Η αφετηρία είναι η συσκευή στην οποία η μπάλα βρίσκεται αρχικά. Έχει μόνο μία έξοδο. Ο σειριακός αριθμός της είναι.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η αφετηρία είναι η συσκευή στην οποία η μπάλα βρίσκεται αρχικά. Έχει μόνο μία έξοδο. Ο σειριακός αριθμός της είναι."

Transcript

1 doll Mechanical Doll Η μηχανική κούκλα είναι μια κούκλα που αυτόματα επαναλαμβάνει μία συγκεκριμένη ακολουθία κινήσεων. Στην Ιαπωνία, μηχανικές κούκλες κατασκευάζονται από πολύ παλιά. Οι κινήσεις της μηχανικής κούκλας ελέγχονται από ένα κύκλωμα αποτελούμενο από συσκευές. Οι συσκευές ενώνονται μεταξύ τους με σωλήνες. Κάθε συσκευή έχει μία ή δύο εξόδους και μπορεί να έχει οσεσδήποτε πολλές (πιθανώς μηδέν) εισόδους. Κάθε συσκευή μπορεί να έχει οσεσδήποτε πολλές εισόδους. Κάθε σωλήνας συνδέει την έξοδο μίας συσκευής με την είσοδο της ίδιας ή κάποιας άλλης συσκευής. Ακριβώς ένας σωλήνας συνδέεται σε κάθε είσοδο και ακριβώς ένας σωλήνας συνδέεται σε κάθε έξοδο. Για να καταλάβετε πώς η κούκλα κάνει διάφορες κινήσεις, θεωρήστε μία μπάλα που τοποθετείται σε μία από τις συσκευές. Η μπάλα ταξιδεύει μέσα στο κύκλωμα. Σε κάθε βήμα του ταξιδιού της, η μπάλα φεύγει από τη συσκευή όπου βρίσκεται χρησιμοποιώντας μία από τις εξόδους, ταξιδεύει μέσω του σωλήνα που συνδέεται σε αυτή την έξοδο και εισέρχεται στη συσκευή που βρίσκεται στο άλλο άκρο του σωλήνα. Υπάρχουν τρεις τύποι συσκευών: αφετηρία, σκανδάλη, και διακόπτης. Στο κύκλωμα υπάρχει ακριβώς μία αφετηρία, σκανδάλες και διακόπτες (το μπορεί να είναι μηδέν). Πρέπει να αποφασίσετε την τιμή του. Κάθε συσκευή έχει ένα μοναδικό σειριακό αριθμό. Η αφετηρία είναι η συσκευή στην οποία η μπάλα βρίσκεται αρχικά. Έχει μόνο μία έξοδο. Ο σειριακός αριθμός της είναι. Μία σκανδάλη αναγκάζει την κούκλα να κάνει μία συγκεκριμένη κίνηση όποτε η μπάλα εισέρχεται σε αυτήν. Κάθε σκανδάλη έχει μόνο μία έξοδο.. Οι σειριακοί αριθμοί των σκανδαλών είναι από το μέχρι και το. Doll (1 of 6)

2 Κάθε διακόπτης έχει δύο εξόδους, που ονομάζονται 'X' και 'Y'. Η κατάσταση ενός διακόπτη είναι είτε 'X' ή 'Y'. Αφότου μία μπάλα εισέρθει στον διακόπτη, φεύγει από αυτόν χρησιμοποιώντας την έξοδο που ορίζεται από την τρέχουσα κατάσταση του διακόπτη. Μετά από αυτό, η κατάσταση του διακόπτη αλλάζει και γίνεται η αντίθετη. Αρχικά, όλοι οι διακόπτες είναι στην κατάσταση 'X'. Οι σειριακοί αριθμοί των διακοπτών είναι από μέχρι και. Σας δίνεται ο αριθμός των σκανδαλών. Σας δίνεται επίσης μία ακολουθία μήκους, κάθε στοιχείο της οποίας είναι ο σειριακός αριθμός μίας σκανδάλης. Κάθε σκανδάλη μπορεί να εμφανίζεται κάποιες φορές (πιθανώς και μηδέν) μέσα στην ακολουθία. Ζητείται να κατασκευάσετε ένα κύκλωμα που ικανοποιεί τις παρακάτω συνθήκες: Η μπάλα επιστρέφει στην αφετηρία μετά από κάποιο πλήθος βημάτων. Όταν η μπάλα επιστρέψει στην αφετηρία, όλοι οι διακόπτες είναι στην κατάσταση 'X'. Η μπάλα επιστρέφει στην αφετηρία για πρώτη φορά αφού εισέρθει ακριβώς φορές σε σκανδάλες. Οι σειριακοί αριθμοί των σκανδαλών με τη σειρά που η μπάλα εισέρχεται σε αυτές είναι. Έστω ο συνολικός αριθμός αλλαγών κατάστασης όλων των διακοπτών του κυκλώματος που προκαλούνται από την κίνηση της μπάλας προτού αυτή επιστρέψει στην αφετηρία. Η τιμή του δεν υπερβαίνει το. Επίσης, δε θέλετε να χρησιμοποιήσετε υπερβολικά πολλούς διακόπτες. Λεπτομέρειες υλοποίησης Πρέπει να υλοποιήσετε την ακόλουθη συνάρτηση: create_circuit(int M, int[] A) M : το πλήθος των σκανδαλών. A : ένας πίνακας μήκους, που περιέχει τους σειριακούς αριθμούς των σκανδαλών στις οποίες η μπάλα πρέπει να εισέρθει, με τη σειρά που θα εισέρθει Doll (2 of 6)

3 η μπάλα σε αυτές. Η συνάρτηση αυτή καλείται ακριβώς μία φορά. Προσέξτε ότι η τιμή του είναι το μήκος του πίνακα A και μπορεί να βρεθεί όπως εξηγείται στο φυλλάδιο των Σημειώσεων Υλοποίησης. Το πρόγραμμά σας πρέπει να καλέσει την παρακάτω συνάρτηση για να απαντήσει: answer(int[] C, int[] X, int[] Y) C : ένας πίνακας μήκους. Η έξοδος της συσκευής ( ) είναι συνδεδεμένη στη συσκευή C[i]. X, Y : πίνακες του ίδιου μήκους. Το μήκος αυτών των πινάκων είναι το πλήθος των διακοπτών στο κύκλωμα. Για το διακόπτη ( ), η έξοδος 'X' του είναι συνδεδεμένη στη συσκευή X[j - 1] και η έξοδος 'Y' του είναι συνδεδεμένη στη συσκευή Y[j - 1]. Κάθε στοιχείο των πινάκων C, X και Y πρέπει να είναι ένας ακέραιος αριθμός μεταξύ και, συμπεριλαμβανομένων. Το δεν πρέπει να υπερβαίνει το. Η συνάρτηση αυτή πρέπει να καλείται ακριβώς μία φορά. Το κύκλωμα που αναπαριστούν οι πίνακες C, X και Y πρέπει να ικανοποιεί τις συνθήκες που αναφέρονται παραπάνω στην εκφώνηση. Αν κάποια από τις παραπάνω συνθήκες δεν ικανοποιείται, το πρόγραμμά σας θεωρείται ότι δίνει Wrong Answer. Διαφορετικά, το πρόγραμμά σας θεωρείται Accepted και το σκορ υπολογίζεται βάσει της τιμής του (βλ. τα Υποπροβλήματα). Παράδειγμα Έστω, και. Ο βαθμολογητής καλεί create_circuit(4, [1, 2, 1, 3]). Doll (3 of 6)

4 Στο παραπάνω σχήμα φαίνεται ένα κύκλωμα, το οποίο περιγράφεται από την κλήση answer([1, -1, -2, 0, 2], [2, -2], [3, 1]). Οι αριθμοί που εμφανίζονται στο σχήμα είναι οι σειριακοί αριθμοί των συσκευών. Χρησιμοποιούνται δύο διακόπτες. Επομένως. Αρχικά, η κατάσταση και των δύο διακοπτών και είναι 'X'. Η μπάλα ταξιδεύει ως εξής: Όταν η μπάλα εισέρχεται για πρώτη φορά στο διακόπτη είναι 'X'. Επομένως, η μπάλα ταξιδεύει προς τη σκανδάλη διακόπτη αλλάζει σε 'Y'. Όταν η μπάλα εισέρχεται για δεύτερη φορά στο διακόπτη είναι 'Y'. Επομένως, η μπάλα ταξιδεύει προς τη σκανδάλη διακόπτη αλλάζει και πάλι σε 'X'., η κατάστασή του και η κατάσταση του, η κατάστασή του και η κατάσταση του Η μπάλα επιστρέφει για πρώτη φορά στην αφετηρία έχοντας εισέρθει προηγουμένως στις σκανδάλες. Οι καταστάσεις και των δύο διακοπτών και είναι 'X'. Η τιμή του είναι. Επομένως, το κύκλωμα αυτό ικανοποιεί τις συνθήκες. Το αρχείο sample-01-in.txt στο συμπιεσμένο πακέτο αντιστοιχεί σε αυτό το παράδειγμα. Στο συμπιεσμένο πακέτο θα βρείτε επίσης κι άλλα παραδείγματα. Περιορισμοί ( ) Doll (4 of 6)

5 Υποπροβλήματα Το σκορ και οι περιορισμοί για κάθε περίπτωση ελέγχου είναι ως εξής: 1. (2 βαθμοί) Για κάθε ( ), ο ακέραιος εμφανίζεται το πολύ μία φορά στην ακολουθία. 2. (4 βαθμοί) Για κάθε ( ), ο ακέραιος εμφανίζεται το πολύ δύο φορές στην ακολουθία. 3. (10 βαθμοί) Για κάθε ( ),ο ακέραιος εμφανίζεται το πολύ φορές στην ακολουθία. 4. (10 βαθμοί) 5. (18 βαθμοί) 6. (56 βαθμοί) Κανένας επιπρόσθετος περιορισμός. Για κάθε περίπτωση ελέγχου, αν το πρόγραμμά σας θεωρηθεί Accepted, το σκορ σας υπολογίζεται βάσει της τιμής του : Αν, τότε παίρνετε το πλήρες σκορ για αυτή την περίπτωση ελέγχου. Για κάθε περίπτωση ελέγχου στα Υποπροβλήματα 5 και 6, αν, τότε παίρνετε μερική βαθμολογία. Το σκορ για αυτή την περίπτωση ελέγχου είναι, επί το πλήρες σκορ που αντιστοιχεί σε αυτή την περίπτωση ελέγχου. Διαφορετικά, το σκορ είναι. Προσέξτε ότι το σκορ κάθε υποπροβλήματος είναι το ελάχιστο των σκορ όλων των περιπτώσεων ελέγχου του υποπροβλήματος. Υποδειγματικός βαθμολογητής Ο υποδειγματικός βαθμολογητής διαβάζει από την τυπική είσοδο (standard input) ως εξής: γραμμή : γραμμή : Ο υποδειγματικός βαθμολογητής παράγει τρία αποτελέσματα. Πρώτον, εκτυπώνει την απάντησή σας στο αρχείο με όνομα out.txt με την παρακάτω μορφή: γραμμή : γραμμή ( ): C[i] γραμμή ( ): X[j - 1] Y[j - 1] Doll (5 of 6)

6 Δεύτερον, προσομοιώνει τις κινήσεις της μπάλας και εκτυπώνει κατά σειρά τους σειριακούς αριθμούς των συσκευών όπου αυτή εισέρχεται, στο αρχείο με όνομα log.txt. Τρίτον, εκτυπώνει την αξιολόγηση της απάντησής σας στην τυπική έξοδο. Αν το πρόγραμμά σας θεωρηθεί Accepted, ο υποδειγματικός βαθμολογητής εκτυπώνει το και το με την ακόλουθη μορφή: Accepted: S P. Αν το πρόγραμμά σας θεωρηθεί ότι δίνει Wrong Answer, εκτυπώνει Wrong Answer: MSG. Η σημασία του MSG είναι η ακόλουθη: answered not exactly once : Η συνάρτηση answer δεν καλείται ακριβώς μία φορά. wrong array length : Το μήκος του πίνακα C δεν είναι, ή τα μήκη των πινάκων X και Y διαφέρουν. over switches : η τιμή του υπερβαίνει το. wrong serial number : Κάποιο στοιχείο των πινάκων C, X ή Y είναι είτε μικρότερο του ή μεγαλύτερο του. over inversions : Η μπάλα δεν έχει επιστρέψει στην αφετηρία μετά από αλλαγές καταστάσεων των διακοπτών. state 'Y' : Υπάρχει ένας διακόπτης του οποίου η κατάσταση είναι 'Y' όταν η μπάλα επιστρέφει στην αφετηρία για πρώτη φορά. wrong motion : Οι σκανδάλες στις οποίες εισέρχεται η μπάλα είναι διαφορετικές από αυτές της ακολουθίας. Προσέξτε ότι ο υποδειγματικός βαθμολογητής είναι πιθανό να μην κατασκευάσει τα αρχεία out.txt ή/και log.txt αν το πρόγραμμά σας θεωρηθεί ότι δίνει Wrong Answer. Doll (6 of 6)

Highway Tolls. Λεπτομέρειες υλοποίησης. highway

Highway Tolls. Λεπτομέρειες υλοποίησης. highway highway Highway Tolls Στην Ιαπωνία, οι πόλεις συνδέονται μεταξύ τους με ένα δίκτυο δρόμων. Το δίκτυο αποτελείται από πόλεις και δρόμους. Κάθε δρόμος ενώνει δύο διαφορετικές μεταξύ τους πόλεις. Για κάθε

Διαβάστε περισσότερα

Πρόγραμμα όρασης. Στη συνέχεια θα περιγράψουμε πώς δουλεύει το ρομπότ.

Πρόγραμμα όρασης. Στη συνέχεια θα περιγράψουμε πώς δουλεύει το ρομπότ. Πρόγραμμα όρασης Υλοποιείτε ένα πρόγραμμα όρασης για ένα ρομπότ. Κάθε φορά που η κάμερα του ρομπότ βγάζει μία φωτογραφία, αυτή αποθηκεύεται στη μνήμη του ρομπότ ως μία ασπρόμαυρη εικόνα. Κάθε εικόνα είναι

Διαβάστε περισσότερα

International Olympiad in Informatics th July 2014 Taipei, Taiwan Day-2 tasks

International Olympiad in Informatics th July 2014 Taipei, Taiwan Day-2 tasks International Olympiad in Informatics 2014 13-20th July 2014 Taipei, Taiwan Day-2 tasks gondola Language: el-grc Γόνδολα Οι γόνδολες του Mao-Kong είναι ένα από τα αξιοθέατα της Taipei. Το σύστημα με τις

Διαβάστε περισσότερα

turnin Lab2.hs

turnin Lab2.hs ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΓΛΩΣΣΩΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΚΑΔ. ΕΤΟΣ: 2018-19 ΔΙΔΑΣΚΩΝ: Χ.ΝΟΜΙΚΟΣ 2η Σειρά Εργαστηριακών Ασκήσεων Οι εργαστηριακές ασκήσεις είναι

Διαβάστε περισσότερα

turnin Lab4.pro

turnin Lab4.pro ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΓΛΩΣΣΩΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΚΑΔ. ΕΤΟΣ: 2018-19 ΔΙΔΑΣΚΩΝ: Χ.ΝΟΜΙΚΟΣ 4η Σειρά Εργαστηριακών Ασκήσεων Οι εργαστηριακές ασκήσεις είναι

Διαβάστε περισσότερα

Προγραμματισμός ΙI (Θ)

Προγραμματισμός ΙI (Θ) Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα

Διαβάστε περισσότερα

2.5 Συνδεσμολογία Αντιστατών

2.5 Συνδεσμολογία Αντιστατών Κεφάλαιο 2. Ηλεκτρικό Ρεύμα 2.5 Συνδεσμολογία Αντιστατών 1. Τι είναι η ισοδύναμη αντίσταση; Γενικά ονομάζουμε σύστημα (συνδεσμολογία) αντιστατών ένα σύνολο αντιστατών που τους έχουμε συνδέσει με οποιονδήποτε

Διαβάστε περισσότερα

Ακρότατα πίνακα, χωρίς min, max, μόνο με pos

Ακρότατα πίνακα, χωρίς min, max, μόνο με pos Ακρότατα πίνακα, χωρίς min, max, μόνο με pos Θέμα εξετάσεων / 2010 Θέμα εξετάσεων / 2011 Θέμα εξετάσεων / 2013 Θέμα εξετάσεων / 2014 Θέμα εξετάσεων / 2014 ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.)

Διαβάστε περισσότερα

Εργαστήριο 4. Εαρινό Εξάμηνο ΠΡΟΣΟΧΗ: Αρχίστε νωρίς το Εργαστήριο 4. Οι ασκήσεις είναι πιο απαιτητικές από τα προηγούμενα εργαστήρια.

Εργαστήριο 4. Εαρινό Εξάμηνο ΠΡΟΣΟΧΗ: Αρχίστε νωρίς το Εργαστήριο 4. Οι ασκήσεις είναι πιο απαιτητικές από τα προηγούμενα εργαστήρια. Τομέας Υλικού και Αρχιτεκτονικής Υπολογιστών ΗΥ134 - Εισαγωγή στην Οργάνωση και Σχεδίαση Η/Υ 1 Εργαστήριο 4 Εαρινό Εξάμηνο 2012-2013 Στόχοι του εργαστηρίου Χρήση στοίβας Συναρτήσεις ΠΡΟΣΟΧΗ: Αρχίστε νωρίς

Διαβάστε περισσότερα

Διαγράμματα UML στην Ανάλυση. Μέρος Γ Διαγράμματα Επικοινωνίας Διαγράμματα Ακολουθίας Διαγράμματα Μηχανής Καταστάσεων

Διαγράμματα UML στην Ανάλυση. Μέρος Γ Διαγράμματα Επικοινωνίας Διαγράμματα Ακολουθίας Διαγράμματα Μηχανής Καταστάσεων Διαγράμματα UML στην Ανάλυση Μέρος Γ Διαγράμματα Επικοινωνίας Διαγράμματα Ακολουθίας Διαγράμματα Μηχανής Καταστάσεων περιεχόμενα παρουσίασης Διαγράμματα επικοινωνίας Διαγράμματα ακολουθίας Διαγράμματα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΞΗ: ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν

Διαβάστε περισσότερα

Προγραμματισμός ΙI (Θ)

Προγραμματισμός ΙI (Θ) Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΗΜΕΡ.ΑΝΑΘΕΣΗΣ: Δευτέρα 21 Δεκεμβρίου 2015 ΗΜΕΡ.ΠΑΡΑΔΟΣΗΣ: Δευτέρα 25 Ιανουαρίου 2016 Διδάσκοντες:

Διαβάστε περισσότερα

Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ. Εισαγωγή στην γλώσσα προγραμματισμού

Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ. Εισαγωγή στην γλώσσα προγραμματισμού Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ Εισαγωγή στην γλώσσα προγραμματισμού Ακαδημαϊκό έτος 2016-2017, Εαρινό εξάμηνο Οι σημειώσεις βασίζονται στα συγγράμματα: A byte of Python (ελληνική

Διαβάστε περισσότερα

ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ 4-11-07 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ Γ Γενικού Λυκείου (τεχνολογική κατεύθυνση) ΚΕΦ. 2 ο -7 ο : ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ

Διαβάστε περισσότερα

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888 ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΓΛΩΣΣΩΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΚΑΔ. ΕΤΟΣ: 20189 ΔΙΔΑΣΚΩΝ: Χ.ΝΟΜΙΚΟΣ 1η Σειρά Εργαστηριακών Ασκήσεων Οι εργαστηριακές ασκήσεις είναι ατομικές.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά

Διαβάστε περισσότερα

International Olympiad in Informatics 2013. Ο μικρός αδελφός της Μαρίας έχει αφήσει τα παιγνίδια του σκορπισμένα στο πάτωμα του καθιστικού του.

International Olympiad in Informatics 2013. Ο μικρός αδελφός της Μαρίας έχει αφήσει τα παιγνίδια του σκορπισμένα στο πάτωμα του καθιστικού του. International Olympiad in Informatics 2013 6-13 July 2013 Brisbane, Australia Day 2 tasks robots Greek 1.0 Ο μικρός αδελφός της Μαρίας έχει αφήσει τα παιγνίδια του σκορπισμένα στο πάτωμα του καθιστικού

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου Συμπίεση Η συμπίεση δεδομένων ελαττώνει το μέγεθος ενός αρχείου : Εξοικονόμηση αποθηκευτικού χώρου Εξοικονόμηση χρόνου μετάδοσης Τα περισσότερα αρχεία έχουν πλεονασμό στα δεδομένα τους Είναι σημαντική

Διαβάστε περισσότερα

Κατασκευάστε ένα απλό antenna tuner (Μέρος Α )

Κατασκευάστε ένα απλό antenna tuner (Μέρος Α ) Κατασκευάστε ένα απλό antenna tuner (Μέρος Α ) Του Νίκου Παναγιωτίδη (SV6 DBK) φυσικού και ραδιοερασιτέχνη. Ο σκοπός του άρθρου αυτού είναι να κατευθύνει τον αναγνώστη ραδιοερασιτέχνη να κατασκευάσει το

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1. Ένας πίνακας έχει σταθερό μέγεθος, αλλά μεταβαλλόμενο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΟΔΟΣ

ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΟΔΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΜΑΡΤΙΟΣ 2017 ΘΕΜΑΤΑ ΘΕΜΑ 1 Ο Α. Να απαντήσετε στις παρακάτω προτάσεις χαρακτηρίζοντάς τες με το γράμμα Σ

Διαβάστε περισσότερα

Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης

Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Εισαγωγή σε VLSI 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Μανόλης Καλλίγερος (kalliger@aegean.gr)

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 (22 Νοεμβρίου 2017)

ΑΣΚΗΣΗ 1 (22 Νοεμβρίου 2017) ΑΣΚΗΣΗ 1 (22 Νοεμβρίου 2017) Περιγραφή της Άσκησης Ο σκοπός της πρώτης άσκησης είναι κυρίως η εξοικείωση με το περιβάλλον προγραμματισμού του Arduino, γι αυτό και δεν είναι ιδιαίτερα σύνθετη. Αρχικά, θα

Διαβάστε περισσότερα

Λύσεις για τις ασκήσεις του lab5

Λύσεις για τις ασκήσεις του lab5 Εισαγωγή Λύσεις για τις ασκήσεις του lab5 Επειδή φάνηκε να υπάρχουν αρκετά προβλήματα σχετικά με τον τρόπο σκέψης για την επίλυση των προβλημάτων του lab5, θα συνοδεύσουμε τις λύσεις με αρκετές επεξηγήσεις,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 4 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Δείκτες Δομές Το τέταρτο σύνολο

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ 1 ο Γενικό Λύκειο Ηρακλείου Αττικής Σχ έτος 2011-2012 Εργαστήριο Φυσικής Υπεύθυνος : χ τζόκας 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ Η γραφική παράσταση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2. Νόμοι στα ηλεκτρικά κυκλώματα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2. Νόμοι στα ηλεκτρικά κυκλώματα ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2 Νόμοι στα ηλεκτρικά κυκλώματα ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Τοπολογία ηλεκτρικών κυκλωμάτων: Κόμβοι, κλάδοι, βρόχοι. Κανόνες του Kirchhoff Το Ηλεκτρικό Κύκλωμα (Electric Circuit) Το

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Στο διπλανό σχήμα φαίνεται το διάγραμμα ακροδεκτών

Διαβάστε περισσότερα

Επαναληπτικές Διαδικασίες

Επαναληπτικές Διαδικασίες Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 2: Δομή ενός προγράμματος C Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 6 εκεµβρίου 2008 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2008-09 Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 3 ο Μέρος Ηµεροµηνία Παράδοσης:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει

Διαβάστε περισσότερα

Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα)

Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα) Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα) Επικοινωνία Το υποπρόγραμμα δέχεται τιμές από το πρόγραμμα Επιστρέφει,

Διαβάστε περισσότερα

7.1 Επίπεδο δικτύου. Ερωτήσεις. λέξεις κλειδιά:

7.1 Επίπεδο δικτύου. Ερωτήσεις. λέξεις κλειδιά: 7.1 Επίπεδο δικτύου Ερωτήσεις 1. Με ποιες ενέργειες ασχολείται το επίπεδο δικτύου; Ποιες συσκευές συμμετέχουν σε αυτές τις ενέργειες; 2. Ποιο είναι το χαμηλότερο επίπεδο στο μοντέλο OSI που ασχολείται

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Προγραμματισμός ΙI (Θ)

Προγραμματισμός ΙI (Θ) Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017

Διαβάστε περισσότερα

Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος

Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ 4. Προθεσμία: 17/1/14, 22:00

ΣΕΤ ΑΣΚΗΣΕΩΝ 4. Προθεσμία: 17/1/14, 22:00 ΣΕΤ ΑΣΚΗΣΕΩΝ 4 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 Προθεσμία: 17/1/14, 22:00 Περιεχόμενα Διαδικαστικά Οδηγίες Αποστολής Εκφώνηση άσκησης (Στάδιο 0, Στάδιο 1, Στάδιο 2, Στάδιο 3, Στάδιο

Διαβάστε περισσότερα

HY-252 Αντικειµενοστραφής Προγραµµατισµός. Χειµερινό Εξάµηνο 2010 ιδάσκων: Χριστοφίδης Βασίλης. Ηµεροµηνία Παράδοσης: 15/10/2010

HY-252 Αντικειµενοστραφής Προγραµµατισµός. Χειµερινό Εξάµηνο 2010 ιδάσκων: Χριστοφίδης Βασίλης. Ηµεροµηνία Παράδοσης: 15/10/2010 HY-252 Αντικειµενοστραφής Προγραµµατισµός Χειµερινό Εξάµηνο 2010 ιδάσκων: Χριστοφίδης Βασίλης 1 η Σειρά Ασκήσεων Ηµεροµηνία Παράδοσης: 15/10/2010 Άσκηση 1 Loops, IO (20%) Όνοµα αρχείου : Assign1_username.java

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΠΑΡΑΛΛΗΛΗ

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08 Constructors (Κατασκευαστές) Ειδικός τύπος μεθόδων που δημιουργούν αντικείμενα μιας κλάσης και: Εκτελούνται κατά την αρχικοποίηση των αντικειμένων

Διαβάστε περισσότερα

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8 Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος

Διαβάστε περισσότερα

Χρησιμοποιώντας διαδικασίες

Χρησιμοποιώντας διαδικασίες Τετράδιο μαθητή ΘΕ19: Διαδικασίες Όνομα(τα): Όνομα Η/Υ: Τμήμα: Ημερομηνία: Χρησιμοποιώντας διαδικασίες Ξεκινήστε το Χώρο Δραστηριοτήτων, επιλέξτε τη θεματική ενότητα: Διαδικασίες και επιλέξτε την πρώτη

Διαβάστε περισσότερα

Η βασική συνάρτηση προγράμματος main()

Η βασική συνάρτηση προγράμματος main() Η βασική συνάρτηση προγράμματος main() HEADER FILES main(){ ΔΗΛΩΣΕΙΣ ΜΕΤΑΒΛΗΤΩΝ ΕΝΤΟΛΕΣ (σειριακές, επιλογής ή επανάληψης) ΕΠΙΣΤΡΕΦΟΜΕΝΟΣ ΤΥΠΟΣ (return 0;) Συναρτήσεις Η συνάρτηση είναι ένα υποπρόγραμμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 3: Πίνακες, βρόχοι, συναρτήσεις 1 Ιουνίου 2017 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης Η συνάρτηση printf() Η συνάρτηση printf() χρησιμοποιείται για την εμφάνιση δεδομένων στο αρχείο εξόδου stdout (standard output stream), το οποίο εξ ορισμού συνδέεται με την οθόνη Η συνάρτηση printf() δέχεται

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Διαδικασίες και συναρτήσεις. 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1

ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Διαδικασίες και συναρτήσεις. 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Διαδικασίες και συναρτήσεις 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1 Βασικές έννοιες Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ)

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ) ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Περιγραφή της Μεθόδου ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΥ

ΚΕΦΑΛΑΙΟ 3. Περιγραφή της Μεθόδου ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΥ ΚΕΦΑΛΑΙΟ 3 Περιγραφή της Μεθόδου Το αντικείμενο αυτής της εργασίας είναι η χρήση μιας μεθόδου προσέγγισης συναρτήσεων που έχει προταθεί από τον hen-ha huang και ονομάζεται Ασαφώς Σταθμισμένη Παλινδρόμηση

Διαβάστε περισσότερα

Κεφάλαιο 8. Αριθμητική Λογική μονάδα

Κεφάλαιο 8. Αριθμητική Λογική μονάδα Κεφάλαιο 8 Αριθμητική Λογική μονάδα 8.1 Εισαγωγή Στη μηχανική υπολογιστών η αριθμητική/λογική μονάδα (ALU) είναι ένα ψηφιακό κύκλωμα το οποίο εκτελεί αριθμητικούς και λογικούς υπολογισμούς. Η ALU είναι

Διαβάστε περισσότερα

Master Mind εφαρμογή στη γλώσσα προγραμματισμού C

Master Mind εφαρμογή στη γλώσσα προγραμματισμού C Master Mind εφαρμογή στη γλώσσα προγραμματισμού C Φεβρουάριος/Μάρτιος 2013 v. 0.1 Master-mind: κανόνες παιχνιδιού Στο master mind χρειάζεται να παράγονται κάθε φορά 4 τυχαία σύμβολα από ένα πλήθος 6 διαφορετικών

Διαβάστε περισσότερα

Theory Greek (Cyprus) Μη γραμμική δυναμική σε Ηλεκτρικά Κυκλώματα (10 μονάδες)

Theory Greek (Cyprus) Μη γραμμική δυναμική σε Ηλεκτρικά Κυκλώματα (10 μονάδες) Q2-1 Μη γραμμική δυναμική σε Ηλεκτρικά Κυκλώματα (10 μονάδες) Παρακαλείστε, να διαβάσετε τις Γενικές Οδηγίες που βρίσκονται σε ξεχωριστό φάκελο πριν ξεκινήσετε την επίλυση αυτού του προβλήματος. Εισαγωγή

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 16 Συνεχή ρεύματα και κανόνες του Kirchhoff ΦΥΣ102 1 Ηλεκτρεγερτική δύναμη Ένα ηλεκτρικό

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Α2. Να γράψετε στο τετράδιο σας τον αριθμό 1-4 κάθε πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή.

Α2. Να γράψετε στο τετράδιο σας τον αριθμό 1-4 κάθε πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ ( 7) ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο

Διαβάστε περισσότερα

FAIL PASS PASS οριακά

FAIL PASS PASS οριακά AEM 0001 0002 COMMENTS οριακά -Το πρόγραµµά σου δουλεύει λάθος για τις εισόδους: 7 -Δεν έχεις µεριµνήσει για την περίπτωση step=1. Μπορούσες να θεωρήσεις ειδική περίπτωση και να την υλοποιείς σε άλλον

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και

Διαβάστε περισσότερα

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7 Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις που θα συναντήσετε στο κεφάλαιο 7. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται στο IP Fragmentation,

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

1. Δεν μπορεί να γίνει κλήση μίας διαδικασίας μέσα από μία συνάρτηση.

1. Δεν μπορεί να γίνει κλήση μίας διαδικασίας μέσα από μία συνάρτηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό για καθεμία από τις παρακάτω

Διαβάστε περισσότερα

C D C D C D C D A B

C D C D C D C D A B Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ

ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ 6 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα 1 ο : Άθροισμα ζευγών ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ [30 Μονάδες] Δίνεται μία ακολουθία Ν ακέραιων αριθμών. Θέλουμε να μπορούμε να απαντάμε στο ερώτημα «υπάρχει ζεύγος

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό

Διαβάστε περισσότερα

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Ορίζουμε τη συναρμογή δύο γλωσσών Α και Β ως ΑΒ = { uv u A, v B }. (α) Έστω Α = {α,β,γ} και Β =. Να περιγράψετε τη γλώσσα ΑΒ. (β) Θεωρήστε τις γλώσσες L, M και N. Να δείξετε

Διαβάστε περισσότερα

Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος

Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ KΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ http://www.cslab.ece.ntua.gr Λειτουργικά

Διαβάστε περισσότερα

Συναρτησιακός Προγραμματισμός 2008 Λύσεις στο Πρώτο Φύλλο Ασκήσεων

Συναρτησιακός Προγραμματισμός 2008 Λύσεις στο Πρώτο Φύλλο Ασκήσεων Συναρτησιακός Προγραμματισμός 2008 Λύσεις στο Πρώτο Φύλλο Ασκήσεων 1. Χρησιμοποιείστε λ-εκφράσεις και τη συνάρτηση sumf στις Σημ.1, Ενότ.3.5, για να εκφράσετε το P 10 i=1p i j=1 (i + j)2, χωρίς να ορίσετε

Διαβάστε περισσότερα

Βρόχοι. Εντολή επανάληψης. Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή. Πρόβλημα. Πώς θα υπολογίσουμε το άθροισμα των ακέραιων ;

Βρόχοι. Εντολή επανάληψης. Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή. Πρόβλημα. Πώς θα υπολογίσουμε το άθροισμα των ακέραιων ; Εντολή επανάληψης Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή Πρόβλημα Πώς θα υπολογίσουμε το άθροισμα των ακέραιων 1 5000; Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Αυτοματισμοί και Συστήματα Αυτομάτου Ελέγχου. Ενότητα 5 Ανάπτυξη Προγράμματος σε Γλώσσα Λίστας Εντολών

Αυτοματισμοί και Συστήματα Αυτομάτου Ελέγχου. Ενότητα 5 Ανάπτυξη Προγράμματος σε Γλώσσα Λίστας Εντολών Αυτοματισμοί και Συστήματα Αυτομάτου Ελέγχου Ενότητα 5 Ανάπτυξη Προγράμματος σε Γλώσσα Λίστας Εντολών ΠΕΡΙΕΧΟΜΕΝΑ 5.1 Βασικές εντολές προγραμματισμού στη γλώσσα λίστας εντολών. 5.2 Αναπτύσσοντας τα πρώτα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX)

ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) 8.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των πολυπλεκτών και αποπλεκτών και της χρήσης αυτών των ολοκληρωμένων κυκλωμάτων (Ο.Κ.)

Διαβάστε περισσότερα

Μάντεψε τον Αριθμό. Έχω Ένα Μυστικό. Το Βρήκα;

Μάντεψε τον Αριθμό. Έχω Ένα Μυστικό. Το Βρήκα; Μάντεψε τον Αριθμό Ένα από τα πρώτα προγράμματα που συνηθίζεται να φτιάχνουν οι μαθητευόμενοι προγραμματιστές είναι ένα παιχνίδι στο οποίο ο παίκτης προσπαθεί να μαντέψει τον μυστικό αριθμό που έχει σκεφτεί

Διαβάστε περισσότερα