Solution Set #2

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

Phasor Diagram of an RC Circuit V R

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Matrices and Determinants

α & β spatial orbitals in

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1


Example Sheet 3 Solutions

Second Order RLC Filters

1 Complete Set of Grassmann States

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

6.4 Superposition of Linear Plane Progressive Waves

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Approximation of distance between locations on earth given by latitude and longitude

EN40: Dynamics and Vibrations

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

2 Composition. Invertible Mappings

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Math221: HW# 1 solutions

Finite Field Problems: Solutions

Section 9.2 Polar Equations and Graphs

Solutions to Exercise Sheet 5

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

PARTIAL NOTES for 6.1 Trigonometric Identities

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Part 4 RAYLEIGH AND LAMB WAVES

4.4 Superposition of Linear Plane Progressive Waves

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

CRASH COURSE IN PRECALCULUS

8.324 Relativistic Quantum Field Theory II

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

w o = R 1 p. (1) R = p =. = 1

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Srednicki Chapter 55

What happens when two or more waves overlap in a certain region of space at the same time?

EE512: Error Control Coding

Reminders: linear functions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

1 3D Helmholtz Equation

C.S. 430 Assignment 6, Sample Solutions

Homework 8 Model Solution Section

The Simply Typed Lambda Calculus

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Math 6 SL Probability Distributions Practice Test Mark Scheme

The challenges of non-stable predicates

Homework 3 Solutions

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

A Class of Orthohomological Triangles

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( y) Partial Differential Equations

Variational Wavefunction for the Helium Atom

( ) Sine wave travelling to the right side

F19MC2 Solutions 9 Complex Analysis

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Airfoil Characteristics

Statistical Inference I Locally most powerful tests

Lecture 15 - Root System Axiomatics

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

EE101: Resonance in RLC circuits

Notes on the Open Economy

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Every set of first-order formulas is equivalent to an independent set

Derivation of Optical-Bloch Equations

Areas and Lengths in Polar Coordinates

( ) 2 and compare to M.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Differentiation exercise show differential equation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

TMA4115 Matematikk 3

Strain gauge and rosettes

Spin Precession in Electromagnetic Field

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

4.6 Autoregressive Moving Average Model ARMA(1,1)

Transcript:

. For the followng two harmon waves: (a) Show on a phasor dagram: 05-55-007 Soluton Set # phasor s the omplex vetor evaluated at t 0: f [t] os[ω 0 t] h f [t] 7os ω 0 t π f [t] exp[ 0] + 0 h f [t] 7exp π ³ h 7 os π h + sn π ³ h 7 os + π h π sn 7 ( ) As tme nreases, the two phasors rotate about the orgn at the rate ω 0. (b) Fnd the mathematal expresson for the superposton f [t]+f [t] n the form of a osne. Re {f [0] + f [0]} + 7 6.7 Im {f [0] + f [0]} 0 7.7 s f [0] + f [0] + 7 + 7 8.5 ( ) Im Φ {f [0] + f [0]} tan {f [0] + f [0]} 7 tan Re {f [0] + f [0]} + 7 0.68 radans 0.7π radans 5.5 The snusodal expresson for ths osllaton s: f [t]+f [t] 8.5 os [ω 0 t 0.68]

. Two plane waves of the same frequeny that vbrate along the z dreton are: x f [x, t] A os π ν t + π ; A 0mm, X 0mm, ν 0Hz X y f [y, t] A os π ν t + π ; A 0mm, Y 0mm, ν 0Hz Y Evaluate the resultant waveform f [x, t]+f [y, t] at [x, y] [50mm, 0 mm] full redt f done ether way: (a) f [50 mm,t]+f [0 mm,t] 50 mm 0mm os π 0 Hz t + π 0 mm 5 0mm os π 0 Hz t +0mm 0π 0 mm os 0πt 0 mm os [π 0πt] 0π 0 mm os 0πt +0mm os [ 0πt] 0 mm os 0πt 0π +0mm os [0πt] ½ Re 0 mm exp [+0πt] 0 mm exp + +0mm os os 0πt 0π 0 mm π 0 mm π ¾ 0 Hz t 0 Hz t + π Beause the temporal frequenes are the same, we an evaluate the sum at t 0by usng phasors: f [50 mm, 0] + f [0 mm, 0] 0mm exp [+0π 0] 0 mm exp + 0π 0 0π 0mm 0 mm exp 0π Re {f [50 mm, 0] + f [0 mm, 0]} 0mm 0 mm os Im {f [50 mm, 0] + f [0 mm, 0]} 0 mm sn 0π 0π +0mm 0 mm.6 mm q f [50 mm, 0] + f [0 mm, 0] (+0 mm) +(.6 mm) 5.5 mm.6 Φ {f [50 mm, 0] + f [0 mm, 0]} tan +0 0.7 7 radans 0.7 8π radans 0.8

(b) f [50 mm,t]+f [0 mm,t] 50 mm 0 mm 0mm os π 0 Hz t + π +0mm os π 0 Hz t + π 0 mm 0 mm 5 0mm os π 0 Hz t 0 mm os π 0 Hz t +π 0π 0 mm os +π 0πt 0 mm os π +π 0πt 0π 0 mm os 0πt +π 0 mm os 0πt π +π ½ 0π Re 0 mm exp + 0πt +π 0 mm exp + 0πt π +π ¾ Beause the temporal frequenes are the same, we an evaluate the sum at t 0by usng phasors: 0π Re {f [50 mm, 0] + f [0 mm, 0]} 0 mm os +π 0 mm os π +π 0π +π 0 mm os π +π 0 mm os.77 mm Re {f [50 mm, 0] + f [0 mm, 0]} 0 mm sn +5.887 mm 0π +π 0 mm sn π +π q f [50 mm, 0] + f [0 mm, 0] (.77 mm) +(+5.887 mm) 5.5 mm ½ ¾ +5.887 Φ [f [50 mm, 0] + f [0 mm, 0]] tan.58 radans.77 88.

. Consder the superposton of two snusodal travelng waves: f [z, t] A os [k z ω t], A 0 mm, ν 00 Hz, v 50 m s f [z, t] A os [k z ω t], A mm,ν 50 Hz, v 500 m s (a) Fnd an expresson for the resultng wave n terms of the average wave, the modulaton wave, plus any remanng ampltude. We have an expresson for the sum of two waves wth dfferent frequenes bu the same magntude: A + B A B os [A]+ os[b] os os so we have: A os [k z ω t]+a os [k z ω t] [A +(A A )] os [k z ω t]+a os [k z ω t] A (os [k z ω t]+os[k z ω t]) + (A A )os[k z ω t] k + k ω + ω k k ω ω A os z t os z t +(A A )os[k z ω t] whh s the sum of a travelng wave and the produt of the average and modulaton waves (b) Calulate the wavelengths of the average and modulaton waves. In ths ase: ν v v 50 m s ν 00 Hz 5 m ν v v 500 m s ν 50 Hz 0 m > and v < v k avg π k + k π avg Ã! avg + + 5m + 0 m 0 7 m avg k mod π k k π mod mod Ã! 5m 0 m 0 m mod n.b., mod > avg

() Fnd the velotes of the average and modulaton waves. ω avg ω + ω ω mod ω ω ν + ν 00 Hz + 50 Hz π π π 5 ν ν 00 Hz 50 Hz π π π 5 v avg ω avg avg ν avg 0 500 m m 5 Hz k avg 7 7 s v avg v mod ω mod k mod mod ν mod 0m 5 Hz 500 m s v mod sothemodulatonwavetravelsntheoppostedreton (d) Does ths system exhbt normal or anomalous dsperson? > and v < v longer wave travels slower anomalous dsperson 5

. The phase veloty of waves n some medum s proportonal to ω +. Fnd an expresson for the modulaton veloty and determne whether the waves exhbt normal or anomalous dsperson. ω v φ k αω+,whereα s some onstant k ω αk ω + αω + ω (αk) ths s the dsperson relaton ω [k] Ã! dω v mod dk d h (αk) α k α ω + αω + dk α v mod αω + vavg anomalous dsperson 6

5. Plot and wrte the equaton of the superposton of the followng harmon waves: h π E sn 8 ωt 5π E os ωt h π E sn 6 ωt where the perod of eah s s. h π E sn 8 ωt h³ π ωt os 8 h³ π os 8 π ωt os 5π E os ωt h π E sn 6 ωt ωt π os 8π 8 ωt 5π h³ π ωt os 6 π os h π h ωt os ωt + π os ωt + π sne all three omponents have the same frequeny ω πν π se π radans se,thesumhasthesame frequeny. Evaluate the ampltude for t 0: E [t 0]+E [t 0]+E [t 0] exp + π + exp 5π h + exp + π Re {E [t 0]+E [t 0]+E [t 0]} os + π os + os 5π π 0.657 h + os + π Im {E [t 0]+E [t 0]+E [t 0]} sn + π sn + sn π 5π 0.7 56 h + sn + π 7

s E [t 0]+E [t 0]+E [t 0] os π + sn π 0.6 5 " sn Φ {E [t 0]+E [t 0]+E [t 0]} tan π # os π π radans 0 E + E + E 0.6 5 os h ωt π 0.65 os [ωt 0.] (a) the three omponent snusods; (b) the sum usng both the sum of the three funtons n (a) and the omputaton the two results are dental 8

6. A laser emts a monohromat beam of wavelength 0,whhsrefleted normally from a plane mrror that reedes from the lght soure at veloty v. (a) Determne the beat frequeny between the ndent and refleted lght. Frst try t wthout for v 0;therefleted lght dffers from the ndent lght only n the dreton (assumng no losses or phase hanges n the mrror): The sum reates standng waves: f [z, t] A 0 os [k z ω t] f [z, t] A 0 os [k z + ω t] f [z,t]+f [z,t] A 0 os [k z ω t]+a 0 os [k z + ω t] A 0 os [k z]os[ω t] Note that f the mrror moves wth veloty v, the frequeny and the wavelength of the refleted lght hange due to the Doppler effet. From Eq.(-) n Pedrott(s): In the lmt v<<, then Eq.(-5) apples: after before 0 0 0 after before s v + v s v + v r v r ³ + v r r r ³ v ³ + v v +( ) v r r v v v ³ 0 0 v 0 so the wavelength of the refleted beam s longer f v reedes from the soure (v < 0, red shft) and shorter f t approahes the soure (v > 0, blue shft). In our ase, the refleted beam exhbts twe the Doppler shft beause t has to hange dreton, so the orrespondng wavevetors are: k π 0 k 0 π 0 0 unhanged where the dentty has been used: π v k 0 v k v k + v α X α n α + α α f α << α n0 The orrespondng osllaton frequenes are easy to fnd beause the veloty of lght s unhanged: 0 ν 0 0 0 ν 0 0 0 0 ν 0 0 ν 0 v 0

: ν 0 ν s unhanged ν v + v ν So f v s postve, the wavelength dereases and the frequeny nreases. Thesumofthetwowavess: f [z,t]+f [z,t] A 0 os [k z ω t]+a 0 os [kz 0 + ω 0 t] A 0 os [k avg z ω avg t] os [k mod z ω mod t] where: k avg k + k 0 k mod k k 0 ω avg ω + ω 0 ω mod ω ω 0 ν mod vν k + k + v k k + v k v ω + + v ³ ³ ω + v ω vω ω ω + vω v k + k k + k v f [z,t]+f [z,t] A 0 os [k z ω t]+a 0 os [kz 0 + ω 0 t] A 0 os k + k ³ v z ω + vω A 0 os k + k ³ v z ω + vω t so the beat frequeny n the equaton s: ν mod ω mod π vω ν π v t os k v t z vω h os v (k z + ω t) but we atually see the squared magntude, whh osllates twe as fast (Pedrott Eq.(5-)) ν mod ν v 0

(b) Determne the beat frequeny between the ndent and refleted lght f the lght s ndent on the plane mrror at angle θ. Here the refleted beam travels at angle θ, sothek vetors are dfferent before and after the refleton. Agan onsder the ase v 0: Thesumofthetwowavess: f [x, y, z, t]+f [x, y, z, t] os k k 0 0 0 π π π k avg k + k0 k mod k k 0 π sn [θ] π 0 0 sn [θ] 0 π os [θ] sn[θ] π 0 +os[θ] π sn[θ] 0 os[θ] sn [θ] 0 os [θ] x + +os[θ] π z ωt os sn [θ] x + so the beat frequeny s zero (standng waves). If we add the movement, we get the same wavelength shfts, but now they depend on the angle: v z v os [θ] v x v sn [θ] ν mod ν v os [θ] os [θ] z