Οδοποιία II. Ενότητα 8: Εφαρμογές Οδοποιία ΙI. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οδοποιία II. Ενότητα 8: Εφαρμογές Οδοποιία ΙI. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ"

Transcript

1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία II Ενότητα 8: Εφαρμογές Γεώργιος Μίντσης

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Οδοποιία IΙ

5 Περιεχόμενα ενότητας (1/2) 1. Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών 2. Εφαρμογή 2: Πίνακας χωματισμών 3. Εφαρμογή 3: Πίνακας χωματισμών 4. Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών 5. Εφαρμογή 5: Διάγραμμα και πίνακας κίνησης και διανομής γαιών 6. Εφαρμογή 6: Διάγραμμα και πίνακας κίνησης και διανομής γαιών 5

6 Περιεχόμενα ενότητας (2/2) 7. Εφαρμογή 7: Διάγραμμα και πίνακας κίνησης και διανομής γαιών 8. Εφαρμογή 8: Διάγραμμα και πίνακας κίνησης και διανομής γαιών 9. Εφαρμογή 9: Διάγραμμα και πίνακας και διανομής γαιών 6

7 Σκοπός ενότητας Σκοπός της Θεματικής Ενότητας είναι να βοηθήσει τους φοιτητές/ τριες στην κατανόηση, μέσω απλών εφαρμογών, των μεθόδων που χρησιμοποιούνται στο σχεδιασμό χάραξη των οδών και στον υπολογισμό του όγκου και του κόστους εκσκαφής και μεταφοράς των προϊόντων εκσκαφής σε ένα οδικό έργο. 7

8 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (1/12) Δίδεται δίστιβη υπεραστική οδός ΑΒ. Κατηγορία οδού ΑΙΙΙ, ταχύτητα μελέτης V e =72km/h. Αποτελείται από ευθύγραμμο τμήμα ΑΑ 1 μήκους 50m, τυπική συναρμογή Α 1 Α 1 κορυφής Κ 1, αντίρροπη κλωθοειδή κορυφής Α 2 Α 2 κορυφής Κ 2 και αντίρροπο κυκλικό τόξο Α 3 Α 3 Β, κορυφής Κ 3. Τα στοιχεία της οριζόντιας γεωμετρίας είναι: R 1 =250m, A 1 =200, q 1 =4%, Ω 1 Ω 1=40m. R 2 =180m, A 2 =120, q 2 =5%, L σταθ =0,3*V e ή L σταθ 2 (μεγαλύτερη τιμή). R 3 =300m, ΔS = 0,50%, q 3 =5%, A 3 A 3 B = 150m. Πλάτος οδοστρώματος b=7,50m, Λωρίδα Καθοδήγησης = 0,25m. 8

9 Ζητούνται: Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (2/12) Ο υπολογισμός των παραμέτρων της οριζοντιογραφίας. Ο σχεδιασμός του διαγράμματος των οριογραμμών (περιστροφή περί τον άξονα της οδού κλίμακα σχεδιασμού: αναγράφεται). Ο σχεδιασμός των κατά πλάτος τομών, κατά ΟΜΟΕ, στα σημεία Μ και Ν όπου Α 2 Μ=50m και A 3 N=30m. 9

10 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (3/12) Χρήσιμοι τύποι και δεδομένα: Κλίση εδάφους αριστερά δεξιά: 30% Κλίση πρανών: ορύγματος υ:β = 1:1 και επιχώματος υ:β = 1:1,5 Ύψους επιχώματος στο Μ=1,0m (άξονας) Ύψος ορύγματος στο Ν=2,0m (άξονας) Πλάτος μη σταθεροποιημένου ερείσματος = 2,0m 10

11 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (4/12) Σχεδιάζεται η οριζοντιογραφία 11

12 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (5/12) Υπολογισμός παραμέτρων οριζοντιογραφίας: Ευθυγραμμία ΑΑ 1 Μήκος ΑΑ 1 =50m, q α =2,5%, ΔH=b/2*q α =0,094m Καμπύλη Κ 1 L1=A 2 /R=200 2 /250=160m, A 1 A 1= 2*160+40=360m Κλωθοειδής εισόδου ΑΩ 1 ( ) 4 S 2,5 3,5 0,14% 0,35% εξ = = < Smin = 160 Άρα εφαρμόζεται Δs min =0,35% για μήκος Για το υπόλοιπο μήκος =110m ( ) 2,5 2,5 L= 3,5 = 50 m 0,35 4 2,5 Sεξ = 3,5 Sεξ = 0,048% ,5 Sεσ = 3,5 Sεσ = 0,033%

13 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (6/12) Υπολογισμός παραμέτρων οριζοντιογραφίας: Κλωθοειδής εξόδου (εξωτερική και εσωτερική οριογραμμή) ( ) 4 0 S= 3,5 = 0,088% < Smin = 0,35% 160 2,5 0 Άρα εφαρμόζεται ΔS min=0,35% για μήκος L= 3,5 L = 25,0m 0,35 4 2,5 Για το υπόλοιπο μήκος =135m ΔS= 3,5 = S = 0,039%

14 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (7/12) Υπολογισμός παραμέτρων οριζοντιογραφίας: Καμπύλη Κ 2 (κλωθοειδής κορυφής) L2 = L2 = 80m Lσταθ = 0,3 72 = 21,6 < Lσταθ = 2 = 40 m (εφαρμογή qmax = 5%) 3600 Μήκος μεταβολής επίκλισης = 80-40/2=60m 5 0 S( εσωτ + εξωτ ) = 3,5 = 0,292% < Smin = 0,35% 60 2,5 0 Άρα εφαρμόζεται ΔS min για μήκος L= 3,5 = 25m 0,35 5 2,5 Για το υπόλοιπο μήκος 60-25=35m S = 3,5 = 0,25% 35 14

15 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (8/12) Υπολογισμός παραμέτρων οριζοντιογραφίας: Καμπύλη K 3 Για q max = 5% και ΔS = 0,50, ισχύει: qr qa 5 0 L= L= 3,5 = 35 m S 0,50 μήκος στο οποίο εφαρμόζεται τόσο στην είσοδο όσο και στην έξοδο της καμπύλης η μεταβολή των επικλίσεων. Κατά συνέπεια η q max = 5% εφαρμόζεται σε μήκος 150-2*35=80m. 15

16 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (9/12) Σχεδιάζεται το διάγραμμα οριογραμμών 16

17 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (10/12) Επίκλιση του οδοστρώματος στα σημεία Μ & Ν Σημείο M Α Μ= 50m 2 Το σημείο Μ βρίσκεται στην κλωθοειδή εισόδου στην καμπύλη Κ όπου στα πρώτα 25m εφαρμόζεται ΔS = 0,35% και στα υπόλοιπα 35m S = 0,25% qm 2,5 Άρα q M( εσωτ + εξωτ ) 0,25 = 3,5 = 4,29% min 2 17

18 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (11/12) Επίκλιση του οδοστρώματος στα σημεία Μ & Ν Σημείο N Α N= 30m 3 Το σημείο N βρίσκεται εντός του μήκους 35m μεταβολής της επίκλισης στην είσοδο της καμπύλης κορυφής Κ qν 0 Άρα q Ν( εσωτ + εξωτ ) 0,50 = 3,5 = 4,29%

19 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (12-α/12) Σχεδιάζονται οι διατομές στα σημεία Μ και Ν 19

20 Εφαρμογή 1: Διάγραμμα οριογραμμών Σχεδιασμός κατά πλάτος τομών (12-β/12) Σχεδιάζονται οι διατομές στα σημεία Μ και Ν 20

21 Εφαρμογή 1: Πίνακας χωματισμών (1/3) Να συνταχθεί ο πίνακας των χωματισμών με τη μέθοδο των μέσων επιφανειών με βάση τα παρακάτω δεδομένα. Πίνακας χωματισμών Διατομές Ορύγματα Επιχώματα Αποστάσεις μεταξύ Επίπλησμα 1,10 1,0 1,0 1,10 1,10 1,10 21

22 Εφαρμογή 2: Πίνακας χωματισμών (2/3) Σκαρίφημα διάταξης των χωματισμών κατά μήκος της οδού. 22

23 Εφαρμογή 2: Πίνακας χωματισμών (3/3) Πίνακας χωματισμών Διατομές Αποστάσεις μεταξύ Ορύγματα Επιχώματα Κατάταξη Ορυγμάτων Συντελεστής επιπλήσματος Ορύγματα με επίπλησμα Ορύγματα χρήσσιμα διατομή Περισσεύματα Επιφ. Μ.Ε. Κύβοι Επιφ. Μ.Ε. Κύβοι Γαιώδη Ημιβραχώδη Βραχώδη Ορύγματα Επιχώματα Αλεγβρικό Άθροισμα Περισσευμάτων , , , ,

24 Εφαρμογή 3: Πίνακας Χωματισμών (1/3) Να συνταχθεί ο πίνακας των χωματισμών με τη μέθοδο των εφαρμοστέων μηκών με βάση τα παρακάτω δεδομένα. Διατομές Ορύγματα Επιχώματα Αποστάσεις μεταξύ Επίπλησμα 1,10 1,0 1,0 1,10 1,10 1,10 24

25 Εφαρμογή 3: Πίνακας Χωματισμών (2/3) Σκαρίφημα διάταξης των χωματισμών κατά μήκος της οδού. 25

26 Εφαρμογή 3: Πίνακας Χωματισμών (3/3) Πίνακας χωματισμών Διατομές Αποστάσεις μεταξύ Ορύγματα Επιχώματα Κατάταξη Ορυγμάτων Επιφ. Μ.Ε. Κύβοι Επιφ. Μ.Ε. Κύβοι Γαιώδη Ημιβραχώδ η Βραχώδη Συντελεστής επιπλήσματος Ορύγματα με επίπλησμα Ορύγματα χρήσσιμα διατομή Περισσεύματα Ορύγματα Επιχώματα Αλεγβρικό Άθροισμα Περισσευμάτων , , , , ,5-2012,5-287, , ,

27 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (1/14) Δίδονται οι παρακάτω συντεταγμένες του διαγράμματος Bruckner και ζητείται να συνταχθεί το διάγραμμα και ο πίνακας κίνησης και διανομής των γαιών. Εξισώσεις μεταφορικών μέσων Δ 1 = 20*Τ Δ 2 = 2+10*Τ Δ 3 = 4+5*Τ Κόστος δανείων και αποθέσεων = 10 /m 3 27

28 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (2/14) Πίνακας πλεονασμάτων χωματισμών Κλίμακες Μηκών: 1cm 200m Υψών: 1cm 100m 3 28

29 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (3/14) Το πρώτο βήμα αφορά στο σχεδιασμό του διαγράμματος Bruckner βάσει των συντεταγμένων που μας δίνονται στην εκφώνηση της Εφαρμογής

30 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (4/14) Εφόσον ολοκληρωθεί ο σχεδιασμός του διαγράμματος Bruckner, ακολουθεί η διαδικασία της σχεδίασης των γραφικών παραστάσεων των εξισώσεων των μεταφορικών μέσων (Διάγραμμα μεταφορικών μέσων). Στο στάδιο αυτό, γίνεται αντιληπτό πως οι γραφικές παραστάσεις των μεταφορικών μέσων τέμνονται μεταξύ τους Δ1 Δ2 Δ3 km

31 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (5/14) Η γενική μορφή των εξισώσεων των μεταφορικών μέσων είναι: Δ = α+ β*τ, Όπου Δ = η δαπάνη μεταφοράς α = η δαπάνη για φόρτωση 1m 3 β = η δαπάνη για μεταφορά 1m 3 σε απόσταση 1 km T = η απόσταση μεταφοράς σε km Η ισότητα των εξισώσεων των μεταφορικών μέσων μας προσδιορίζει τις οριακές αποστάσεις για κάθε μεταφορικό μέσο και συνήθως συμβολίζεται ως Τ ορ. 31

32 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (6/14) Έτσι θα πρέπει να επικεντρωθούμε στα σημεία τομής των γραφικών παραστάσεων των εξισώσεων των μεταφορικών μέσων. Αυτό συμβαίνει διότι στα σημεία αυτά, το κόστος μεταφοράς των μεταφορικών μέσων είναι ίσες, επομένως είναι αναγκαίο να υπολογίσουμε τα σημεία αυτά. Με βάση την εκφώνηση, σύμφωνα με τις εξισώσεις των μεταφορικών μέσων ισχύουν τα εξής: = 20 Τ= Τ Τ = 0, ορ ( Π) = Τ= Τ Τ = 0, ορ ( Χ) Το Τ ορ(α) προκύπτει από την προβολή της δαπάνης αποθέσεων ή/ και δανείων στην ευθεία Δ3 του αυτοκινήτου και τον προσδιορισμό της τετμημένης του σημείου προβολής στη Δ3. 32

33 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (7/14) Στη συνέχεια σχεδιάζουμε το διάγραμμα αναγωγής σε ένα μεταφορικό μέσο (Προωθητήρα) στο οποίο θεωρούνται ως τετμημένες οι τετμημένες των σημείων τομής που προσδιορίσαμε (δηλαδή τα Τ ορ ) και τεταγμένες τις τετμημένες των προβολών των σημείων προβολών των εξισώσεων στην εξίσωση του προωθητή Δ 1 στο διάγραμμα των μεταφορικών μέσων. 33

34 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (8/14) 34

35 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (9/14) Για να προσδιορίσουμε τη θέση των γραμμών διανομής πηγαίνουμε σε κάθε φάτνωμα που σχηματίζεται στο διάγραμμα Bruckner και μετρούμε τα μήκη των χορδών των κυρτωμάτων και των κοιλωμάτων. Τα μήκη αυτά, έστω α, τα τοποθετούμε στο διάγραμμα αναγωγής σε ένα μεταφορικό μέσο (Προωθητήρας) ως τετμημένες και οι αντίστοιχες τεταγμένες ορίζουν τα μήκη αναγωγής (ανηγμένα μήκη) σε ένα μεταφορικό μέσο (δηλαδή στον Προωθητήρα). Στη συνέχεια αναλόγως με τον αριθμό των φατνωμάτων, δηλαδή αν είναι άρτιος ή περιττός, προσδιορίζουμε τη θέση των γραμμών διανομής στο διάγραμμα Bruckner. Η εύρεση της θέσης της γραμμής διανομής μπορεί να απαιτεί πολλές επαναλήψεις. 35

36 Εφαρμογή 4: Διάγραμμα κίνησης και διανομής γαιών (10/14) Ακολουθεί το στάδιο της τοποθέτησης του κατάλληλου μεταφορικού μέσου που θα χρησιμοποιηθεί κάθε φορά. Επομένως σε κάθε φάτνωμα τοποθετούμε την απόσταση που υπολογίσαμε από την επίλυση των εξισώσεων των μεταφορικών μέσων, δηλαδή τα Τ ορ. Αρχικά τοποθετούμε τον Προωθητή, στη συνέχεια τον Χωματοσυλλέκτη και τέλος το Αυτοκίνητο. Οι αποστάσεις από τη γραμμή διανομής ως τη γραμμή του διαγράμματος Bruckner που δεν είναι δυνατόν να καλυφθούν από κάποιο μεταφορικό μέσο είναι Αποθέσεις ή Δάνεια αναλόγως αν ανήκουν σε ανιόντα ή κατιόντα κλάδο αντίστοιχα. 36

37 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (11/14) Στο τελευταίο στάδιο πραγματοποιείται η σύνταξη του Πίνακα Κίνησης και Διανομής των γαιών. Η σύνταξη του εν λόγω πίνακα απαιτεί ιδιαίτερη προσοχή. Για κάθε μεταφορικό μέσο υπάρχουν 4 στήλες {ΑΠΟ,ΕΩΣ,ΚΥΒΟΙ,ΡΟΠΕΣ} εκ των οποίων οι 2 πρώτες {ΑΠΟ,ΕΩΣ} αναφέρονται στη χιλιομετρική απόσταση χρήσης των μεταφορικών μέσων, η 3 η {ΚΥΒΟΙ} στον όγκο των χωματισμών που μεταφέρονται και η 4 η στις ΡΟΠΕΣ που προκύπτουν από τον υπολογισμό του εμβαδού του γεωμετρικού σχήματος στο οποίο χρησιμοποιείται το κάθε μεταφορικό μέσο (π.χ. τρίγωνο, τραπέζιο). Στον πίνακα κίνησης και διανομής γαιών υπάρχουν 3 στήλες {ΑΠΟ, ΕΩΣ, ΚΥΒΟΙ} για τις Αποθέσεις και τα Δάνεια. Τέλος υπολογίζεται η μέση απόσταση μεταφορά (ΜΑΜ), η μέση δαπάνη ανά m 3 (ΜΔΜ), η μερική δαπάνη για κάθε μεταφορικό μέσο (ΜερΔ) καθώς και για τη μεταφορά αποθέσεων και δανείων και τέλος η συνολική δαπάνη (ΣΔ) μεταφοράς των χωματισμών. 37

38 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (12/14) Η ΜΑΜ υπολογίζεται για κάθε μεταφορικό μέσο από τη σχέση: MAM Η ΜΔΜ υπολογίζεται για κάθε μεταφορικό μέσο από τη σχέση: όπου όμως ως Τ χρησιμοποιούμε τη ΜΑΜ i. i = ΡΟΠΕΣ ΚΥΒΟΙ i = ai +βi Η ΜερΔ υπολογίζεται για κάθε μεταφορικό μέσο από τη σχέση: Μερ = Μ M ΚΥΒΟΙ Η ΣΔ υπολογίζεται από το άθροισμα των δαπανών μεταφοράς για κάθε μέσο από τη σχέση: Σ = Μερ i i i i i i i 38

39 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (13/14) Απ.: Αποθέσεις, Δ: Δάνεια, Προωθητήρας, Χωματοσυλλέκτης, Αυτοκίνητο Όγκος πλεονασμάτων χωματισμών από την αρχή (m 3 ) (km) 39

40 Εφαρμογή 4: Διάγραμμα και πίνακας κίνησης και διανομής γαιών (14/14) ΡΟΠΕΣ 158 MAMΠΡΟΩΘΗΤΗΡΑ = = = 0,09km ΚΥΒΟΙ Μ Μ = 20 Τ = 20 0,09 = 1,8 /m ΠΡΟΩΘΗΤΗΡΑ Μερ =ΚΥΒΟΙ Μ Μ = ,8 = 3150 ΠΡΟΩΘΗΤΗΡΑ ΠΡΟΩΘΗΤΗΡΑ ΡΟΠΕΣ 47,85 MAMΧΩΜΑΤΟΣΥΛΛΕΚΤΗ = = = 0,24km ΚΥΒΟΙ 200 Μ Μ = Τ = /m ΧΩΜΑΤΟΣΥΛΛΕΚΤΗ Μερ = ΚΥΒΟΙ Μ Μ = 200 4,4 = 880 ΧΩΜΑΤΟΣΥΛΛΕΚΤΗ 3 3,24 = 4, 4 Μ Μ ΑΥΤΟΚΙΝΗΤΟ = 4+ 5 Τ= , 59 = 6,95 /m ΧΩΜΑΤΟΣΥΛΛΕΚΤΗ ΡΟΠΕΣ 312,5 MAMΑΥΤΟΚΙΝΗΤΟ = = = 0,59km ΚΥΒΟΙ 500 Μερ = ΚΥΒΟΙ Μ Μ = 530 6,95 = 3683,50 ΑΥΤΟΚΙΝΗΤΟ ΑΥΤΟΚΙΝΗΤΟ MΔΜ=10 /m Μερ = =

41 Εφαρμογή 5: Διάγραμμα και πίνακας κίνησης διανομής γαιών (1/5) Δίδεται το παρακάτω διάγραμμα Bruckner και οι εξισώσεις μεταφορικών μέσων Δ 1 =20*T, Δ 2 =3+5*T, Δ 3 =5+T. Το κόστος των δανείων ή/ και των αποθέσεων είναι 8 /m 3. Με δεδομένο ότι ο άξονας Χ αποτελεί γραμμή διανομής, να προσδιορισθούν οι λοιπές γραμμές διανομής και να συνταχθεί ο πίνακας διανομής και κίνησης των γαιών. Κλίμακες διαγράμματος Bruckner: μηκών 1cm 100m, υψών 1cm 100m 3. Κλίμακες διαγράμματος αναγωγής και μεταφορικών μέσων: μηκών 1cm 200m, υψών 1cm 2. 41

42 Εφαρμογή 5: Διάγραμμα και πίνακας κίνησης διανομής γαιών (2/5) 42

43 Εφαρμογή 5: Διάγραμμα και πίνακας κίνησης διανομής γαιών (3/5) 43

44 Εφαρμογή 5: Διάγραμμα και πίνακας κίνησης διανομής γαιών (4/5) 44

45 Εφαρμογή 5: Πίνακας κίνησης και διανομής γαιών (5/5) Προωθητήρας Χωματοσυλέκτης Αποθέσεις Δάνεια Από Έως Κύβοι Ροπές Από Έως Κύβοι Ροπές Από Έως Κύβοι Από Έως Κύβοι , , , , , , , , Σύνολο , , ΜΑΜΠΡΟΩΘΗΤΗΡΑ 70 0,38 ΜΔΜΜΑΜΠΡΟΩΘΗ ΤΗΡΑ Μερ. Δαπ. ΜΑΜΠΡΟΩΘΗΤΗΡΑ 461,4 /m3 4,91 /m3 8 /m Συν. Δαπ. =

46 Εφαρμογή 6: Πίνακας κίνησης και διανομής γαιών (1/5) Δίδονται οι συντεταγμένες του διαγράμματος κίνησης και διανομής των γαιών, το οριακό μήκος του αυτοκινήτου T οραυτ =1,8km και το διάγραμμα αναγωγής στον προωθητήρα. Η κίνηση και διανομή των γαιών θα γίνει με προωθητήρα, χωματοσυλλέκτη και αυτοκίνητο. Ζητείται να συνταχθεί το διάγραμμα κίνησης και διανομής των γαιών, να προσδιορισθούν οι θέσεις των γ.δ. και να υπολογισθούν οι μέσες αποστάσεις μεταφοράς για τα τρία μέσα μεταφοράς. Κλίμακες μηκών 1cm 200m, υψών 1cm 100m 3. Κλίμακες μηκών διαγράμματος αναγωγής: 1cm 200m. 46

47 Εφαρμογή 6: Πίνακας κίνησης και διανομής γαιών (2/5) Πίνακας πλεονασμάτων χωματισμών

48 Εφαρμογή 6: Πίνακας κίνησης και διανομής γαιών (3/5) 48

49 Εφαρμογή 6: Πίνακας κίνησης και διανομής γαιών (4/5) 49

50 Εφαρμογή 6: Πίνακας κίνησης και διανομής γαιών (5/5) Προωθητήρας Χωματοσυλέκτης Αυτοκίνητο Από Έως Κύβοι Ροπές Από Έως Κύβοι Ροπές Από Έως Κύβοι Ροπές , , , , , , , , , , , , , , Σύνολο , , ,5 ΜΑΜΠΡΟΩΘΗ ΤΗΡΑ =100,5/1110=0,09km =142,75/470=0,30km =892,5/830=1,075km 50

51 Εφαρμογή 7: Πίνακας κίνησης και διανομής γαιών (1/5) Δίδεται το διάγραμμα Bruckner και οι εξισώσεις των μεταφορικών μέσων Δ 1 =10*Τ, Δ 2 =2+4*Τ, Δ 3 =3+2*Τ. Το κόστος δανείων ή/ και των αποθέσεων είναι 7,5 /m 3. Να προσδιορισθούν οι γραμμές διανομής και να συνταχθεί ο πίνακας κίνησης και διανομής των γαιών. Κλίμακες μηκών 1cm 200m, υψών 1cm 100m 3. Κλίμακες μηκών διαγράμματος αναγωγής: 1cm 200m, υψών 1cm 2. 51

52 Εφαρμογή 7: Πίνακας κίνησης και διανομής γαιών (2/5) Διάγραμμα Bruckner Όγκος πλεονασμάτων χωματισμών από την αρχή (m 3 ) 52

53 Εφαρμογή 7: Πίνακας κίνησης και διανομής γαιών (3-α/5) 53

54 Εφαρμογή 7: Πίνακας κίνησης και διανομής γαιών (3-β/5) 54

55 Εφαρμογή 7: Πίνακας κίνησης και διανομής γαιών (4/5) 55

56 Εφαρμογή 7: Πίνακας κίνησης και διανομής γαιών (5/5) 56

57 Εφαρμογή 8: Πίνακας κίνησης και διανομής γαιών (1/5) Δίδεται το διάγραμμα Bruckner και οι εξισώσεις των μεταφορικών μέσων Δ 1 =20*Τ, Δ 2 =2+10*Τ, Δ 3 =4+5*Τ. Το κόστος δανείων ή των αποθέσεων είναι 10 /m 3. Να προσδιορισθούν οι γραμμές διανομής και να συνταχθεί ο πίνακας κίνησης και διανομής των γαιών. Κλίμακες μηκών 1cm 100m, υψών 1cm 100m 3. Κλίμακες μηκών διαγράμματος αναγωγής: 1cm 200m, υψών 1cm 2. 57

58 Εφαρμογή 8: Πίνακας κίνησης και διανομής γαιών (2/5) Διάγραμμα Bruckner 58

59 Εφαρμογή 8: Πίνακας κίνησης και διανομής γαιών (3α/5) 59

60 Εφαρμογή 8: Πίνακας κίνησης και διανομής γαιών (3-β/5) 60

61 Εφαρμογή 8: Πίνακας κίνησης και διανομής γαιών (4/5) 61

62 Εφαρμογή 8: Πίνακας κίνησης και διανομής γαιών (5/5) 62

63 Εφαρμογή 9: Πίνακας κίνησης και διανομής γαιών (1/5) Δίδεται το διάγραμμα Bruckner και οι εξισώσεις των μεταφορικών μέσων Δ 1 =16*Τ, Δ 2 =2+8*Τ, Δ 3 =6+4*Τ. Το κόστος δανείων ή των αποθέσεων είναι 18 /m 3. Να προσδιορισθούν οι γραμμές διανομής και να συνταχθεί ο πίνακας κίνησης και διανομής των γαιών. Κλίμακες μηκών 1cm 100m, υψών 1cm 100m 3. Κλίμακες μηκών διαγράμματος αναγωγής: 1cm 200m, υψών 1cm 2. 63

64 Εφαρμογή 9: Πίνακας κίνησης και διανομής γαιών (2/5) Διάγραμμα Bruckner 64

65 Εφαρμογή 9: Πίνακας κίνησης και διανομής γαιών (3-α/5) 65

66 Εφαρμογή 9: Πίνακας κίνησης και διανομής γαιών (3-β/5) 66

67 Εφαρμογή 9: Πίνακας κίνησης και διανομής γαιών (4/5) 67

68 Εφαρμογή 9: Πίνακας κίνησης και διανομής γαιών (5/5) 68

69 Βιβλιογραφία Γ. Μίντσης, «Πανεπιστημιακές Σημειώσεις μαθήματος Οδοποιία Ι», Τομέας Συγκοινωνιακών & Υδραυλικών Έργων, Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών, Πολυτεχνική Σχολή, 69

70 Σημείωμα Χρήσης Έργων Τρίτων (2/2) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνα 1: Πανεπιστημιακές Σημειώσεις Μάθημα Οδοποιία Ι, Γ. Μίντσης, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, Πολυτεχνική Σχολή, Α.Π.Θ., Creative Commons BY - SA Εικόνα 2: Πανεπιστημιακές Σημειώσεις Μάθημα Οδοποιία Ι, Γ. Μίντσης, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, Πολυτεχνική Σχολή, Α.Π.Θ., Creative Commons BY - SA

71 Σημείωμα Αναφοράς Copyright, Γεώργιος Μίντσης. «Οδοποιία Ι - Εισαγωγή στην Οδοποιία». Έκδοση: 1.0. Θεσσαλονίκη Διαθέσιμο από τη δικτυακή διεύθυνση:

72 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λπ., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1]

73 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Ευστάθιος Μπουχουράς, Θεσσαλονίκη, Νοέμβριος 2014

74 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σημειώματα

75 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.00.

76 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Οδοποιία Ι. Ενότητα 9: Στοιχεία μελέτης χάραξης οδού Επικλίσεις σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)

Οδοποιία Ι. Ενότητα 9: Στοιχεία μελέτης χάραξης οδού Επικλίσεις σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 9: Στοιχεία μελέτης χάραξης οδού Επικλίσεις σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα

Διαβάστε περισσότερα

Οδοποιία Ι. Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)

Οδοποιία Ι. Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενοτήτων 5, 6 & 7 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative

Διαβάστε περισσότερα

Οδοποιία I. Ενότητα 11: Εφαρμογές Οδοποιία Ι. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οδοποιία I. Ενότητα 11: Εφαρμογές Οδοποιία Ι. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία I Ενότητα 11: Εφαρμογές Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η μετάφραση των εβδομήκοντα, η εκπαίδευση των μεταφραστών κατά Κικέρωνα, η τέχνη της μετάφρασης από την αρχαιότητα μέχρι τα

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού

Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 4: Εφαρμογές λογιστικών φύλλων στη Στατική: Γεωμετρικά μεγέθη πολυγωνικά

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 11η: Σύγκριση Ρωσικής Ορθόδοξης Εκκλησίας και Καθολικής Εκκλησίας Κυριάκος Κυριαζόπουλος

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Οδοποιία IΙ. Ενότητες 5 & 6 : Χωματισμοί, κίνηση και διανομή γαιών Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Οδοποιία IΙ. Ενότητες 5 & 6 : Χωματισμοί, κίνηση και διανομή γαιών Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητες 5 & 6 : Χωματισμοί, κίνηση και διανομή γαιών Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Παράκτια Τεχνικά Έργα

Παράκτια Τεχνικά Έργα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΔΟΠΟΙΪΑ Ι - ΧΑΡΑΞΕΙΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ : ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ

ΟΔΟΠΟΙΪΑ Ι - ΧΑΡΑΞΕΙΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ : ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ 1.1. Περιεχόμενο της Οδοποιΐας 1 1.2. Κανονισμοί 2 1.2.1. Ιστορικό 2 1.2.2. Ισχύοντες Κανονισμοί στην Ελλάδα 5 1.2.3. Διαδικασία Εκπόνησης Μελετών Οδοποιΐας 6 1.3. Ανάπτυξη του

Διαβάστε περισσότερα

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διπλωματική Ιστορία Ενότητα 2η:

Διπλωματική Ιστορία Ενότητα 2η: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2η: Η εμφάνιση των εθνών-κρατών και οι συνέπειες στο διεθνές σύστημα Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 2: Όψεις Όνομα Καθηγητή: Παρασκευοπούλου Ροδούλα Α.Π.Θ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας Ενότητα 1: Αυτοαξιολόγηση μεταφραστών Κασάπη Ελένη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 4: Τομές ΙΙ Όνομα Καθηγητή: Γιώργος Ανδρεάδης Τμήμα: Μηχανολόγων Μηχ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα : Ακολουθίες και Σειρές Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Commos. Για

Διαβάστε περισσότερα

Μηχανές Πλοίου ΙΙ (Ε)

Μηχανές Πλοίου ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυµα Αθήνας Μηχανές Πλοίου ΙΙ (Ε) Άσκηση 5 Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.

Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη του Hitler Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 7: Φασματοσκοπία IR Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 3: Θεωρία του Ligand Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Χώρος και Διαδικασίες Αγωγής

Χώρος και Διαδικασίες Αγωγής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η κοινωνική ποιότητα του χώρου Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Φ 619 Προβλήματα Βιοηθικής

Φ 619 Προβλήματα Βιοηθικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ο Πλάτων και ο Αριστοτέλης ως ιατροί. Οι ιατροφιλόσοφοι (Ιπποκράτης, Γαληνός, Κέλσος). Ελένη Καλοκαιρινού Φιλοσοφίας-Παιδαγωγικής

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.3: Εμβαδά εκ Περιστροφής Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 7: Οδοντωτοί τροχοί Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γεωργική Εκπαίδευση Ενότητα 9

Γεωργική Εκπαίδευση Ενότητα 9 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Σχεδιασμός εκπαιδευτικών προγραμμάτων για τον αγροτικό χώρο Αφροδίτη Παπαδάκη-Κλαυδιανού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Χώρος και Διαδικασίες Αγωγής

Χώρος και Διαδικασίες Αγωγής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Η παιδαγωγική ποιότητα του χώρου Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Χώρος και Διαδικασίες Αγωγής

Χώρος και Διαδικασίες Αγωγής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Καινοτόμα εκπαιδευτικά περιβάλλοντα και αλλαγή της σχολικής κουλτούρας 1/2 Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον

Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 1 : Εκπόνηση μελέτης Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.: Επίπεδα Εμβαδά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

Διδακτική της Περιβαλλοντικής Εκπαίδευσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 08: Σχεδιασμός και Οργάνωση ενός Προγράμματος Περιβαλλοντικής Εκπαίδευσης Ι Πολυξένη

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 6: Κοχλίες ΙΙ Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 9η: Παρουσίαση και σχολιασμός των Οδηγιών (2014 μέρος Β ) Κυριάκος Κυριαζόπουλος Άδειες

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Οδοποιία II. Ενότητα 1 : Εισαγωγή στην Οδοποιία. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οδοποιία II. Ενότητα 1 : Εισαγωγή στην Οδοποιία. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία II Ενότητα 1 : Εισαγωγή στην Οδοποιία Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός 1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διαγλωσσική μεταφορά και διαμεσολάβηση

Διαγλωσσική μεταφορά και διαμεσολάβηση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Διαγλωσσική μεταφορά και διαμεσολάβηση Ενότητα 13 : Ξενάγηση σε Αρχείο Ελένη Κασάπη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 11η: Παρουσίαση και σχολιασμός των Οδηγιών (2014 μέρος Δ ) Κυριάκος Κυριαζόπουλος Άδειες

Διαβάστε περισσότερα

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

Διδακτική της Περιβαλλοντικής Εκπαίδευσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 13: Αξιολόγηση στην Περιβαλλοντική Εκπαίδευση Πολυξένη Ράγκου Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3: Ενισχυτές στις χαμηλές συχνότητες Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 2η: Διεθνείς Πράξεις Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 4: Η έννοια της γωνίας και του εμβαδού Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΟΝΟΜΑ: 1) 2) ΗΜΕΡΟΜΗΝΙΑ:

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (14): Ενώσεις Μετάλλων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 8 : Μιγαδικοί Αριθμοί & Ακολουθίες Αριθμών Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα