Supporting Information

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supporting Information"

Transcript

1 Supporting Information Imidazol(in)ium Hydrogen Carbonates as a Genuine Source of N- Heterocyclic Carbenes (NHCs): Applications to the Facile Preparation of NHC Metal Complexes and to NHC- Organocatalyzed Molecular and Macromolecular Syntheses Maréva Fèvre, 1,2 Julien Pinaud, 1,2 Alexandre Leteneur, 1,2 Yves Gnanou, 1,2 Joan Vignolle, 1,2 * Daniel Taton 1,2 * 1 Centre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, UMR 5629, 16 avenue Pey-Berland, F Pessac cedex, France 2 Université de Bordeaux, Laboratoire de Chimie des Polymères Organiques, UMR 5629, IPB-ENSCBP, F Pessac cedex, France Karinne Miqueu, 3 Jean-Marc Sotiropoulos 3 3 Université de Pau & des Pays de l Adour, IPREM, UMR CNRS 5254, 2 Avenue du Président P. Angot, PAU cedex 09, France S1

2 Contents 1 H NMR spectrum of 2a S3 13 C NMR spectrum of 2a S4 1 H NMR spectrum of 2b S5 13 C NMR spectrum of 2b S6 1 H NMR spectrum of 2c S7 13 C NMR spectrum of 2c S8 1 H NMR spectrum of 4a S9 13 C NMR spectrum of 4a S10 Molecular structure of 2a (short contacts) Molecular structure of 2a (dimer) Crystal data and structure refinement for 2a: DFT calculations S11 S12 S13 S14 S2

3 1 H NMR spectrum of 2a (MeOD): S3

4 13 C NMR spectrum of 2a (MeOD): S4

5 1 H NMR spectrum of 2b (MeOD): S5

6 13C NMR spectrum of 2b (MeOD): S6

7 1H NMR spectrum of 2c (MeOD): S7

8 13C NMR spectrum of 2c (MeOD): S8

9 S9

10 1H NMR spectrum of 4a (CDCl3): S10

11 13C NMR spectrum of 4a (CDCl3): S11

12 S12

13 Molecular structure of 2a (with short contacts in dashed line) with atoms depicted as thermal ellipsoids drawn at the 50% probability level: S13

14 Molecular structure of 2a (showing a dimer) with atoms depicted as thermal ellipsoids drawn at the 50% probability level: S14

15 Crystal data and structure refinement for 2a: Formula C10 H18 N2 O3 M Crystal system monoclinic Space group P2(1)/c a/å (17) b/å (16) c/å (2) β/o (13) U/Å (3) T /K 123(2) Z 4 ρ/g cm Shape and color Colorless size (mm) 0.2x0.1x0.1 λ/ Å μ/mm Unique data 2206 Absorption correction None transmission max/min unique data [Fo > 4σFo)] 1605 parameters/restraints 140 R1, wr , The crystal structures of compound 2a was solved using the charge flipping algorithm implemented in the SUPERFLIP software (L. Palatinus and G. Chapuis, J. Appl. Cryst., 2007, 40, ). All structures were refined using SHELXL-97 (G. M. Sheldrick, Universität Göttingen, 1997). Full-matrix least-squares refinement was performed on F 2 for all unique reflections, minimizing w(fo 2 - Fc 2 )2, with anisotropic displacement parameters for nonhydrogen atoms. The positions of hydrogen atoms were located on a subsequent differential electron-density map. Hydrogen atoms were mostly spotted in Fourier differences but included in idealized positions and refined with a riding model, with Uiso constrained to 1.2 Ueq value of the parent atom (1.5 Ueq when CH3). The positions and isotropic displacement parameters S15

16 of the remaining hydrogen atoms were refined freely. S16

17 Computational Details: Calculations were performed with the Gaussian 03 program [S1] using the Density Functional Theory method. [S2] The various structures were fully optimized at B3LYP level. [S3] This functional is built with Becke s three parameter exchange functional [S3a] and the Lee-Yang-Parr correlation functional. [S3c] The 6-31G(d,p) basis set was used. [S4] All atoms were augmented with a single set of polarization functions. The second derivatives were analytically calculated in order to determine if a minimum or a transition state (one negative eigenvalue) existed for the resulting geometry. All total energies and Gibbs free energies have been zero-point energy (ZPE) and temperature corrected using unscaled density functional frequencies. The connection between the transition states and the corresponding minima was confirmed by IRC calculations. [S5] S17

18 Geometrical parameters for the compounds 2a, 2b and 2c C4 C2 C N2 H1 C1 C3 N1 O1 C4 N2 C2 C1 C O1 O3 H1 C5 O2 N1 C3 O2 H2 C5 O3 CN1 : CN2 : N1C1 : C1C2 : N2C2 : CH1 : H1O1 : O1H2 : O1C5 :1.268 C5O2 : C5O3 : N1C3 :1.490 N2C4 : CO1 : ΣN1 : ΣN2 : ΣC : C4 C2 N2 C1 O1 C5 CN1 : CN2 : N1C1 : C1C2 : N2C2 : CH1 : H1O1 : O2H2 : O1C5 : C5O2 : C5O3 : N1C3 :1.447 N2C4 : CO1 : CC5 : ΣN1 : ΣN2 : ΣC : N1 C H1 O3 O2 H2 C3 H2 CN1 : CN2 : N1C1 : C1C2 : N2C2 : CH1 : H1O1 : O2H2 : O1C5 : C5O2 : C5O3 : N1C3 :1.431 N2C4 : CO1 : CC5 : ΣN1 : ΣN2 : S18

19 Z-matrices: 2a : Sum of electronic and thermal Free Energies= ua C C C H H H N N C C H C H H H C H H H H C H H H C H H H C O O O H b : Sum of electronic and thermal Free Energies= ua C C C H H H N N C O O O H C C S19

20 C C C C H H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H c : Sum of electronic and thermal Free Energies= ua C H N N C O O O H C C C C C C H H S20

21 C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H C H H a : Sum of electronic and thermal Free Energies= ua C C C H H N N C C H C H H H C H H S21

22 H H C H H H C H H H C O O b : Sum of electronic and thermal Free Energies= ua N N C C C C C C H H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H S22

23 C O O C C H C H c : Sum of electronic and thermal Free Energies= ua N N C C C C C C H H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H C O O C C S23

24 H H C H H a : Sum of electronic and thermal Free Energies= ua C C C H H N N C C H C H H H C H H H H C H H H C H H H b : Sum of electronic and thermal Free Energies= ua C C C H H N N C C C C C C H H C C C C S24

25 C C H H C H H H C H H H C H H H C H H H C H H H C H H H c : Sum of electronic and thermal Free Energies= ua C N N C C C C C C H H C C C C C C H H C H H H C H H H S25

26 C H H H C H H H C H H H C H H H C H H C H H a +CO2 +H2O : Sum of electronic and thermal Free Energies= ua C C C H H N N C C H C H H H C H H H H C H H H C H H H C O O O H S26

27 H b +CO2 +H2O : Sum of electronic and thermal Free Energies= ua C C C H H N N C O O C C C C C C H H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H O H H S27

28 6c +CO2 +H2O : Sum of electronic and thermal Free Energies= ua C N N C O O C C C C C C H H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H O H H C H H C S28

29 H H a +H2O : Sum of electronic and thermal Free Energies= ua C C C H H N N C C H C H H H C H H H H C H H H C H H H C O O O H H b +H2O : Sum of electronic and thermal Free Energies= ua C C C H H N N C O O C C C C C C H S29

30 H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H O H H c +H2O : Sum of electronic and thermal Free Energies= ua C N N C O O C C C C C C H H C C C C C S30

31 C H H C H H H C H H H C H H H C H H H C H H H C H H H O H H C H H C H H TS6a 2a : Sum of electronic and thermal Free Energies= ua C C C H H H N N C C H C H H H C H H S31

32 H H C H H H C H H H C O O O H TS6b 2b : Sum of electronic and thermal Free Energies= ua C C C H H H N N C O O O H C C C C C C H H C C C C C C H H C H H H C H H H C H S32

33 H H C H H H C H H H C H H H TS6c 2c : Sum of electronic and thermal Free Energies= ua C H N N C O O O H C C C C C C H H C C C C C C H H C H H H C H H H C H H H C H H S33

34 H C H H H C H H H C H H C H H TS6a 2 a : Sum of electronic and thermal Free Energies= ua C C C H H N N C C H C H H H C H H H H C H H H C H H H C O O TS6b 2 b : Sum of electronic and thermal Free Energies= ua C C C H H N S34

35 N C O O C C C C C C H H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H TS6c 2 c : Sum of electronic and thermal Free Energies= ua C N N C O O C C C C C S35

36 C H H C C C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H C H H TS6a 2 a + H2O : Sum of electronic and thermal Free Energies= ua C C C H H N N C C H C H H H S36

37 C H H H H C H H H C H H H C O O O H H TS6b 2 b + H2O : Sum of electronic and thermal Free Energies= ua C C C H H N N C O O C C C C C C H H C C C C C C H H C H H H C H H H C H S37

38 H H C H H H C H H H C H H H O H H TS6c 2 c + H2O : Sum of electronic and thermal Free Energies= ua C N N C O O C C C C C C H H C C C C C C H H C H H H C H H H C H H H C H H H S38

39 C H H H C H H H O H H C H H C H H References : [S1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. X. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D-02, Gaussian, Inc., Pittsburgh PA, [S2] [S3] [S4] [S5] R. G. Parr, W. Yang, Functional Theory of Atoms and Molecules, R. Breslow, J. B. Goodenough, Eds., Oxford University Press: New York, a) A. D. Becke, Phys. Rev. 1988, A38, ; b) A. D. Becke, J. Chem. Phys. 1993, 98, ; c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, B37, P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, a) C. Gonzalez, H. B. Schlegel. J. Chem. Phys. 1989, 90, ; b) C. Gonzalez, H. B. Schlegel. J. Phys. Chem. 1990, 94, S39