Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science."

Transcript

1 Bayesian statistics DS GA 1002 Probability and Statistics for Data Science Carlos Fernandez-Granda

2 Frequentist vs Bayesian statistics In frequentist statistics the data are modeled as realizations from a distribution that depends on deterministic parameters In Bayesian statistics the parameters are modeled as random variables This allows to quantify our prior uncertainty and incorporate additional information

3 Learning Bayesian models Conjugate priors Bayesian estimators

4 Prior distribution and likelihood The data x R n are a realization of a random vector X, which depends on a vector of parameters Θ Modeling choices: Prior distribution: Distribution of Θ encoding our uncertainty about the model before seeing the data Likelihood: Conditional distribution of X given Θ

5 Posterior distribution The posterior distribution is the conditional distribution of Θ given X Evaluating the posterior at the data x allows to update our uncertainty about Θ using the data

6 Bernoulli distribution Goal: Estimating Bernoulli parameter from iid data We consider two different Bayesian estimators Θ 1 and Θ 2 : 1. Θ 1 is a conservative estimator with a uniform prior pdf { 1 for 0 θ 1 f Θ1 (θ) = 0 otherwise 2. Θ 2 has a prior pdf skewed towards 1 { 2 θ for 0 θ 1 f Θ2 (θ) = 0 otherwise

7 Prior distributions

8 Bernoulli distribution: likelihood The data are assumed to be iid, so the likelihood is p X Θ ( x θ)

9 Bernoulli distribution: likelihood The data are assumed to be iid, so the likelihood is p X Θ ( x θ) = θ n 1 (1 θ) n 0 n 0 is the number of zeros and n 1 the number of ones

10 Bernoulli distribution: posterior distribution f Θ1 X (θ x)

11 Bernoulli distribution: posterior distribution f Θ1 X (θ x) = f Θ 1 (θ) p X Θ1 ( x θ) p X ( x)

12 Bernoulli distribution: posterior distribution f Θ1 X (θ x) = f Θ 1 (θ) p X Θ1 ( x θ) p X ( x) f Θ1 (θ) p X Θ1 ( x θ) = u f Θ 1 (u) p X Θ1 ( x u) du

13 Bernoulli distribution: posterior distribution f Θ1 X (θ x) = f Θ 1 (θ) p X Θ1 ( x θ) p X ( x) f Θ1 (θ) p X Θ1 ( x θ) = u f Θ 1 (u) p X Θ1 ( x u) du θ n 1 (1 θ) n 0 = u un 1 (1 u) n 0 du

14 Bernoulli distribution: posterior distribution f Θ1 X (θ x) = f Θ 1 (θ) p X Θ1 ( x θ) p X ( x) f Θ1 (θ) p X Θ1 ( x θ) = u f Θ 1 (u) p X Θ1 ( x u) du θ n 1 (1 θ) n 0 = u un 1 (1 u) n 0 du = θn 1 (1 θ) n 0 β (n 1 + 1, n 0 + 1) β (a, b) := u a 1 (1 u) b 1 du u

15 Bernoulli distribution: posterior distribution f Θ2 X (θ x)

16 Bernoulli distribution: posterior distribution f Θ2 X (θ x) = f Θ 2 (θ) p X Θ2 ( x θ) p X ( x)

17 Bernoulli distribution: posterior distribution f Θ2 X (θ x) = f Θ 2 (θ) p X Θ2 ( x θ) p X ( x) θ n1+1 (1 θ) n 0 = u un1+1 (1 u) n 0 du

18 Bernoulli distribution: posterior distribution f Θ2 X (θ x) = f Θ 2 (θ) p X Θ2 ( x θ) p X ( x) θ n1+1 (1 θ) n 0 = u un1+1 (1 u) n 0 du = θn 1+1 (1 θ) n 0 β (n 1 + 2, n 0 + 1) β (a, b) := u a 1 (1 u) b 1 du u

19 Bernoulli distribution: n 0 = 1, n 1 =

20 Bernoulli distribution: n 0 = 3, n 1 =

21 Bernoulli distribution: n 0 = 91, n 1 = Posterior mean (uniform prior) Posterior mean (skewed prior) ML estimator

22 Learning Bayesian models Conjugate priors Bayesian estimators

23 Beta random variable Useful in Bayesian statistics Unimodal continuous distribution in the unit interval The pdf of a beta distribution with parameters a and b is defined as f β (θ; a, b) := { θ a 1 (1 θ) b 1 β(a,b), if 0 θ 1, 0 otherwise β (a, b) := u a 1 (1 u) b 1 du u

24 Beta random variables fx (x) a = 1 b = 1 a = 1 b = 2 a = 3 b = 3 a = 6 b = 2 a = 3 b = x

25 Learning a Bernoulli distribution The first prior is beta with parameters a = 1 and b = 1 The second prior is beta with parameters a = 2 and b = 1 The posteriors are beta with parameters a = n 1 + 1, b = n and a = n 1 + 2, b = n respectively

26 Conjugate priors A conjugate family of distributions for a certain likelihood satisfies the following property: If the prior belongs to the family, the posterior also belongs to the family Beta distributions are conjugate priors when the likelihood is binomial

27 The beta distribution is conjugate to the binomial likelihood Θ is beta with parameters a and b X is binomial with parameters n and Θ f Θ X (θ x)

28 The beta distribution is conjugate to the binomial likelihood Θ is beta with parameters a and b X is binomial with parameters n and Θ f Θ X (θ x) = f Θ (θ) p X Θ (x θ) p X (x)

29 The beta distribution is conjugate to the binomial likelihood Θ is beta with parameters a and b X is binomial with parameters n and Θ f Θ X (θ x) = f Θ (θ) p X Θ (x θ) p X (x) f Θ (θ) p X Θ (x θ) = u f Θ (u) p X Θ (x u) du

30 The beta distribution is conjugate to the binomial likelihood Θ is beta with parameters a and b X is binomial with parameters n and Θ f Θ X (θ x) = f Θ (θ) p X Θ (x θ) p X (x) f Θ (θ) p X Θ (x θ) = u f Θ (u) p X Θ (x u) du θ a 1 (1 θ) b 1 ( ) n x θ x (1 θ) n x = u ua 1 (1 u) b 1 ( n x) u x (1 u) n x du

31 The beta distribution is conjugate to the binomial likelihood Θ is beta with parameters a and b X is binomial with parameters n and Θ f Θ X (θ x) = f Θ (θ) p X Θ (x θ) p X (x) f Θ (θ) p X Θ (x θ) = u f Θ (u) p X Θ (x u) du θ a 1 (1 θ) b 1 ( ) n x θ x (1 θ) n x = u ua 1 (1 u) b 1 ( n x) u x (1 u) n x du θ x+a 1 (1 θ) n x+b 1 = u ux+a 1 (1 u) n x+b 1 du

32 The beta distribution is conjugate to the binomial likelihood Θ is beta with parameters a and b X is binomial with parameters n and Θ f Θ X (θ x) = f Θ (θ) p X Θ (x θ) p X (x) f Θ (θ) p X Θ (x θ) = u f Θ (u) p X Θ (x u) du θ a 1 (1 θ) b 1 ( ) n x θ x (1 θ) n x = u ua 1 (1 u) b 1 ( n x) u x (1 u) n x du θ x+a 1 (1 θ) n x+b 1 = u ux+a 1 (1 u) n x+b 1 du = f β (θ; x + a, n x + b)

33 Poll in New Mexico 429 participants, 227 people intend to vote for Clinton and 202 for Trump Probability that Trump wins in New Mexico? Assumptions: Fraction of Trump voters is modeled as a random variable Θ Poll participants are selected uniformly at random with replacement Number of Trump voters in the poll is binomial with parameters n = 449 and p = Θ

34 Poll in New Mexico Prior is uniform, so beta with parameters a = 1 and b = 1 Likelihood is binomial Posterior is beta with parameters a = and b = The probability that Trump wins in New Mexico is the probability that Θ given the data is greater than 0.5

35 Poll in New Mexico % 11.4%

36 Learning Bayesian models Conjugate priors Bayesian estimators

37 Bayesian estimators What estimator should we use? Two main options: The posterior mean The posterior mode

38 Posterior mean Mean of the posterior distribution θ MMSE ( x) := E ( Θ X = x ) Minimum mean-square-error (MMSE) estimate For any arbitrary estimator θ other ( x), ( ( E θ other ( X ) Θ ) ) ( 2 ( E θ MMSE ( X ) Θ ) ) 2

39 Posterior mean ( ( E θ other ( X ) Θ ) ) 2 X = x

40 Posterior mean ( ( E θ other ( X ) Θ ) ) 2 X = x ( ( = E θ other ( X ) θ MMSE ( X ) + θ MMSE ( X ) Θ ) 2 ) X = x

41 Posterior mean ( ( E θ other ( X ) Θ ) ) 2 X = x ( ( = E θ other ( X ) θ MMSE ( X ) + θ MMSE ( X ) Θ ) 2 ) X = x ( ( = (θ other ( x) θ MMSE ( x)) 2 + E θ MMSE ( X ) Θ ) 2 ) X = x ( ( )) + 2 (θ other ( x) θ MMSE ( x)) E θ MMSE ( x) E Θ X = x

42 Posterior mean ( ( E θ other ( X ) Θ ) ) 2 X = x ( ( = E θ other ( X ) θ MMSE ( X ) + θ MMSE ( X ) Θ ) 2 ) X = x ( ( = (θ other ( x) θ MMSE ( x)) 2 + E θ MMSE ( X ) Θ ) 2 ) X = x ( ( )) + 2 (θ other ( x) θ MMSE ( x)) E θ MMSE ( x) E Θ X = x ( ( = (θ other ( x) θ MMSE ( x)) 2 + E θ MMSE ( X ) Θ ) 2 ) X = x

43 Posterior mean By iterated expectation, ( ( E θ other ( X ) ) 2 ) Θ ( ( ( = E E θ other ( X ) Θ ) )) 2 X

44 Posterior mean By iterated expectation, ( ( E θ other ( X ) ) 2 ) Θ ( ( ( = E E θ other ( X ) Θ ) )) 2 X ( ( = E θ other ( X ) θ MMSE ( X ) ) ( 2 ( ( ) + E E θ MMSE ( X ) Θ ) 2 ) ) X

45 Posterior mean By iterated expectation, ( ( E θ other ( X ) ) 2 ) Θ ( ( ( = E E θ other ( X ) Θ ) )) 2 X ( ( = E θ other ( X ) θ MMSE ( X ) ) ( 2 ( ( ) + E E θ MMSE ( X ) Θ ) 2 ) ) X ( ( = E θ other ( X ) θ MMSE ( X ) ) ( 2 ( ) + E θ MMSE ( X ) Θ ) ) 2

46 Posterior mean By iterated expectation, ( ( E θ other ( X ) ) 2 ) Θ ( ( ( = E E θ other ( X ) Θ ) )) 2 X ( ( = E θ other ( X ) θ MMSE ( X ) ) ( 2 ( ( ) + E E θ MMSE ( X ) Θ ) 2 ) ) X ( ( = E θ other ( X ) θ MMSE ( X ) ) ( 2 ( ) + E θ MMSE ( X ) Θ ) ) 2 ( ( E θ MMSE ( X ) Θ ) ) 2

47 Bernoulli distribution: n 0 = 1, n 1 =

48 Bernoulli distribution: n 0 = 3, n 1 =

49 Bernoulli distribution: n 0 = 91, n 1 = Posterior mean (uniform prior) Posterior mean (skewed prior) ML estimator

50 Posterior mode The maximum-a-posteriori (MAP) estimator is the mode of the posterior distribution ( ) θ MAP ( x) := arg max p Θ X θ x θ if Θ is discrete and if Θ is continuous ( ) θ MAP ( x) := arg max f Θ X θ x θ

51 Maximum-likelihood estimator If the prior is uniform the ML estimator coincides with the MAP estimator ( ) arg max f Θ X θ x θ

52 Maximum-likelihood estimator If the prior is uniform the ML estimator coincides with the MAP estimator ( ) arg max f Θ X θ x = arg max θ θ ( ) f Θ θ f X Θ ( x θ ) u f Θ (u) f X Θ ( x u) du

53 Maximum-likelihood estimator If the prior is uniform the ML estimator coincides with the MAP estimator ( ) arg max f Θ X θ x = arg max θ θ = arg max f X Θ ( x θ θ ( ) f Θ θ f X Θ ( x θ ) u f Θ (u) f X Θ ( x u) du )

54 Maximum-likelihood estimator If the prior is uniform the ML estimator coincides with the MAP estimator ( ) arg max f Θ X θ x = arg max θ θ = arg max f X Θ ( x θ θ ( ) = arg max L x θ θ ( ) f Θ θ f X Θ ( x θ ) u f Θ (u) f X Θ ( x u) du )

55 Maximum-likelihood estimator If the prior is uniform the ML estimator coincides with the MAP estimator ( ) arg max f Θ X θ x = arg max θ θ = arg max f X Θ ( x θ θ ( ) = arg max L x θ θ ( ) f Θ θ f X Θ ( x θ ) u f Θ (u) f X Θ ( x u) du ) Uniform priors are only well defined over bounded domains

56 Probability of error If Θ is discrete, MAP estimator minimizes the probability of error For any arbitrary estimator θ other ( x) ( P θ other ( X ) Θ ) ( P θ MAP ( X ) Θ )

57 Probability of error ( P Θ = θ other ( X ) )

58 Probability of error ( P Θ = θ other ( X ) ( ) = f X ( x) P Θ = θ other ( x) ) X = x d x x

59 Probability of error ( P Θ = θ other ( X ) ) = x = x ( f X ( x) P Θ = θ other ( x) X ) = x d x f X ( x) p Θ X (θ other ( x) x) d x

60 Probability of error ( P Θ = θ other ( X ) ) = x = x x ( f X ( x) P Θ = θ other ( x) X ) = x d x f X ( x) p Θ X (θ other ( x) x) d x f X ( x) p Θ X (θ MAP ( x) x) d x

61 Probability of error ( P Θ = θ other ( X ) ) = x = x ( f X ( x) P Θ = θ other ( x) X ) = x d x f X ( x) p Θ X (θ other ( x) x) d x f X ( x) p Θ X (θ MAP ( x) x) d x x ( = P Θ = θ MAP ( X ) )

62 Sending bits Model for communication channel: signal Θ encodes a single bit Prior knowledge indicates that a 0 is 3 times more likely than a 1 p Θ (1) = 1 4, p Θ (0) = 3 4. The channel is noisy, so we send the signal n times At the receptor we observe X i = Θ + Z i, 1 i n, where Z is iid standard Gaussian

63 Sending bits: ML estimator The likelihood is equal to L x (θ) = The log-likelihood is equal to = n f Xi Θ ( x i θ) i=1 n i=1 1 e ( x i θ)2 2 2π n ( x i θ) 2 log L x (θ) = 2 i=1 n log 2π 2

64 Sending bits: ML estimator θ ML ( x) = 1 if log L x (1) = n i=1 n i=1 = log L x (0) x i 2 2 x i + 1 n log 2π 2 2 x i 2 2 n log 2π 2 Equivalently, θ ML ( x) = { 1 if 1 n n i=1 x i > otherwise

65 Sending bits: ML estimator The probability of error is ( P Θ θ ML ( X ) )

66 Sending bits: ML estimator The probability of error is ( P Θ θ ML ( X ) ) (Θ θ ML ( X ) ) Θ = 0 P (Θ = 0) + P = P (Θ θ ML ( X ) Θ = 1 ) P (Θ = 1)

67 Sending bits: ML estimator The probability of error is ( P Θ θ ML ( X ) ) = P (Θ θ ML ( X ) ) Θ = 0 P (Θ = 0) + P (Θ θ ML ( X ) ) Θ = 1 P (Θ = 1) ( 1 n = P x i > 1 ) ( n 2 Θ = 0 1 n P (Θ = 0) + P x i < 1 ) n 2 Θ = 1 P (Θ = 1) i=1 i=1

68 Sending bits: ML estimator The probability of error is ( P Θ θ ML ( X ) ) = P (Θ θ ML ( X ) ) Θ = 0 P (Θ = 0) + P (Θ θ ML ( X ) ) Θ = 1 P (Θ = 1) ( 1 n = P x i > 1 ) ( n 2 Θ = 0 1 n P (Θ = 0) + P x i < 1 ) n 2 Θ = 1 P (Θ = 1) i=1 i=1 = Q ( n/2 )

69 Sending bits: MAP estimator The logarithm of the posterior is equal to log p Θ X (θ x)

70 Sending bits: MAP estimator The logarithm of the posterior is equal to n i=1 log p Θ X (θ x) = log f Xi Θ ( x i θ) p Θ (θ) f X ( x)

71 Sending bits: MAP estimator The logarithm of the posterior is equal to n i=1 log p Θ X (θ x) = log f Xi Θ ( x i θ) p Θ (θ) f X ( x) n = log f Xi Θ ( x i θ) p Θ (θ) log f X ( x) i=1

72 Sending bits: MAP estimator The logarithm of the posterior is equal to n i=1 log p Θ X (θ x) = log f Xi Θ ( x i θ) p Θ (θ) f X ( x) n = log f Xi Θ ( x i θ) p Θ (θ) log f X ( x) i=1 = n i=1 x i 2 2 x i θ + θ 2 n 2 2 log 2π + log p Θ (θ) log f X ( x)

73 Sending bits: MAP estimator θ MAP ( x) = 1 if log p Θ X (1 x) + log f X ( x) = n i=1 n i=1 x i 2 2 x i + 1 n log 2π log x i 2 2 n log 2π log 4 + log 3 2 = log p Θ X (0 x) + log f X ( x). Equivalently, θ MAP ( x) = { 1 if 1 n n i=1 x i > log 3 n, 0 otherwise.

74 Sending bits: MAP estimator The probability of error is ( )) P (Θ θ MAP X

75 Sending bits: MAP estimator The probability of error is ( )) P (Θ θ MAP X ( ) ) ( ) ) = P (Θ θ MAP X Θ = 0 P (Θ = 0) + P (Θ θ MAP X Θ = 1 P (Θ = 1)

76 Sending bits: MAP estimator The probability of error is ( )) P (Θ θ MAP X ( ) (Θ θ MAP X = P ( 1 n = P n i=1 ( 1 + P n ) Θ = 0 X i > log 3 n n i=1 X i < log 3 n ( ) P (Θ = 0) + P (Θ θ MAP X ) Θ = 0 P (Θ = 0) ) Θ = 1 P (Θ = 1) ) Θ = 1 P (Θ = 1)

77 Sending bits: MAP estimator The probability of error is ( )) P (Θ θ MAP X ( ) (Θ θ MAP X = P ( 1 n = P n i=1 ( 1 + P n ) Θ = 0 X i > log 3 n n i=1 X i < log 3 n ( ) P (Θ = 0) + P (Θ θ MAP X ) Θ = 0 P (Θ = 0) ) Θ = 1 P (Θ = 1) = 3 ( ) n/2 4 Q log ( ) n/2 n 4 Q log 3 n ) Θ = 1 P (Θ = 1)

78 Sending bits: Probability of error ML estimator MAP estimator Probability of error n

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

lecture 10: the em algorithm (contd)

lecture 10: the em algorithm (contd) lecture 10: the em algorithm (contd) STAT 545: Intro. to Computational Statistics Vinayak Rao Purdue University September 24, 2018 Exponential family models Consider a space X. E.g. R, R d or N. ϕ(x) =

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Repeated measures Επαναληπτικές μετρήσεις

Repeated measures Επαναληπτικές μετρήσεις ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

On the general understanding of the empirical Bayes method

On the general understanding of the empirical Bayes method On the general understanding of the empirical Bayes method Judith Rousseau 1, Botond Szabó 2 1 Paris Dauphin, Paris, France 2 Budapest University of Technology and Economics, Budapest, Hungary ERCIM 2014,

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Modern Bayesian Statistics Part III: high-dimensional modeling Example 3: Sparse and time-varying covariance modeling

Modern Bayesian Statistics Part III: high-dimensional modeling Example 3: Sparse and time-varying covariance modeling Modern Bayesian Statistics Part III: high-dimensional modeling Example 3: Sparse and time-varying covariance modeling Hedibert Freitas Lopes 1 hedibert.org 13 a amostra de Estatística IME-USP, October

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Part III - Pricing A Down-And-Out Call Option

Part III - Pricing A Down-And-Out Call Option Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

Exercise 2: The form of the generalized likelihood ratio

Exercise 2: The form of the generalized likelihood ratio Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

Gaussian related distributions

Gaussian related distributions Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Asymptotic distribution of MLE

Asymptotic distribution of MLE Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Optimal Impartial Selection

Optimal Impartial Selection Optimal Impartial Selection Max Klimm Technische Universität Berlin Head of Junior Research Group Optimization under Uncertainty Einstein-Zentrum für Mathematik Introduction select member of a set of agents

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

These derivations are not part of the official forthcoming version of Vasilaky and Leonard Target Input Model with Learning, Derivations Kathryn N Vasilaky These derivations are not part of the official forthcoming version of Vasilaky and Leonard 06 in Economic Development and Cultural Change.

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

MATHACHij = γ00 + u0j + rij

MATHACHij = γ00 + u0j + rij Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα