40 7.28 (m, 5H), 7.16 (d, J = 8.4 Hz, 1H), 7.10 (dd, J = 8.4, 2.7 Hz, 1H), 4.74 4.58 (m, 3H), 3.90 3.68 (m, 5H), 3.10 (dd, J = 16.2, 11.6 Hz, 1H), 2.92 (dd, J = 16.2, 3.4 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.04, 158.96, 137.65, 130.99, 128.64, 128.45, 127.84, 127.71, 125.70, 121.78, 112.85, 77.50, 73.67, 71.08, 55.59, 29.27; HRMS (ESI-TOF) Calcd for C 18 H 19 O 4 [M+H] + : 299.1278; found: 299.1278. N-(3-((benzyloxy)methyl)-1-oxoisochroman-6-yl)acetamide (3f) Substrate 3f was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 3f was obtained as white solid (18.8 mg, 58%). 1 H NMR (400 MHz, CDCl 3 ) δ 8.02 (d, J = 8.5 Hz, 1H), 7.77 (s, 1H), 7.45 (brs, 1H), 7.39 7.27 (m, 5H), 7.23 (d, J = 10.2 Hz, 1H), 4.73 4.57 (m, 3H), 3.76 (qd, J = 10.3, 4.9 Hz, 2H), 3.16 (dd, J = 16.6, 11.6 Hz, 1H), 2.96 (dd, J = 16.5, 3.1 Hz, 1H), 2.22 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.95, 164.96, 143.08, 140.52, 137.56, 131.39, 128.45, 127.84, 127.68, 119.94, 118.06, 117.50, 77.19, 73.61, 70.98, 30.24, 24.71; HRMS (ESI-TOF) Calcd for C 19 H 20 NO 4 [M+H] + : 326.1387; found: 326.1388; m.p. = 113-114 C. 3-((benzyloxy)methyl)isochroman-1-one (3g) Substrate 3g was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3g was obtained as colorless oil (19.8 mg, 74%). 1 H NMR (500 MHz, CDCl 3 ) δ 8.09 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.42 7.22 (m, 7H), 4.75 4.69 (m, S10

1H), 4.66 4.59 (m, 2H), 3.80 (dd, J = 10.4, 4.7 Hz, 1H), 3.75 (dd, J = 10.3, 5.3 Hz, 1H), 3.18 (dd, J = 16.3, 11.5 Hz, 1H), 2.98 (dd, J = 16.4, 3.2 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 164.93, 138.77, 137.67, 133.77, 130.30, 128.46, 127.85, 127.72, 127.63, 127.50, 124.98, 77.15, 73.68, 71.07, 30.09; HRMS (ESI- TOF) Calcd for C 17 H 17 O 3 [M+H] + : 269.1172; found: 269.1173. methyl 3-((benzyloxy)methyl)-1-oxoisochroman-6-carboxylate (3h) Substrate 3h was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 3h was obtained as colorless oil (21.3 mg, 65%). 1 H NMR (500 MHz, CDCl 3 ) δ 8.15 (d, J = 8.1 Hz, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.94 (s, 1H), 7.40 7.27 (m, 5H), 4.77 4.69 (m, 1H), 4.67 4.57 (m, 2H), 3.95 (s, 3H), 3.82 3.74 (m, 2H), 3.22 (dd, J = 16.5, 11.3 Hz, 1H), 3.06 (dd, J = 16.5, 3.3 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.90, 164.06, 138.83, 137.52, 134.58, 130.39, 128.74, 128.50, 128.47, 128.45, 127.88, 127.70, 77.25, 73.67, 70.81, 52.56, 29.91; HRMS (ESI-TOF) Calcd for C 19 H 19 O 5 [M+H] + : 327.1227; found: 327.1226. 3-((benzyloxy)methyl)-6-(trifluoromethyl)isochroman-1-one (3i) Substrate 3i was alkylated following the general procedure using Pd(OAc) 2 (5 mol%) and Ac-t-leu-OH (10 mol%). After purification by preparative TLC, 3i was obtained as white solid (24.5 mg, 73%). 1 H NMR (400 MHz, CDCl 3 ) δ 8.21 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.53 (s, 1H), 7.42 7.27 (m, 5H), 4.80 4.69 (m, 1H), 4.69 4.55 (m, 2H), 3.91 3.65 (m, 2H), 3.25 (dd, J = 16.4, 11.2 Hz, 1H), 3.07 (dd, J = 16.6, 3.3 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 163.60, 139.48, 137.46, 135.16 (q, J = 32.7 Hz), 130.93, 128.49, 128.06, 127.94, 127.70, 124.63 (q, J = 3.6 Hz), 124.46 (q, J = 3.6 Hz), 123.30 (q, J = 273.0 Hz), 77.13, 73.69, 70.71, 29.93; HRMS (ESI-TOF) Calcd for C 18 H 16 F 3 O 3 [M+H] + : 337.1046; found: 337.1045; m.p. = 64-65 C. S11

3-((benzyloxy)methyl)-6-fluoroisochroman-1-one (3j) Substrate 3j was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 3j was obtained as colorless oil (21.2 mg, 74%). 1 H NMR (500 MHz, CDCl 3 ) δ 8.11 (dd, J = 8.7, 5.7 Hz, 1H), 7.39 7.27 (m, 5H), 7.06 (td, J = 8.6, 2.4 Hz, 1H), 6.94 (dd, J = 8.6, 2.2 Hz, 1H), 4.73 4.60 (m, 1H), 4.66 4.58 (m, 2H), 3.79 (dd, J = 10.4, 4.5 Hz, 1H), 3.74 (dd, J = 10.4, 5.3 Hz, 1H), 3.18 (dd, J = 16.5, 11.4 Hz, 1H), 2.98 (dd, J = 16.6, 3.3 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ165.84 (d, J = 256.3 Hz), 164.00, 141.83 (d, J = 9.5 Hz), 137.54, 133.30 (d, J = 9.9 Hz), 128.47, 127.89, 127.72, 121.30 (d, J = 2.8 Hz), 115.23 (d, J = 22.2 Hz), 114.38 (d, J = 22.3 Hz), 76.94, 73.69, 70.81, 30.17; HRMS (ESI-TOF) Calcd for C 17 H 16 FO 3 [M+H] + : 287.1078; found: 287.1076. 3-((benzyloxy)methyl)-7-fluoroisochroman-1-one (3k) Substrate 3k was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 3k was obtained as colorless oil (21.7 mg, 78%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.77 (d, J = 8.3 Hz, 1H), 7.42 7.15 (m, 7H), 4.72 4.57 (m, 1H), 4.66 4.58 (m, 2H), 3.80 (dd, J = 10.4, 4.6 Hz, 1H), 3.75 (dd, J = 10.4, 5.2 Hz, 1H), 3.17 3.08 (m, 1H), 2.98 (dd, J = 16.4, 3.4 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ163.90 (d, J = 2.8 Hz), 161.81 (d, J = 247.4 Hz), 137.56, 134.50, 129.31 (d, J = 7.4 Hz), 128.48, 127.90, 127.72, 126.64 (d, J = 7.8 Hz), 121.17 (d, J = 22.0 Hz), 116.65 (d, J = 23.3 Hz), 77.40, 73.70, 70.87, 29.38; HRMS (ESI-TOF) Calcd for C 17 H 16 FO 3 [M+H] + : 287.1078; found: 287.1076. 3-((benzyloxy)methyl)-7-chloroisochroman-1-one (3l) S12

Substrate 3l was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3l was obtained as white solid (24.8 mg, 82%). 1 H NMR (500 MHz, CDCl 3 ) δ 8.07 (d, J = 2.1 Hz, 1H), 7.50 (dd, J = 8.1, 2.2 Hz, 1H), 7.40 7.28 (m, 5H), 7.21 (d, J = 8.1 Hz, 1H), 4.73 4.66 (m, 1H), 4.66 4.56 (m, 2H) 3.81 3.73 (m, 2H), 3.14 (dd, J = 16.5, 11.3 Hz, 1H), 2.98 (dd, J = 16.5, 3.4 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 163.76, 137.53, 137.03, 133.83, 133.68, 130.09, 128.98, 128.50, 127.9, 127.74, 126.44, 77.21, 73.73, 70.86, 29.53; HRMS (ESI-TOF) Calcd for C 17 H 16 ClO 3 [M+H] + : 303.0782; found: 303.0782; m.p. = 54-55 C. 3-((benzyloxy)methyl)-6-chloroisochroman-1-one (3m) Substrate 3m was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3m was obtained as colorless oil (22.4 mg, 74%). 1 H NMR (500 MHz, CDCl 3 ) δ 8.02 (d, J = 8.4 Hz, 1H), 7.39 7.28 (m, 6H), 7.26 7.24 (m, 1H), 4.72 4.67 (m, 1H), 4.66 4.57 (m, 2H), 3.80 3.72 (m, 2H), 3.17 (dd, J = 16.5, 11.3 Hz, 1H), 2.97 (dd, J = 16.6, 3.4 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 164.10, 140.42, 140.18, 137.53, 131.84, 128.50, 128.16, 127.93, 127.74, 127.61, 123.43, 77.25, 73.71, 70.79, 29.90; HRMS (ESI-TOF) Calcd for C 17 H 16 ClO 3 [M+H] + : 303.0782; found: 303.0782. 3-((benzyloxy)methyl)-6,7-dimethylisochroman-1-one (3n) Substrate 3n was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3n was obtained as white solid (26.7 mg, 90%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.84 (s, 1H), 7.39 7.26 (m, 5H), 7.00 (s, 1H), 4.71 4.60 (m, 3H), 3.80 3.70 (m, 2H), 3.08 (dd, J = 16.2, 11.5 Hz, 1H), 2.89 (dd, J = 16.3, 3.4 Hz, 1H), 2.30 (s, 3H), 2.28 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.29, 143.58, 137.68, 136.21, 136.19, 130.90, 128.55, 128.40, 127.76, 127.67, 122.33, 77.21, 73.60, 71.13, 29.56, 20.04, 19.28; HRMS (ESI-TOF) Calcd for C 19 H 21 O 3 [M+H] + : 297.1485; found: 297.1486; m.p. = 49-50 C. S13

3-((benzyloxy)methyl)-7-methoxy-6-methylisochroman-1-one (3o) Substrate 3o was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3o was obtained as white solid (26.8 mg, 86%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.49 (s, 1H), 7.38 7.33 (m, 4H), 7.32 7.28 (m, 1H), 7.00 (s, 1H), 4.72 4.57 (m, 3H), 3.86 (s, 3H), 3.80 3.72 (m, 2H), 3.06 (dd, J = 16.2, 11.5 Hz, 1H), 2.87 (dd, J = 16.3, 3.4 Hz, 1H), 2.26 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.34, 157.15, 137.71, 134.16, 130.88, 129.55, 128.44, 127.82, 127.72, 123.17, 110.19, 77.46, 73.65, 71.15, 55.62, 29.17, 16.59; HRMS (ESI-TOF) Calcd for C 19 H 21 O 4 [M+H] + : 313.1434; found: 313.1436; m.p. = 69-70 C. 3-((benzyloxy)methyl)-6-fluoro-8-methylisochroman-1-one (3p) Substrate 3p was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3p was obtained as white solid (24.1 mg, 80%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.39 7.28 (m, 5H), 6.89 (dd, J = 9.6, 2.3 Hz, 1H), 6.78 (dd, J = 8.2, 2.1 Hz, 1H), 4.65 4.55 (m, 3H), 3.77 (dd, J = 10.3, 4.7 Hz, 1H), 3.71 (dd, J = 10.3, 5.4 Hz, 1H), 3.11 (dd, J = 16.2, 11.6 Hz, 1H), 2.93 (dd, J = 16.3, 2.9 Hz, 1H), 2.67 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ164.41 (d, J = 255.7 Hz), 163.44, 146.90 (d, J = 9.6 Hz), 142.93 (d, J = 9.6 Hz), 137.62, 128.46, 127.87, 127.74, 119.95, 117.97 (d, J = 21.2 Hz), 112.23 (d, J = 21.6 Hz), 76.14, 73.66, 70.83, 31.55, 22.44; HRMS (ESI- TOF) Calcd for C 18 H 18 FO 3 [M+H] + : 301.1234; found: 301.1233; m.p. = 49-50 C. 3-((benzyloxy)methyl)-6-chloro-8-methylisochroman-1-one (3q) Substrate 3q was alkylated following the general procedurev. After purification by preparative TLC, 3q was obtained as white solid (23.4 mg, 74%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.40 7.24 (m, 5H), 7.19 (s, S14

1H), 7.08 (s, 1H), 4.66 4.54 (m, 3H), 3.80 3.67 (m, 2H), 3.10 (dd, J = 16.2, 11.5 Hz, 1H), 2.91 (dd, J = 16.2, 2.9 Hz, 1H), 2.64 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 163.54, 145.05, 141.50, 138.65, 137.59, 131.01, 128.48, 127.89, 127.74, 125.35, 122.07, 76.25, 73.66, 70.79, 31.21, 22.09; HRMS (ESI-TOF) Calcd for C 18 H 18 ClO 3 [M+H] + : 317.0939; found: 317.0938; m.p. = 49-50 C. 3-((benzyloxy)methyl)-6-fluoro-7-methylisochroman-1-one (3r) Substrate 3r was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3r was obtained as white solid (26.5 mg, 88%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.95 (d, J = 7.7 Hz, 1H), 7.40 7.26 (m, 5H), 6.88 (d, J = 9.3 Hz, 1H), 4.72 4.56 (m, 3H), 3.80 3.71 (m, 2H), 3.13 (dd, J = 16.4, 11.4 Hz, 1H), 2.92 (dd, J = 16.5, 3.4 Hz, 1H), 2.29 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ164.45 (d, J = 255.2 Hz), 164.28, 138.96 (d, J = 9.6 Hz), 137.56, 134.08 (d, J = 7.2 Hz), 128.44, 127.85, 127.70, 124.95 (d, J = 18.2 Hz), 120.76 (d, J = 3.2 Hz), 113.93 (d, J = 23.4 Hz), 77.08, 73.66, 70.88, 29.73, 14.16 (d, J = 3.5 Hz); HRMS (ESI-TOF) Calcd for C 18 H 18 FO 3 [M+H] + : 301.1234; found: 301.1233; m.p. = 55-56 C. 3-((benzyloxy)methyl)-6-fluoro-7-methoxyisochroman-1-one (3s) Substrate 3s was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 3s was obtained as colorless oil (28.4 mg, 90%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.68 (d, J = 8.5 Hz, 1H), 7.41 7.28 (m, 5H), 6.96 (d, J = 10.7 Hz, 1H), 4.73 4.59 (m, 3H), 3.93 (s, 3H), 3.80 3.72 (m, 2H), 3.11 (dd, J = 16.4, 11.5 Hz, 1H), 2.89 (dd, J = 16.4, 3.4 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 164.28, 155.77 (d, J = 257.1 Hz), 147.44 (d, J = 11.1 Hz), 137.56, 132.65 (d, J = 8.0 Hz), 128.49, 127.92, 127.75, 121.07 (d, J = 3.1 Hz), 115.05 (d, J = 19.6 Hz), 114.54 (d, J = 3.6 Hz), 77.36, 73.71, 70.88, 56.39, 29.22; HRMS (ESI-TOF) Calcd for C 18 H 18 FO 4 [M+H] + : 317.1184; found: 317.1185. S15

3-((benzyloxy)methyl)-6-bromo-7-methylisochroman-1-one (3t) Substrate 3t was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 3t was obtained as white solid (27.1 mg, 75%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.93 (s, 1H), 7.45 (s, 1H), 7.40 7.27 (m, 5H), 4.72 4.57 (m, 3H), 3.80 3.71 (m, 2H), 3.12 (dd, J = 16.4, 11.3 Hz, 1H), 2.92 (dd, J = 16.4, 3.4 Hz, 1H), 2.42 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 164.51, 137.78, 137.54, 137.50, 132.07, 131.36, 131.30, 128.47, 127.88, 127.71, 123.89, 77.19, 73.67, 70.84, 29.28, 22.54; HRMS (ESI-TOF) Calcd for C 18 H 18 BrO 3 [M+H] + : 361.0434; found: 361.0434; m.p. = 87-88 C. 7-methylisochroman-1-one (4a) Substrate 4a was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 4a was obtained as colorless oil (13.0 mg, 80%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.91 (s, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 4.52 (t, J = 6.0 Hz, 2H), 3.01 (t, J = 6.0 Hz, 2H), 2.39 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.37, 137.55, 136.56, 134.51, 130.60, 127.08, 125.05, 67.40, 27.44, 20.96. 3,7-dimethylisochroman-1-one (4b) Substrate 4b was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 4b was obtained as colorless oil (15.0 mg, 85%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.91 (s, 1H), 7.34 (dd, J = 7.7 Hz, 1.2 Hz, 1H), 7.12 (d, J = 7.7 Hz, 1H), 4.70 4.61 (m, 1H), 2.96 2.84 (m, 2H), 2.38 (s, 3H), 1.51 (d, J = 6.3 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.87, 137.47, 136.12, 134.51, 130.49, 127.15, 124.72, 75.16, 34.51, 20.96, 29.88. S16

3-hexyl-7-methylisochroman-1-one (4c) Substrate 4c was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 4c was obtained as white solid (20.6 mg, 84%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.91 (s, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.12 (d, J = 7.7 Hz, 1H), 4.55 4.45 (m, 1H), 2.97 2.87 (m, 2H), 2.38 (s, 3H), 1.91 1.84 (m, 1H), 1.77 1.65 (m, 1H), 1.62 1.50 (m, 1H), 1.48 1.41 (m, 1H), 1.40 1.27 (m, 6H), 0.89 (t, J = 6.8 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.94, 137.39, 136.24, 134.45, 130.45, 127.19, 124.98, 78.87, 34.96, 32.83, 31.65, 29.03, 24.87, 22.53, 20.94, 14.01; HRMS (ESI-TOF) Calcd for C 16 H 23 O 2 [M+H] + : 247.1693; found: 247.1693; m.p. = 42-44 C. 3-decyl-7-methylisochroman-1-one (4d) Substrate 4d was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 4d was obtained as white solid (24.2 mg, 80%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.90 (s, 1H), 7.33 (d, J = 7.4 Hz, 1H), 7.12 (d, J = 7.7 Hz, 1H), 4.51 4.46 (m, 1H), 2.96 2.82 (m, 2H), 2.38 (s, 3H), 1.92 1.81 (m, 1H), 1.77 1.65 (m, 1H), 1.60 1.51 (m, J = 18.4, 11.1 Hz, 1H), 1.51 1.41 (m, 1H), 1.37 1.22 (m, 14H), 0.88 (t, J = 6.9 Hz, 3H); 13 C NMR (125MHz, CDCl 3 ) δ 165.94, 137.40, 136.25, 134.45, 130.46, 127.19, 124.99, 78.87, 34.97, 32.83, 31.87, 29.56, 29.53, 29.46, 29.38, 29.28, 24.92, 22.65, 20.95, 14.07; HRMS (ESI-TOF) Calcd for C 20 H 31 O 2 [M+H] + : 303.2319; found: 303.2319; m.p. = 38-40 C. 3-benzyl-7-methylisochroman-1-one (4e) Substrate 4e was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 4e was obtained as colorless oil (21.9 mg, 87%). 1 H S17

NMR (500 MHz, CDCl 3 ) δ 7.90 (s, 1H), 7.37 7.29 (m, 3H), 7.29 7.24 (m, 3H), 7.06 (d, J = 7.7 Hz, 1H), 4.76 4.67 (m, 1H), 3.25 (dd, J = 13.8, 5.7 Hz, 1H), 3.01 (dd, J = 13.8, 7.5 Hz, 1H), 2.90 (dd, J = 16.2, 11.0 Hz, 1H), 2.81 (dd, J = 16.2, 3.4 Hz, 1H), 2.37 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.61, 137.52, 136.19, 135.86, 134.58, 130.48, 129.5, 128.6, 127.31, 126.93, 124.87, 79.15, 77.25, 31.90, 20.95; HRMS (ESI-TOF) Calcd for C 17 H 17 O 2 [M+H] + : 253.1223; found: 253.1224. 3-(n-butoxymethyl)-7-methylisochroman-1-one (4f) Substrate 4f was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 4f was obtained as colorless oil (23.6 mg, 95%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.90 (s, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 4.67 4.61 (m, 1H), 3.74 (dd, J = 10.4, 4.7 Hz, 1H), 3.67 (dd, J = 10.4, 5.4 Hz, 1H), 3.53 (t, J = 6.6 Hz, 2H), 3.09 (dd, J = 16.3, 11.4 Hz, 1H), 2.94 (dd, J = 16.3, 3.4 Hz, 1H), 2.38 (s, 3H), 1.62 1.51 (m, 2H), 1.45 1.32 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.28, 137.42, 135.84, 134.61, 130.44, 127.3, 124.71, 71.75, 71.69, 31.65, 29.72, 20.94, 19.21, 13.86; HRMS (ESI-TOF) Calcd for C 15 H 21 O 3 [M+H] + : 249.1485; found: 249.1486. 7-methyl-3-(phenoxymethyl)isochroman-1-one (4g) Substrate 4g was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 4g was obtained as colorless oil (22.9 mg, 85%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.93 (s, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.32 7.28 (m, 2H), 7.18 (d, J = 7.7 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.9 Hz, 2H), 4.90 4.85 (m, 1H), 4.30 (dd, J = 9.9, 4.6 Hz, 1H), 4.20 (dd, J = 9.9, 5.9 Hz, 1H), 3.21 (dd, J = 16.2, 11.4 Hz, 1H), 3.09 (dd, J = 16.3, 3.5 Hz, 1H), 2.40 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 164.96, 158.20, 137.72, 135.42, 134.84, 130.60, 129.58, 127.49, 124.65, 121.43, 114.58, 76.23, 68.69, 29.80, 20.9; HRMS (ESI-TOF) Calcd for C 17 H 17 O 3 [M+H] + : 269.1172; found: 269.1170. S18

7-methyl-3-((o-tolyloxy)methyl)isochroman-1-one (4h) Substrate 4h was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 4h was obtained as colorless oil (24.5 mg, 87%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.94 (s, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.22 7.13 (m, 3H), 6.90 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 7.7 Hz, 1H), 4.94 4.83 (m, 1H), 4.30 (dd, J = 10.0, 4.4 Hz, 1H), 4.21 (dd, J = 9.9, 5.8 Hz, 1H), 3.25 (dd, J = 16.1, 11.3 Hz, 1H), 3.11 (dd, J = 16.3, 3.6 Hz, 1H), 2.40 (s, 3H), 2.22 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.1, 156.29, 137.71, 135.48, 134.82, 130.86, 130.62, 127.50, 126.98, 126.87, 124.71, 121.12, 111.04, 76.34, 68.80, 29.84, 21.00, 16.18; HRMS (ESI-TOF) Calcd for C 18 H 19 O 3 [M+H] + : 283.1329; found: 283.1327. 3-(((tert-butyldimethylsilyl)oxy)methyl)-7-methylisochroman-1-one (4i) Substrate 4i was alkylated following the general procedurev. After purification by preparative TLC, 4i was obtained as white solid (18.7 mg, 61%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.90 (s, 1H), 7.34 (d, J = 7.7 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 4.57 4.51 (m, 1H), 3.91 (dd, J = 10.7, 4.2 Hz, 1H), 3.84 (dd, J = 10.7, 6.0 Hz, 1H), 3.08 (dd, J = 16.3, 10.9 Hz, 1H), 2.95 (dd, J = 16.3, 3.5 Hz, 1H), 2.38 (s, 3H), 0.90 (s, 9H), 0.08 (d, J = 5.2 Hz, 6H); 13 C NMR (125 MHz, CDCl) δ 165.32, 137.36, 135.89, 134.58, 130.44, 127.46, 124.84, 78.44, 64.42, 29.34, 25.81, 20.95, 18.27, -5.40 (d, J = 2.1 Hz); HRMS (ESI-TOF) Calcd for C 17 H 27 O 3 Si [M+H] + : 307.1724; found: 307.1725; m.p. =55-56 C. 3-(hydroxymethyl)-7-methylisochroman-1-one (4j) Substrate 4j was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 4j was obtained as colorless oil (12.5 mg, 65%). 1 H NMR S19

(400 MHz, CDCl 3 ) δ 7.91 (s, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 4.65 4.59 (m, 1H), 3.96 (dd, J = 12.3, 3.0 Hz, 1H), 3.85 (dd, J = 12.3, 5.2 Hz, 1H), 3.17 (dd, J = 16.2, 12.5 Hz, 1H), 2.82 (dd, J = 16.3, 3.0 Hz,, 1H), 2.39 (s, 3H), 2.27 (brs, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 165.33, 137.65, 135.77, 134.88, 130.59, 127.48, 124.42, 79.10, 64.36, 28.75, 20.97; HRMS (ESI-TOF) Calcd for C 11 H 13 O 3 [M+H] + : 193.0859; found: 193.0858. (S)-3-(chloromethyl)-7-methylisochroman-1-one (4k) Substrate 4k was alkylated following the general procedure using Pd(OAc) 2 (1 mol%) and Ac-t-leu-OH (2 mol%). After purification by preparative TLC, 4k was obtained as white solid (16.4 mg, 78%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.91 (s, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 4.75 4.69 (m, 1H), 3.83 (dd, J = 11.5, 4.6 Hz, 1H), 3.74 (dd, J = 11.5, 6.7 Hz, 1H), 3.16 3.05 (m, 2H), 2.40 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 164.53, 137.93, 135.00, 134.85, 130.64, 127.54, 124.34, 77.10, 44.72, 30.19, 20.98; HRMS (ESI-TOF) Calcd for C 11 H 12 ClO 2 [M+H] + : 211.0520; found: 211.0520; m.p. = 52-53 C. 2-((7-methyl-1-oxoisochroman-3-yl)methyl)isoindoline-1,3-dione (4l) Substrate 4l was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 4l was obtained as white solid (24.4 mg, 76%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.91 7.84 (m, 3H), 7.77 7.71 (m, 2H), 7.34 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 7.7 Hz, 1H), 4.94 4.84 (m, 1H), 4.18 (dd, J = 14.1, 7.5 Hz, 1H), 3.93 (dd, J = 14.1, 5.5 Hz, 1H), 3.02 (d, J = 6.9 Hz, 2H), 2.37 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 167.98, 164.48, 137.83, 134.80, 134.85, 134.20, 131.88, 130.64, 127.42, 124.65, 123.55, 74.97, 41.05, 30.59, 20.97; HRMS (ESI-TOF) Calcd for C 19 H 16 NO 4 [M+H] + : 322.1074; found: 322.1075; m.p. = 198-199 C. S20

3-(((4-methoxyphenyl)sulfonyl)methyl)-7-methylisochroman-1-one (4m) Substrate 4m was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 4m was obtained as white solid (33.2 mg, 96%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.90 7.83 (m, 3H), 7.38 (d, J = 6.7 Hz, 1H), 7.17 (d, J = 7.8 Hz, 1H), 7.08 6.99 (m, 2H), 5.02 4.94 (m, 1H), 3.90 (s, 3H), 3.66 (dd, J = 14.4, 4.9 Hz, 1H), 3.46 (dd, J = 14.4, 7.4 Hz, 1H), 3.28 (dd, J = 16.3, 3.3 Hz, 1H), 3.10 (dd, J = 16.2, 10.8 Hz, 1H), 2.38 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 164.17, 164.08, 138.06, 135.08, 134.78, 130.68, 130.53, 130.34, 127.56, 124.2, 114.67, 72.64, 60.29, 55.73, 32.61, 20.96; HRMS (ESI-TOF) Calcd for C 18 H 19 O 5 S [M+H] + : 347.0948; found: 347.0946; m.p. = 181-182 C. methyl 7-methyl-1-oxoisochroman-3-carboxylate (4n) Substrate 4n was alkylated following the general procedure using Pd(OAc) 2 (2.5 mol%) and Ac-t-leu-OH (5 mol%). After purification by preparative TLC, 4n was obtained as white solid (15.8 mg, 72%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.92 (s, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 7.7 Hz, 1H), 5.15 (t, J = 5.6 Hz, 1H), 3.73 (s, 3H), 3.40 (dd, J = 16.4, 5.4 Hz, 1H), 3.25 (dd, J = 16.4, 5.7 Hz, 1H), 2.39 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 169.54, 163.61, 138.17, 134.96, 133.20, 130.55, 127.38, 124.54, 74.98, 52.86, 29.79, 21.00. 3-((benzyloxy)methyl)-3,7-dimethylisochroman-1-one (4o) Substrate 4o was alkylated following the general procedure using Pd(OAc) 2 (10 mol%) and Ac-t-leu-OH (20 mol%). After purification by preparative TLC, 4o was obtained as colorless oil (23.7 mg, 80%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.89 (s, 1H), 7.34 7.24(m, 6H), 7.11 (d, J = 7.7 Hz, 1H), 4.54 (s, 2H), 3.58 (d, J = 9.6 Hz, 1H), 3.50 (d, J = 9.7 Hz, 1H), 3.29 (d, J = 16.3 Hz, 1H), 2.88 (d, J = 16.4 Hz, 1H), 2.38 (s, 3H), 1.43 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 164.89, 137.79, 137.21, 134.74, 134.68, 130.21, 128.34, S21

127.92, 127.67, 127.49, 124.43, 81.85, 74.87, 73.54, 34.46, 23.40, 20.96; HRMS (ESI-TOF) Calcd for C 19 H 21 O 3 [M+H] + : 297.1485; found: 297.1484. 3,7-dimethyl-3-((phenylsulfonyl)methyl)isochroman-1-one (4p) Substrate 4p was alkylated following the general procedure using Pd(OAc) 2 (10 mol%) and Ac-t-leu-OH (20 mol%). After purification by preparative TLC, 4p was obtained as white solid (16.5 mg, 50%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.86 (d, J = 7.7 Hz, 2H), 7.82 (s, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.7 Hz, 2H), 7.38 (d, J = 7.7 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 3.59 (d, J = 16.4 Hz, 1H), 3.49 (s, 2H), 3.21 (d, J = 16.5 Hz, 1H), 2.38 (s, 3H), 1.73 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 163.50, 140.32, 137.8, 135.25, 134.02, 133.97 130.22, 129.40, 128.24, 127.76, 123.79, 80.20, 62.85, 36.81, 26.10, 20.97; HRMS (ESI- TOF) Calcd for C 18 H 19 O 4 S [M+H] + : 331.0999; found: 331.0998; m.p. = 117-118 C. (4a,10b-trans)-8-methyl-2,3,4,4a-tetrahydro-1H-benzo[c]chromen-6(10bH)-one (4q) Substrate 4q was alkylated following the general procedure using Pd(OAc) 2 (10 mol%) and Ac-t-leu-OH (20 mol%). After purification by preparative TLC, 4q was obtained as white solid (11.9 mg, 55%). 1 H NMR (400 MHz, CDCl 3 ) δ 7.92 (s, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.19 (d, J = 7.9 Hz, 1H), 4.07 (td, J = 11.4, 4.3 Hz, 1H), 2.78 (td, J = 11.5, 4.0 Hz, 1H), 2.60 2.45 (m, 1H), 2.39 (s, 3H), 2.29 2.18 (m, 1H), 1.96 1.86 (m, 2H), 1.76 1.65 (m, 1H), 1.53 1.21 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 165.71, 140.10, 137.07, 134.50, 130.63, 125.16, 123.33, 81.65, 40.07, 31.68, 27.04, 24.89, 24.00, 20.89; HRMS (ESI- TOF) Calcd for C 14 H 17 O 2 [M+H] + : 217.1223; found: 217.1224; m.p. = 107-108 C. (3a,9b-trans)-7-methyl-1,3,3a,9b-tetrahydrocyclopenta[c]isochromen-5(2H)-one (4r) S22

Substrate 4r was alkylated following the general procedure using Pd(OAc) 2 (10 mol%) and Ac-t-leu-OH (20 mol%). After purification by preparative TLC, 4r was obtained as white solid (8.5 mg, 42%). 1 H NMR (500 MHz, CDCl 3 ) δ 7.89 (s, 1H), 7.36 (d, J = 7.0 Hz, 1H), 7.08 (d, J = 7.7 Hz, 1H), 4.24 4.15 (m, 1H), 3.05 2.94 (m, 1H), 2.39 (s, 3H), 2.36 2.24 (m, 1H), 2.22 2.13 (m, 1H), 2.11 1.98 (m, 1H), 1.98 1.81 (m, 2H), 1.62 1.54 (m, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 167.02, 140.30, 137.08, 134.33, 131.17, 125.14, 124.33, 83.63, 42.60, 27.94, 22.94, 21.04, 19.58; HRMS (ESI-TOF) Calcd for C 13 H 15 O 2 [M+H] + : 203.1067; found: 203.1067; m.p. = 134-135 C. 2.7 Coupling Reactions Using Chiral (S)-(+)-epichlorohydrin The enantiomeric excess of (S)-4K was determined by HPLC (chiral column: CHIRALPAK AD-H; solvent: hexane/2-propanol = 20/1; flow rate: 0.3 ml/min; detection: at 254 nm) analysis in comparision with authentic racemic material: Retention time = 54.4 min (R) and 58.8 min (S). 3. 1 H and 13 C NMR Spectra S23

S24

S25

S26

S27

S28

S29

S30

S31

S32

S33

S34

S35

S36

S37

S38

S39

S40

S41

S42

S43

S44

S45

S46

S47

S48

S49

S50

S51

S52

S53

S54

S55

S56

S57

S58

S59

S60

S61

S62

S63

S64

S65

4. X-ray Crystallographic Data of 4q Table 1. Crystal data and structure refinement for Yu42. Report date 2015-07-10 Identification code 4q Empirical formula C14 H16 O2 Molecular formula C14 H16 O2 Formula weight 216.27 Temperature 100.0 K Wavelength 0.71073 Å Crystal system Monoclinic Space group P 1 21/n 1 Unit cell dimensions a = 9.4814(11) Å b = 6.1821(6) Å c = 18.619(2) Å Volume 1079.7(2) Å 3 Z 4 Density (calculated) 1.330 Mg/m 3 Absorption coefficient 0.087 mm -1 F(000) 464 Crystal size 0.217 x 0.135 x 0.118 mm 3 Crystal color, habit Colorless Block Theta range for data collection 2.211 to 25.482. S66

Index ranges -11<=h<=11, -7<=k<=7, -22<=l<=22 Reflections collected 7956 Independent reflections 2000 [R(int) = 0.0421] Completeness to theta = 25.000 99.5 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.0917 and 0.0687 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2000 / 0 / 146 Goodness-of-fit on F 2 1.023 Final R indices [I>2sigma(I)] R1 = 0.0432, wr2 = 0.0914 R indices (all data) R1 = 0.0715, wr2 = 0.1025 Extinction coefficient n/a Largest diff. peak and hole 0.185 and -0.185 e.å -3 S67

Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for Yu42. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) O(1) 4028(1) 7413(2) 6957(1) 24(1) O(2) 3945(1) 9302(2) 5947(1) 28(1) C(8) 5555(2) 6310(3) 6080(1) 20(1) C(7) 5799(2) 4288(3) 6416(1) 19(1) C(6) 5047(2) 3769(3) 7058(1) 21(1) C(9) 4477(2) 7800(3) 6309(1) 22(1) C(13) 6237(2) 6909(3) 5494(1) 22(1) C(12) 7180(2) 5509(3) 5226(1) 22(1) C(10) 6711(2) 2872(3) 6129(1) 22(1) C(1) 4830(2) 5866(3) 7450(1) 21(1) C(11) 7382(2) 3468(3) 5546(1) 24(1) C(4) 4978(2) 1809(3) 8237(1) 25(1) C(5) 5815(2) 2163(3) 7604(1) 23(1) C(3) 4747(2) 3936(3) 8621(1) 26(1) C(14) 7972(2) 6171(3) 4616(1) 27(1) C(2) 4013(2) 5589(3) 8084(1) 25(1) S68

Table 3. Bond lengths [Å] and angles [ ] for Yu42. O(1)-C(9) 1.359(2) O(1)-C(1) 1.460(2) O(2)-C(9) 1.213(2) C(8)-C(7) 1.403(2) C(8)-C(9) 1.483(2) C(8)-C(13) 1.397(2) C(7)-C(6) 1.512(2) C(7)-C(10) 1.391(2) C(6)-H(6) 1.0000 C(6)-C(1) 1.516(2) C(6)-C(5) 1.528(2) C(13)-H(13) 0.9500 C(13)-C(12) 1.388(2) C(12)-C(11) 1.396(2) C(12)-C(14) 1.506(2) C(10)-H(10) 0.9500 C(10)-C(11) 1.387(2) C(1)-H(1) 1.0000 C(1)-C(2) 1.513(2) C(11)-H(11) 0.9500 C(4)-H(4A) 0.9900 C(4)-H(4B) 0.9900 C(4)-C(5) 1.529(2) C(4)-C(3) 1.527(2) C(5)-H(5A) 0.9900 C(5)-H(5B) 0.9900 C(3)-H(3A) 0.9900 C(3)-H(3B) 0.9900 C(3)-C(2) 1.525(3) C(14)-H(14A) 0.9800 C(14)-H(14B) 0.9800 C(14)-H(14C) 0.9800 S69

C(2)-H(2A) 0.9900 C(2)-H(2B) 0.9900 C(9)-O(1)-C(1) 118.16(13) C(7)-C(8)-C(9) 120.05(15) C(13)-C(8)-C(7) 121.33(15) C(13)-C(8)-C(9) 118.47(15) C(8)-C(7)-C(6) 118.42(14) C(10)-C(7)-C(8) 117.43(15) C(10)-C(7)-C(6) 124.14(15) C(7)-C(6)-H(6) 108.1 C(7)-C(6)-C(1) 108.16(14) C(7)-C(6)-C(5) 115.48(14) C(1)-C(6)-H(6) 108.1 C(1)-C(6)-C(5) 108.69(14) C(5)-C(6)-H(6) 108.1 O(1)-C(9)-C(8) 117.66(15) O(2)-C(9)-O(1) 117.99(15) O(2)-C(9)-C(8) 124.32(16) C(8)-C(13)-H(13) 119.6 C(12)-C(13)-C(8) 120.75(16) C(12)-C(13)-H(13) 119.6 C(13)-C(12)-C(11) 117.76(16) C(13)-C(12)-C(14) 121.26(15) C(11)-C(12)-C(14) 120.97(15) C(7)-C(10)-H(10) 119.5 C(11)-C(10)-C(7) 121.05(16) C(11)-C(10)-H(10) 119.5 O(1)-C(1)-C(6) 110.64(13) O(1)-C(1)-H(1) 108.6 O(1)-C(1)-C(2) 106.60(13) C(6)-C(1)-H(1) 108.6 C(2)-C(1)-C(6) 113.54(14) C(2)-C(1)-H(1) 108.6 S70

C(12)-C(11)-H(11) 119.2 C(10)-C(11)-C(12) 121.61(16) C(10)-C(11)-H(11) 119.2 H(4A)-C(4)-H(4B) 108.0 C(5)-C(4)-H(4A) 109.4 C(5)-C(4)-H(4B) 109.4 C(3)-C(4)-H(4A) 109.4 C(3)-C(4)-H(4B) 109.4 C(3)-C(4)-C(5) 111.30(14) C(6)-C(5)-C(4) 110.82(14) C(6)-C(5)-H(5A) 109.5 C(6)-C(5)-H(5B) 109.5 C(4)-C(5)-H(5A) 109.5 C(4)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 108.1 C(4)-C(3)-H(3A) 109.5 C(4)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 108.1 C(2)-C(3)-C(4) 110.64(14) C(2)-C(3)-H(3A) 109.5 C(2)-C(3)-H(3B) 109.5 C(12)-C(14)-H(14A) 109.5 C(12)-C(14)-H(14B) 109.5 C(12)-C(14)-H(14C) 109.5 H(14A)-C(14)-H(14B) 109.5 H(14A)-C(14)-H(14C) 109.5 H(14B)-C(14)-H(14C) 109.5 C(1)-C(2)-C(3) 110.54(14) C(1)-C(2)-H(2A) 109.5 C(1)-C(2)-H(2B) 109.5 C(3)-C(2)-H(2A) 109.5 C(3)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 108.1 S71

Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for Yu42. The anisotropic displacement factor exponent takes the form: - 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 26(1) 22(1) 25(1) 2(1) 6(1) 5(1) O(2) 31(1) 23(1) 31(1) 5(1) 5(1) 6(1) C(8) 17(1) 21(1) 21(1) -2(1) 0(1) 0(1) C(7) 17(1) 20(1) 20(1) -1(1) -1(1) -2(1) C(6) 18(1) 21(1) 24(1) 1(1) 2(1) -1(1) C(9) 23(1) 21(1) 23(1) 0(1) 3(1) -4(1) C(13) 21(1) 20(1) 23(1) 1(1) 0(1) -1(1) C(12) 21(1) 24(1) 20(1) -2(1) 1(1) -1(1) C(10) 24(1) 18(1) 24(1) 2(1) 1(1) 1(1) C(1) 21(1) 20(1) 22(1) 3(1) 2(1) 1(1) C(11) 23(1) 23(1) 24(1) -3(1) 3(1) 2(1) C(4) 25(1) 25(1) 25(1) 6(1) 2(1) 0(1) C(5) 24(1) 21(1) 25(1) 1(1) 2(1) 0(1) C(3) 28(1) 26(1) 23(1) 1(1) 5(1) -3(1) C(14) 27(1) 28(1) 26(1) 0(1) 7(1) 1(1) C(2) 26(1) 22(1) 28(1) -1(1) 9(1) 1(1) S72

Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for Yu42. x y z U(eq) H(6) 4088 3161 6869 25 H(13) 6055 8290 5276 26 H(10) 6877 1474 6336 27 H(1) 5785 6501 7633 25 H(11) 7995 2464 5359 28 H(4A) 4042 1154 8054 30 H(4B) 5505 790 8589 30 H(5A) 6777 2720 7792 28 H(5B) 5928 765 7360 28 H(3A) 4154 3672 9008 31 H(3B) 5678 4515 8851 31 H(14A) 7518 7453 4373 40 H(14B) 7950 4984 4266 40 H(14C) 8963 6508 4812 40 H(2A) 3030 5100 7904 30 H(2B) 3953 6995 8331 30 S73

5. X-ray Crystallographic Data of 4r Table 1. Crystal data and structure refinement for Yu43. Report date 2015-07-10 Identification code 4r Empirical formula C13 H14 O2 Molecular formula C13 H14 O2 Formula weight 202.24 Temperature 100.0 K Wavelength 0.71073 Å Crystal system Monoclinic Space group P 1 21/n 1 Unit cell dimensions a = 6.0063(4) Å b = 12.1809(10) Å c = 14.0370(10) Å Volume 1022.42(13) Å 3 Z 4 Density (calculated) 1.314 Mg/m 3 Absorption coefficient 0.087 mm -1 F(000) 432 Crystal size 0.355 x 0.214 x 0.196 mm 3 Crystal color, habit Colorless Block S74

Theta range for data collection 2.218 to 25.372. Index ranges -7<=h<=6, -14<=k<=14, -16<=l<=16 Reflections collected 8581 Independent reflections 1876 [R(int) = 0.0330] Completeness to theta = 25.000 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.0916 and 0.0668 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 1876 / 0 / 144 Goodness-of-fit on F 2 1.059 Final R indices [I>2sigma(I)] R1 = 0.0380, wr2 = 0.0897 R indices (all data) R1 = 0.0509, wr2 = 0.0973 Extinction coefficient n/a Largest diff. peak and hole 0.185 and -0.185 e.å -3 S75

Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for Yu43. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) O(1) 5669(2) 4989(1) 2339(1) 24(1) O(2) 8033(2) 6325(1) 2117(1) 27(1) C(2) 2859(3) 3549(1) 2610(1) 29(1) C(3) 877(3) 3541(1) 3240(1) 26(1) C(4) 1191(3) 4556(1) 3906(1) 20(1) C(6) 3937(2) 6236(1) 3851(1) 19(1) C(7) 5918(2) 6538(1) 3461(1) 18(1) C(8) 6639(2) 5962(1) 2602(1) 20(1) C(9) 3278(3) 6834(1) 4621(1) 21(1) C(10) 4543(3) 7713(1) 4994(1) 22(1) C(11) 6498(3) 8032(1) 4604(1) 23(1) C(12) 7167(3) 7432(1) 3834(1) 22(1) C(13) 7839(3) 9008(1) 4988(1) 35(1) C(1) 4296(3) 4487(1) 3029(1) 20(1) C(5) 2650(3) 5307(1) 3360(1) 17(1) C(1B) 3320(40) 5029(19) 2605(17) 20(1) C(5B) 3620(50) 4980(20) 3633(18) 17(1) S76

Table 3. Bond lengths [Å] and angles [ ] for Yu43. O(1)-C(8) 1.3560(19) O(1)-C(1) 1.4628(19) O(1)-C(1B) 1.49(2) O(2)-C(8) 1.2104(18) C(2)-H(2A) 0.9900 C(2)-H(2B) 0.9900 C(2)-C(3) 1.548(2) C(2)-C(1) 1.517(2) C(2)-C(1B) 1.82(2) C(3)-H(3A) 0.9900 C(3)-H(3B) 0.9900 C(3)-C(4) 1.552(2) C(4)-H(4AA) 0.9900 C(4)-H(4AB) 0.9900 C(4)-H(4BC) 0.9900 C(4)-H(4BD) 0.9900 C(4)-C(5) 1.523(2) C(4)-C(5B) 1.63(2) C(6)-C(7) 1.405(2) C(6)-C(9) 1.391(2) C(6)-C(5) 1.501(2) C(6)-C(5B) 1.57(2) C(7)-C(8) 1.494(2) C(7)-C(12) 1.396(2) C(9)-H(9) 0.9500 C(9)-C(10) 1.386(2) C(10)-H(10) 0.9500 C(10)-C(11) 1.397(2) C(11)-C(12) 1.394(2) C(11)-C(13) 1.508(2) C(12)-H(12) 0.9500 C(13)-H(13A) 0.9800 C(13)-H(13B) 0.9800 C(13)-H(13C) 0.9800 C(1)-H(1) 1.0000 C(1)-C(5) 1.509(2) C(5)-H(5) 1.0000 S77

C(1B)-H(1B) 1.0000 C(1B)-C(5B) 1.44(3) C(5B)-H(5B) 1.0000 C(8)-O(1)-C(1) 116.10(12) C(8)-O(1)-C(1B) 107.2(9) H(2A)-C(2)-H(2B) 109.1 C(3)-C(2)-H(2A) 111.2 C(3)-C(2)-H(2B) 111.2 C(3)-C(2)-C(1B) 97.7(7) C(1)-C(2)-H(2A) 111.2 C(1)-C(2)-H(2B) 111.2 C(1)-C(2)-C(3) 102.97(13) C(2)-C(3)-H(3A) 110.4 C(2)-C(3)-H(3B) 110.4 C(2)-C(3)-C(4) 106.40(12) H(3A)-C(3)-H(3B) 108.6 C(4)-C(3)-H(3A) 110.4 C(4)-C(3)-H(3B) 110.4 C(3)-C(4)-H(4AA) 111.3 C(3)-C(4)-H(4AB) 111.3 C(3)-C(4)-H(4BC) 111.8 C(3)-C(4)-H(4BD) 111.8 C(3)-C(4)-C(5B) 99.8(8) H(4AA)-C(4)-H(4AB) 109.2 H(4BC)-C(4)-H(4BD) 109.5 C(5)-C(4)-C(3) 102.58(12) C(5)-C(4)-H(4AA) 111.3 C(5)-C(4)-H(4AB) 111.3 C(5B)-C(4)-H(4BC) 111.8 C(5B)-C(4)-H(4BD) 111.8 C(7)-C(6)-C(5) 115.92(13) C(7)-C(6)-C(5B) 105.8(9) C(9)-C(6)-C(7) 118.60(14) C(9)-C(6)-C(5) 125.42(14) C(9)-C(6)-C(5B) 128.6(9) C(6)-C(7)-C(8) 120.78(13) C(12)-C(7)-C(6) 120.18(14) C(12)-C(7)-C(8) 118.90(13) S78

O(1)-C(8)-C(7) 118.68(13) O(2)-C(8)-O(1) 117.96(14) O(2)-C(8)-C(7) 123.35(14) C(6)-C(9)-H(9) 119.6 C(10)-C(9)-C(6) 120.81(14) C(10)-C(9)-H(9) 119.6 C(9)-C(10)-H(10) 119.4 C(9)-C(10)-C(11) 121.15(14) C(11)-C(10)-H(10) 119.4 C(10)-C(11)-C(13) 121.31(15) C(12)-C(11)-C(10) 118.17(14) C(12)-C(11)-C(13) 120.52(15) C(7)-C(12)-H(12) 119.5 C(11)-C(12)-C(7) 121.08(14) C(11)-C(12)-H(12) 119.5 C(11)-C(13)-H(13A) 109.5 C(11)-C(13)-H(13B) 109.5 C(11)-C(13)-H(13C) 109.5 H(13A)-C(13)-H(13B) 109.5 H(13A)-C(13)-H(13C) 109.5 H(13B)-C(13)-H(13C) 109.5 O(1)-C(1)-H(1) 109.4 O(1)-C(1)-C(5) 110.73(13) C(2)-C(1)-H(1) 109.4 C(5)-C(1)-C(2) 104.58(13) C(5)-C(1)-H(1) 109.4 C(4)-C(5)-H(5) 108.7 C(6)-C(5)-C(4) 121.16(13) C(6)-C(5)-C(1) 108.41(14) C(6)-C(5)-H(5) 108.7 C(1)-C(5)-C(4) 100.52(13) C(1)-C(5)-H(5) 108.7 O(1)-C(1B)-C(2) 96.6(12) O(1)-C(1B)-H(1B) 121.0 C(2)-C(1B)-H(1B) 121.0 C(5B)-C(1B)-O(1) 102.5(19) C(5B)-C(1B)-C(2) 87.6(16) C(5B)-C(1B)-H(1B) 121.0 S79

C(4)-C(5B)-H(5B) 114.2 C(6)-C(5B)-C(4) 111.0(16) C(6)-C(5B)-H(5B) 114.2 C(1B)-C(5B)-C(4) 102.7(19) C(1B)-C(5B)-C(6) 98.9(18) C(1B)-C(5B)-H(5B) 114.2 S80

Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for Yu43. The anisotropic displacement factor exponent takes the form: - 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 23(1) 29(1) 22(1) -5(1) 7(1) -1(1) O(2) 24(1) 34(1) 26(1) 6(1) 10(1) 2(1) C(2) 28(1) 27(1) 33(1) -11(1) 6(1) -2(1) C(3) 26(1) 24(1) 28(1) -7(1) 1(1) -4(1) C(4) 20(1) 21(1) 21(1) -2(1) 3(1) -3(1) C(6) 21(1) 17(1) 19(1) 2(1) 3(1) -1(1) C(7) 18(1) 20(1) 16(1) 5(1) 1(1) 3(1) C(8) 16(1) 26(1) 19(1) 5(1) 1(1) 4(1) C(9) 22(1) 21(1) 21(1) 1(1) 7(1) -1(1) C(10) 28(1) 19(1) 18(1) 0(1) 3(1) 1(1) C(11) 26(1) 21(1) 21(1) 4(1) -4(1) -4(1) C(12) 18(1) 26(1) 22(1) 7(1) 1(1) -3(1) C(13) 40(1) 29(1) 34(1) -1(1) 0(1) -13(1) C(1) 20(1) 22(1) 19(1) 0(1) 5(1) 1(1) C(5) 17(1) 18(1) 16(1) 0(1) 1(1) 2(1) C(1B) 20(1) 22(1) 19(1) 0(1) 5(1) 1(1) C(5B) 17(1) 18(1) 16(1) 0(1) 1(1) 2(1) S81

Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for Yu43. x y z U(eq) H(2A) 3686 2845 2661 35 H(2B) 2339 3688 1931 35 H(3A) 886 2857 3621 31 H(3B) -562 3588 2835 31 H(4AA) -261 4906 3998 25 H(4AB) 1951 4354 4539 25 H(4BC) 1227 4348 4590 25 H(4BD) 11 5113 3754 25 H(9) 1945 6639 4893 25 H(10) 4072 8104 5525 26 H(12) 8493 7634 3560 26 H(13A) 7748 9593 4507 52 H(13B) 9405 8792 5137 52 H(13C) 7237 9275 5571 52 H(1) 5285 4217 3593 24 H(5) 1727 5603 2787 21 H(1B) 2192 5535 2268 24 H(5B) 4901 4510 3893 21 S82