Μοντελοποίηση της Οπτικής Προσοχής Visual Attention Modeling
|
|
- Κλεοπάτρα Γαλάνη
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μοντελοποίηση της Οπτικής Προσοχής Visual Attention Modeling Υπ. Διδ. Ιωάννης Ρήγας Τμήμα Φυσικής, Πανεπιστήμιο Πατρών
2 Τι θα δούμε σήμερα?? Bottom-up Saliency Models. Spatial domain analysis Spectral domain analysis Sparse representation models Οι συσκευές καταγραφής οφθαλμικών κινήσεων (eye-trackers) ως εργαλείο για την αξιολόγηση των αλγοριθμικών μοντέλων υπολογιστικής όρασης. Εφαρμογή: Βιομετρική αναγνώριση με χρήση των οφθαλμικών κινήσεων.
3 Οπα, οπα, οπα...και τι μας χρειάζεται η υπολογιστική μοντελοποίηση της ανθρώπινης προσοχής Καλά είναι και τα κόκκινα αλλά πουλάμε πράσινα Πρόσεχε οδηγέ!!!!! Έεε μην κάψουμε και τον υπολογιστή Άλλα και: στην εκπαίδευση ιατρικές εφαρμογές marketing augmented reality κ.α
4 Visual saliency is the distinct subjective perceptual quality which makes some items in the world stand out from their neighbors and immediately grab our attention. Βottom-up and Top-down saliency Bottom-up models Μοντελοποίηση οπτικής προσοχής με χρήση χαρακτηριστικών χαμηλού επιπέδου (low level features) intensity/color features (ένταση/χρώμα) orientation features (προσανατολισμός) motion features (κίνηση) In real life
5 Top-down models meaningful entities (e.g. words) Faces, object etc. task dependent search Bottom-up vs. Top-down models Bottom-up task-independent computational efficient useful as front-ends generality Top-down task-dependent more complicated useful at specific applications
6 Spatial domain analysis Itti & Koch Model Key concept: μηχανισμός centersurround εμπνευσμένος απο τoυς ανθρώπινους οπτικούς υποδοχείς. multiscale Gaussian pyramids on intensity, color and orientation features. L. Itti, C. Koch, E. Niebur, A Model of Saliency-Based Visual Attention for Rapid Scene Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 11, pp , Nov 1998.
7 Spatial domain analysis Normalization of intermediate feature maps. Final combination of the maps to produce the final map. non-linear schemes may also be used (e.g. max, max-min) L. Itti, C. Koch, E. Niebur, A Model of Saliency-Based Visual Attention for Rapid Scene Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 11, pp , Nov 1998.
8 Spatial domain analysis Temporal modeling of saliency Task: try to predict the sequence in which the attention transitions may occur. Inhibition of Return Psychophysically observed inhibition 500~900 msec L. Itti, C. Koch, E. Niebur, A Model of Saliency-Based Visual Attention for Rapid Scene Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 11, pp , Nov 1998.
9 Spatial domain analysis Graph-based visual saliency (GBVS) Key Concept: Συγκέντρωση μάζας στις σημαντικότερες περιοχές του χάρτη. Comparison of Itti/Koch and GBVS model J. Harel, C. Koch, and P. Perona, Graph-based visual saliency, in: Advances in Neural Information Processing Systems (NIPS) 19, pp , 2007.
10 Spatial domain analysis Attention based on Information Maximization (AIM) Key concept: μοντέλο εμπνευσμένο απο την θεωρία της πληροφορίας του Shannon. Η προσοχή αντιμετωπίζεται ως αποτέλεσμα της προσπάθειας μεγιστοποίησης της προσληφθείσας πληροφορίας κατα την οπτική παρατήρηση. Self-information p(x): The raw probability of patch X with respect to its neighbors A measure of local content contrast. N. Bruce and J. Tsotsos, Attention based on information maximization, Journal of Vision, vol. 7, no. 9, pp , 2007.
11 Spectral domain analysis Phase spectrum of Fourier Transform (PFT) Key concept: συσχέτιση φάσης και τοπικότητας σε μια εικόνα Quaternion Fourier transform (QFT) : motion features also incorporated C. Guo, Q. Ma, and L. Zhang, Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform, in: CVPR, pp. 1-8, 2008.
12 Spectral domain analysis Image Signature Key concept: το πρόσημο του DCT μετασχηματισμού περικλείει πληροφορία για την φάση μιας εικόνας. compressed representation: only the sign information needed (1-bit per pixel) fast implementation X. Hou, J. Harel, and C. Koch. Image signature: Highlighting sparse salient regions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34( 1):194, 2012
13 Sparse Coding models Visual Saliency Detection via Sparsity Pursuit Key concept: προσέγγιση της saliency σαν πρόβλημα low-rank approximation. J. Yan, M. Zhu, H. Liu, Y. Liu, Visual Saliency Detection via Sparsity Pursuit, IEEE Signal Processing Letters, vol. 17, is. 8, pp , 2010.
14 Συσκευές καταγραφής οφθαλμικών κινήσεων (Eye trackers) Τύποι συσκευών Desk mounted Head mounted Eye-tracking glasses Remote dual camera
15 Αρχή λειτουργίας συσκευής eye-tracker Eye Tracker Cambridge Research Systems 50 Hz
16 Χρήση συσκευών eye-tracker
17 Χρήση συσκευών eye-tracker για την παρακολούθηση μηχανισμών προσοχής Στην εκπαίδευση Στην μελέτη πρωτευώντων Στην διαφήμιση Στην γνωστική ψυχολογία
18 Χρήση συσκευών eye-tracker στην υπολογιστική μοντελοποίηση της προσοχής Ο eye-tracker αποτελεί μια ιδανική διεπαφή για την αξιολόγηση αλγορίθμων υπολογιστικής μοντελοποίησης της προσοχής. TP: true fixations falling into the activation area of the map FP: points from random locations or fixations from other images ROC curve
19 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση Όφθαλμικές κινήσεις σαν βιομετρικό χαρακτηριστικό: physical and behavioral characteristics Δύσκολα πλαστογραφούνται + - Υπάρχει δυνατότητα καταγραφής εξ αποστάσεως Οι συσκευές eye-tracking είναι πια σε λογικό κόστος Η επίδοσή τους ακόμα υπολείπεται τον κλασσικών μεθόδων Συχνά είναι αναγκαία μια διαδιακασία calibration πριν την χρήση Ανάγκη για benchmark datasets
20 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση A. Spatial eye movement characteristics Key concept: διερεύνηση της χωρικής κατανομής των οφθαλμικών κινήσεων κατα την παρατήρηση ανθρωπίνων προσώπων. Two-round MST Fixation clustering and outlier removal I. Rigas, G. Economou, and Sp. Fotopoulos, Biometric identification based on the eye movements and graph matching techniques, Pattern Recognition Letters, 33, 6, pp , April 2012
21 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση WW-test for the comparison of the fixation distributions EER ~ 30% mainly behavioral biometrical characteristics I. Rigas, G. Economou, and Sp. Fotopoulos, Biometric identification based on the eye movements and graph matching techniques, Pattern Recognition Letters, 33, 6, pp , April 2012
22 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση B. Temporal eye movement characteristics Key concept: διερεύνηση χρονικών χαρακτηριστικών των οφθαλμικών κινήσεων κατα την παρατήρηση ενός κινούμενου σημείου. I. Rigas, G. Economou, and Sp. Fotopoulos, Human eye movements as a trait for biometrical identification, in: the Fifth IEEE International Conference in Biometrics: Theory, Applications and Systems (BTAS 2012), Washington D.C., Sep. 2012
23 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση Low-pass filter. Cut high frequencies fixation sub-signal Extract dynamic features - velocity/acceleration first-order time derivative eye-movements velocity second-order time derivative eye-movements acceleration I. Rigas, G. Economou, and Sp. Fotopoulos, Human eye movements as a trait for biometrical identification, in: the Fifth IEEE International Conference in Biometrics: Theory, Applications and Systems (BTAS 2012), Washington D.C., Sep. 2012
24 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση Projection of the sampled time signals in a multivariate feature space. first-order time derivative second-order time derivative Feature space (only 3-dims used for visualization) I. Rigas, G. Economou, and Sp. Fotopoulos, Human eye movements as a trait for biometrical identification, in: the Fifth IEEE International Conference in Biometrics: Theory, Applications and Systems (BTAS 2012), Washington D.C., Sep. 2012
25 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση The total similarity of two samples is computed as the average over the W values of each corresponding fixation sub-signal comparison. I. Rigas, G. Economou, and Sp. Fotopoulos, Human eye movements as a trait for biometrical identification, in: the Fifth IEEE International Conference in Biometrics: Theory, Applications and Systems (BTAS 2012), Washington D.C., Sep. 2012
26 Εφαρμογή: Χρήση δεδομένων οφθαλμικής κίνησης με σκοπό την βιομετρική αναγνώριση k-nearest neighbors Dataset A Accuracy ACC1 1 91,5 % 3 89,8 % 5 88,2 % k-nearest neighbors Dataset B Accuracy ACC % 3 79,7 % 5 74,1 % Physical and behavioral characteristics I. Rigas, G. Economou, and Sp. Fotopoulos, Human eye movements as a trait for biometrical identification, in: the Fifth IEEE International Conference in Biometrics: Theory, Applications and Systems (BTAS 2012), Washington D.C., Sep. 2012
27 References A. M. Treisman, G. Gelade, A feature-integration theory of attention, Cognitive Psychol. 12 (1) (1980) L. Itti, C. Koch, E. Niebur, A model of saliency based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Machine Intell. (PAMI) 20 (11) (1998) L. Itti, J. Braun, D. K. Lee, C. Koch, Attentional modulation of human pattern discrimination psychophysics reproduced by a quantitative model, in: M. J. Kearns, S. A. Solla, D. A. Cohn, (eds.), Advances in Neural Information Processing Systems 11 (1999) B. W. Tatler, R. J. Baddeley, I. D. Gilchrist, Visual correlates of fixation selection: Effects of scale and time, Vision Res. 45 (5) (2005) N. Bruce, J. Tsotsos, Saliency based on information maximization, in: Y. Weiss, B. Scholkopf, J. Platt, (eds.), Advances in Neural Information Processing Systems 18 (2006) J. Harel, C. Koch, P. Perona, Graph-based visual saliency, in: B. Scholkopf, J. Platt, T. Hoffman, (eds.), Advances in Neural Information Processing Systems 19 (2007) C. Siagian, L. Itti, Rapid biologically-inspired scene classification using features shared with visual attention, IEEE Trans. Pattern Anal. Machine Intell. (PAMI) 29 (2) (2007) C. Guo, Q. Ma, L. Zhang, Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform, in: IEEE Conf. on Comput. Vision and Pattern Recognit. (CVPR), 2008, pp L. Zhang, M. Tong, T. Marks, H. Shan, G. Cottrell, SUN: A bayesian framework for saliency using natural statistics, Journal of Vision 8 (7) (2008) article 32. S. Wan, P. Jin, L. Yue, An approach for image retrieval based on visual saliency, in: Int. Conf. on Image Analysis and Signal Processing (IASP), 2009, pp J. Yan, M. Zhu, H. Liu, Y. Liu, Visual saliency detection via sparsity pursuit, IEEE Signal Process. Lett. 17 (8) (2010) C. K. Chang, C. Siagian, L. Itti, Mobile robot vision navigation & localization using gist and saliency, in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010, pp X. Hou, J. Harel, C. Koch, Image Signature: Highlighting sparse salient regions, IEEE Trans. Pattern Anal. Machine Intell. (PAMI) 34 (1) (2012) I. Rigas, G. Economou, and Sp. Fotopoulos, Biometric identification based on the eye movements and graph matching techniques, Pattern Recognition Letters, 33, 6, pp , April 2012 I. Rigas, G. Economou, and Sp. Fotopoulos, Human eye movements as a trait for biometrical identification, in: the Fifth IEEE International Conference in Biometrics: Theory, Applications and Systems (BTAS 2012), Washington D.C., Sep. 2012
28 Ευχαριστώ Ελπίζω να είχα την προσοχή σας (το πιάσατε το υπονοούμενο!)
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)
1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp
Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker
Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
Ανθρωποκεντρική Επεξεργασία και Ανάλυση Οπτικής Πληροφορίας
Πανεπιστήμιο Πατρών ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ Ανθρωποκεντρική Επεξεργασία και Ανάλυση Οπτικής Πληροφορίας ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ του
Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System
(MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. 1/45 Τι είναι ο SIFT-Γενικά Scale-invariant feature transform detect and
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement Tatsunori Hirai, Tomoyasu Nakano, Masataka Goto and Shigeo Morishima Abstract We
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Real time mobile robot control with a multiresolution map representation
IIC 06 21 Real time mobile robot control with a multiresolution map representation Katsuya Iwata, Shinkichi Inagaki, Yusuke Nara, Tatsuya Suzuki (Nagoya University) Abstract In this paper a real-time path
Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization
(MIRU2010) 2010 7 ROC 567-0047 8-1 E-mail: {makihara,hossain,yagi}@am.sanken.osaka-u.ac.jp ROC 1 1 2 ( ) ROC 2 ROC Adaptive Acceptance Threshold Control using Matching s with Abstract Confidence Values
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.
Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System
Vol. 15, No. 3 2008 165 173 1 2 1 1 2 Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System Jumpei Koyama, 1 Masahiro Kato 2 and Akira Hirose 1 Department
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI ΔΙΠΛΩΜΑΤΙΚΗ
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.
ΑΡΗΣΟΣΔΛΔΗΟ ΠΑΝΔΠΗΣΖΜΗΟ ΘΔΑΛΟΝΗΚΖ ΣΜΖΜΑ ΜΑΘΖΜΑΣΗΚΧΝ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΧΝ ΠΟΤΓΧΝ Δπηζηήκε ηνπ Γηαδηθηύνπ «Web Science» ΜΔΣΑΠΣΤΥΗΑΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0
Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) "ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ" 2 η ΚΑΤΕΥΘΥΝΣΗ
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589) Μεγαλοοικονόμου Βασίλειος Τμήμα Μηχ. Η/ΥκαιΠληροφορικής Επιστημονικός Υπεύθυνος Στόχος Προτεινόμενου Έργου Ανάπτυξη μεθόδων
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
Wireless capsule endoscopy video classification using an unsupervised learning approach
16 11 2011 11 Journal of Image and Graphics Vol. 16 No. 11 Nov. 2011 TP391. 4 A 1006-8961 2011 11-2041-06 Bill P. Buckles. J. 2011 16 11 2041-2046 1 1 Bill P. Buckles 2 1 1 230009 2 76203 WCE WCE WCE SIFT
ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα
Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 2010-11, 8ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Αρχιτεκτονικές Ελέγχου (mobile robot control architectures)
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
Mapping Textures on 3D Geometric Model Using Reflectance Image
Mark D. Wheeler Mapping Textures on 3D Geometric Model Using Reflectance Image Ryo KURAZUME, Ko NISHINO, Mark D. WHEELER, and Katsushi IKEUCHI 3 3 CAD albedo 1. VR modeling-from-realitymfr 1 2 3 Institute
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Βίντεο (Video) Περιεχόµενα. Βιβλιογραφία. Καγιάφας [2000]: Κεφάλαιο 5, [link]
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων Βίντεο (Video) Περιεχόµενα Εισαγωγή Βίντεο και πολυµεσικές εφαρµογές Αναπαράσταση Βίντεο Πρότυπα αναλογικού βίντεο Ψηφιακό βίντεο Πρότυπα ελεγκτών αναπαράστασης
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
Ειδικές Επιστηµονικές Εργασίες
Ειδικές Επιστηµονικές Εργασίες 2005-2006 1. Ανίχνευση προσώπων από ακολουθίες video και παρακολούθηση (face detection & tracking) Η ανίχνευση προσώπου (face detection) αποτελεί το 1 ο βήµα σε ένα αυτόµατο
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
From Secure e-computing to Trusted u-computing. Dimitris Gritzalis
From Secure e-computing to Trusted u-computing Dimitris Gritzalis November 2009 11 ο ICT Forum Αθήνα, 4-5 Νοέμβρη 2009 Από το Secure e-computing στο Trusted u-computing Καθηγητής Δημήτρης Γκρίτζαλης (dgrit@aueb.gr,
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal
Scrub Nurse Robot: SNR SNR SNR SNR Uppaal Uppaal timed automatonta SNR C++ Uppaal TA SNR SNR 1 1SNR3 SNR SNR C++ SNR Uppaal TA Vain Uppaal TA TA state Uppaal TA location TRON (Testing Realtime Systems
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής
oard Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή ιατριβή Τίτλος ιατριβής Masters Thesis Title Ονοµατεπώνυµο Φοιτητή Πατρώνυµο Ανάπτυξη διαδικτυακής
BΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. goumas@teikav.edu.gr, goumas@kav.forthnet.gr
BΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 'Ονομα: Επώνυμο: Στέφανος Γκούμας Ημερομ.Γέννησης: 25/8/1960 Οικογενειακή κατάσταση: Τόπος κατοικίας: Έγγαμος Παλιό Καβάλας Διεύθυνση κατοικίας: Παπαϊωάννου 45 Ταχ.Κώδικας:
Υπολογιστική Ανάλυση παθολογιών γονάτου με την χρήση εικόνων MRI
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ "ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ"
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Ανάκτηση πολυμεσικού περιεχομένου
Ανάκτηση πολυμεσικού περιεχομένου Ανίχνευση / αναγνώριση προσώπων Ανίχνευση / ανάγνωση κειμένου Ανίχνευση αντικειμένων Οπτικές λέξεις Δεικτοδότηση Σχέσεις ομοιότητας Κατηγοριοποίηση ειδών μουσικής Διάκριση
Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο
ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΥΟΛΗ ΝΑΤΠΗΓΩΝ ΜΗΥΑΝΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ Γιπλυμαηική Δπγαζία «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο Σπιμελήρ Δξεηαζηική
Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων
Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων Κωνσταντίνος Παπαοδυσσεύς Καθηγητής ΣΗΜΜΥ, Δημήτρης Αραμπατζής Δρ. ΣΗΜΜΥ Σολομών Ζάννος Υ.Δ. ΣΗΜΜΥ Φώτιος Γιαννόπουλος Υ.Δ. ΣΗΜΜΥ Μιχαήλ Έξαρχος Δρ. ΣΗΜΜΥ
Διπλωματική Εργασία της φοιτήτριας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ:ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ Διπλωματική Εργασία της φοιτήτριας
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητικές,Δραστηριότητες,και, Ενδιαφέροντα,, Τμήμα,Μηχανικών,Η/Υ,&,Πληροφορικής, Τομέας,Λογικού,των,Υπολογιστών, Εργαστήριο,Γραφικών,,Πολυμέσων,και,Γεωγραφικών,
Abstract. Detection of Feature Points for Computer Vision. Harris. (feature point) (interest point) (corner) Moravec. Harris.
Detection of Feature Points for Computer Vision Abstract Harris Harris Harris 1. (1 7) (8 10) (9) Moravec E-mail kanazawa@tutkie.tut.ac.jp E-mail kanatani@suri.it.okayama-u.ac.jp Yasushi KANAZAWA, Member
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Προχωρημένες Εργασίες
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τεχνολογία και Ανάλυση Εικόνων και Βίντεο Προχωρημένες Εργασίες Χειμερινό Εξάμηνο 2007-2008 1. Εισαγωγή Σε σχέση με τις
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP 2015-2016 http://oswinds.csd.auth.gr/pms-theses201516 Ιδιωτικότητα και ανωνυμία σε ανοικτές πλατφόμες Privacy and anonymity
ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ-ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΛΟΓΙΣΤΙΚΗΣ ΤΟΥ ΤΕΙ ΚΑΒΑΛΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΙΑΝΟΥΑΡΙΟΣ 2008 ΒΙΟΓΡΑΦΙΚΟ
Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy
37 6 2004 6 Journal of Tianjin University Vol. 37 No. 6 Jun. 2004 Ξ 1,2, 1,2, 3 (1., 300072 ; 2. 2, 300072 ; 3., 300072) :,,,.,,(RMSEP) 53 %58 %.. : ; ; : O657. 33 : A : 04932 2137 (2004) 062 05352 05
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.
c 1. SNS Social Networking Service [3,5,12] 3 1 CM 190 8562 10 3 E-mail: eiji.motohashi@gmail.com 141 6009 2 1 1 190 8562 10 3 12.5.3 12.7.24 Yahoo 2 1 2 3 1 1 2 574 32 Copyright c by ORSJ. Unauthorized
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Σημασιολογική Συσταδοποίηση Αντικειμένων Με Χρήση Οντολογικών Περιγραφών.
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ» «Χωρικά μοντέλα πρόβλεψης αναβλάστησης
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Στοιχεία εισηγητή Ημερομηνία: 10/10/2017
Θέμα μεταπτυχιακής διατριβής: Λογισμικά μελέτης και σχεδίασης ρομποτικών συστημάτων - συγκρτική μελέτη και εφαρμογές. 1) Μελέτη των δημοφιλών λογισμικών σχεδίασης ρομποτικών συστημάτων VREP και ROS. 2)
Bayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
Connected Threat Defense
Connected Threat Defense συγκοινωνούντα συστήματα προστασίας Χριστόφορος Χριστοφή Channel Manager Πριν πέντε χρόνια η ασφάλεια των επιχειρήσεων ήταν ήδη δύσκολη υπόθεση 2 Ο μοντέρνος χώρος εργασίας δεν
Connected Threat Defense
Connected Threat Defense συγκοινωνούντα συστήματα προστασίας Χριστόφορος Χριστοφή Διευθύνων Σύμβουλος CHANNEL IT Πριν πέντε χρόνια η ασφάλεια των επιχειρήσεων ήταν ήδη δύσκολη υπόθεση 2 Ο μοντέρνος χώρος
Τίτλος. Πτυχιακή Εργασία. Φοιτήτρια 1: Ελευθερία Καραντζά ΑΜ: Φοιτήτρια 2:Μαρία Παπαγρηγορίου ΑΜ: Επιβλέπων Καθηγητής
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Τίτλος Πρότυπα και πρωτόκολλα για αναπαράσταση προσωπικών δεδομένων υγείας και την επικοινωνία ιατρικών συσκευών και συσκευών καταγραφής βιομετρικών δεδομένων. Πτυχιακή
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Comparison of Discriminant Analysis in Ear Recognition
IPSJ SIG echnical Report PCA 288 XM2VS 97.8% Null space LDA Random LDA Comparison of Discriminant Analysis in Ear Recognition Yuki ajima oji Soma Sai Hideyasu Daishi Watae Discriminant analyses are popular
ΠΑΡΑΔΟΤΕΟ 3.1 : Έκθεση καταγραφής χρήσεων γης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΕΦΑΡΜΟΓΗΣ ΤΩΝ ΔΡΑΣΕΩΝ ΘΡΗΣΚΕΥΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΣΤΟΥΣ ΤΟΜΕΙΣ ΤΗΣ
Reading Order Detection for Text Layout Excluded by Image
19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Τμήμα Πολιτικών και Δομικών Έργων
Τμήμα Πολιτικών και Δομικών Έργων Πτυχιακή Εργασία: Τοπογραφικό διάγραμμα σε ηλεκτρονική μορφή κεντρικού λιμένα Κέρκυρας και κτιρίου νέου επιβατικού σταθμού σε τρισδιάστατη μορφή και σχεδίαση με AutoCAD
Medium Data on Big Data
IT 17081 Examensarbete 15 hp November 2017 Medium Data on Big Data Predicting Disk Failures in CERNs NetApp-based Data Storage System Albin Stjerna Institutionen för informationsteknologi Department of
Gait Identification Using a View Transformation Model in the Frequency Domain
Vol. 48 No. SIG 1(CVIM 17) Feb. 2007 15 24 Gait Identification Using a View Transformation Model in the Frequency Domain Yasushi Makihara, Ryusuke Sagawa, Yasuhiro Mukaigawa, Tomio Echigo and Yasushi Yagi