ΚΕΦΑΛΑΙΟ 3. Περιγραφή της Μεθόδου ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΥ
|
|
- Αποστόλης Αργυριάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 3 Περιγραφή της Μεθόδου Το αντικείμενο αυτής της εργασίας είναι η χρήση μιας μεθόδου προσέγγισης συναρτήσεων που έχει προταθεί από τον hen-ha huang και ονομάζεται Ασαφώς Σταθμισμένη Παλινδρόμηση Διανυσμάτων Στήριξης με Ασαφή Διαμέριση (Fuzzy Weghted Support Vector Regresson wth a Fuzzy Partton) [9]. Η συγκεκριμένη μέθοδος καταφέρνει να αποδώσει σωστά την τοπική συμπεριφορά του μοντέλου (δηλαδή τη διαφορά στην απόκριση ανάμεσα σε δύο ή παραπάνω εισόδους, οι οποίες διαφέρουν ελάχιστα μεταξύ τους) χάρις στην Ασαφή Ομαδοποίηση που πραγματοποιεί στο χώρο της εισόδου. Έτσι, το αρχικό πρόβλημα χωρίζεται σε πολλά μικρότερα προβλήματα, γεγονός το οποίο έχει σαν αποτέλεσμα την εκτενέστερη μελέτη του συνόλου εκπαίδευσης, καθώς και την ανεξάρτητη επεξεργασία της κάθε ομάδας δειγμάτων με μια ξεχωριστή Μηχανή Διανυσμάτων Στήριξης, τύπου ε-. Από την άλλη μεριά όμως, η εξειδίκευση των μοντέλων ε- σε μία συγκεκριμένη περιοχή (ομάδα) του συνόλου των δειγμάτων εκπαίδευσης μπορεί να έχει σαν αποτέλεσμα την εμφάνιση οριακών φαινομένων. Οριακό φαινόμενο υφίσταται όταν υπάρχουν απότομες και μεγάλες διαφορές στην απόκριση μεταξύ σημείων που ανήκουνε σε γειτονικές ομάδες. Για να εξαλειφθούν τα οριακά φαινόμενα, η προτεινόμενη μέθοδος συνθέτει με το ασαφές μοντέλο Taag-Sugeno-Kang τις αποκρίσεις των επιμέρους ε- για να δημιουργήσει μια ενιαία προσέγγιση του μοντέλου που μελετάμε. Για να επιβεβαιωθούν τα παραπάνω, έχουν γίνει και θα παρουσιαστούν στο επόμενο κεφάλαιο συγκρίσεις της μεθόδου του hen-ha huang με τη μέθοδο της γενικής παλινδρόμησης με μία μηχανή ε- (Global ). Τα πειραματικά αποτελέσματα δείχνουν ότι ο προτεινόμενος αλγόριθμος (Fuzzy Weghted wth a Fuzzy Partton), όχι μόνο μπορεί να έχει πιο ακριβή αποτελέσματα, αλλά απαιτεί και λιγότερο χρόνο για να υπολογίσει την απόκριση του συστήματος από τον Global. Σχήμα 3. α) Σύστημα με άσχημη απόδοση της τοπικής συμπεριφοράς του μοντέλου: Η μπλε γραμμή αποτελείται από το σύνολο εκπαίδευσης, ενώ η μαύρη γραμμή είναι η απόκριση του μοντέλου. β) Σύστημα με οριακά φαινόμενα: Η μπλε γραμμή αποτελείται από το σύνολο εκπαίδευσης, η μαύρη γραμμή είναι η απόκριση της ομάδας, η κόκκινη γραμμή είναι η απόκριση της ομάδας.
2 Πιο συγκεκριμένα, η προτεινόμενη μέθοδος ακολουθεί τα παρακάτω βήματα:. Το σύνολο εκπαίδευσης χωρίζεται σε υποσύνολα (ομάδες) χρησιμοποιώντας τον αλγόριθμο ασαφούς ομαδοποίησης Fuzzy -Means. Ο αριθμός των δεδομένων που θα περιέχει το κάθε υποσύνολο καθορίζεται αυτόματα από τον FM. Κάθε υποσύνολο χαρακτηρίζεται από το δικό του κέντρο και από το δικό του πλάτος ανά διάσταση εισόδου s. Για παράδειγμα, αν έχουμε δισδιάστατη είσοδο, τότε το 3 είναι το πλάτος του 3 ου 3 είναι το πλάτος του 3 ου υποσυνόλου στη διάστα- υποσυνόλου στη διάσταση-, ενώ το ση-.. Δημιουργούνται τοπικά μοντέλα παλινδρόμησης (Local Regresson Models-LRMs) με χρήση της μεθόδου του ε-. 3. Η τοπικές αποκρίσεις των LRMs χρησιμοποιούνται για τη σύνθεση της γενικής απόκρισης Overall Output της μεθόδου μέσω ενός ασαφώς σταθμισμένου μηχανισμού. Ο μηχανισμός αυτός χρησιμοποιεί τριγωνικές συναρτήσεις συμμετοχής για να σταθμίσει την απόκριση του κάθε LRM, χρησιμοποιώντας το κέντρο και το πλάτος του αντίστοιχου υποσυνόλου. Σχήμα 3. Διάγραμμα της διαδικασίας της προτεινόμενης μεθόδου 3
3 3. Ασαφής Ομαδοποίηση Αν ανατρέξει κανείς στη βιβλιογραφία, υπάρχουν πολλοί αλγόριθμοι ομαδοποίησης. Αυτός που χρησιμοποιείται πιο συχνά, όπως επίσης και αυτός που θα χρησιμοποιηθεί στη δεδομένη εργασία, είναι ο Fuzzy -Means. Έχουμε λοιπόν αρχικά p δεδομένα εκπαίδευσης της μορφής: x, y,,..., p, με είσοδο q διαστάσεων: x x, x,..., x και μονοδιάστατη έξοδο y q. Αυτά τα δεδομένα πρέπει να ομαδοποιηθούν σε ομάδες, έτσι ώστε να ελαχιστοποιηθεί η συνάρτηση: Όπου: p m, (3.) J u x m m είναι μια σταθερά βάρους, δηλαδή ένας πραγματικός αριθμός μεγαλύτερος του ένα u είναι ο βαθμός συμμετοχής του σημείου x στην ομάδα είναι το κέντρο της ομάδας Η ασαφής ομαδοποίηση διεκπεραιώνεται με επαναληπτικές βελτιστοποιήσεις της 3. σύμφωνα με τα ακόλουθα βήματα:. Επιλέγονται τα στοιχεία που πρέπει να εισαχθούν στον αλγόριθμο, δηλαδή: Ο αριθμός των ομάδων Ο μέγιστος αριθμός επαναλήψεων του αλγορίθμου L Η σταθερά m Το κριτήριο τερματισμού του αλγορίθμου 0. Αρχικοποιούνται τα κέντρα των ομάδων: B,,..., B είναι ο πίνακας που περιέχει τα κέντρα των ομάδων. 4
4 3. Στην l επανάληψη του αλγορίθμου (όπου l,,3,..., L ), υπολογίζονται οι βαθμοί συμμετοχής ως εξής: u l x x για p και. l u l m l είναι ο βαθμός συμμετοχής του σημείου στην ομάδα. (3.) 4. Υπολογίζονται τα κέντρα των ομάδων: p m l p m l u x l u (3.3) 5. Αν πληρείται το κριτήριο Β Β, τότε ο αλγόριθμος τερματίζει. Διαφορετικά, θέτει l l και εφόσον l l l L, επιστρέφει στο βήμα Δημιουργία Υποσυνόλων Εκπαίδευσης Με τον τερματισμό του αλγορίθμου της ασαφούς ομαδοποίησης έχουμε αντιστοιχίσει σε κάθε δείγμα του συνόλου εκπαίδευσης τιμές u, οι οποίες είναι οι βαθμοί συμμετοχής του σημείου σε καθεμία από της ομάδες. Στόχος μας όμως είναι η παραγωγή υποσυνόλων εκπαίδευσης με συγκεκριμένα όρια. Αυτό το πετυχαίνουμε υπολογίζοντας το πλάτος του κάθε υποσυνόλου σε όλες τις διαστάσεις της εισόδου x, ως εξής: p m s s u x s p m u s,,... q,,..., (3.4) 5
5 Συνεπώς, έχοντας ακριβή γνώση των κέντρων s και των πλατών, διαχωρίζουμε το αρχικό σύνολο εκπαίδευσης σε υποσύνολα σύμφωνα με τη σχέση: s s s s s x, y x ίy,,..., ps,,..., q,,..., (3.5) όπου η παράμετρος επικάλυψης είναι μία σταθερά. Όπως γίνεται αντιληπτό, η περιοχή επικάλυψης των υποσυνόλων εκπαίδευσης ελέγχεται από την. Αύξηση της τιμής της σημαίνει αύξηση του μεγέθους των υποσυνόλων. Σχήμα 3.3 Η Σχέση των υποσυνόλων με τα,,. Με (+) συμβολίζονται τα σημεία του συνόλου εκπαίδευσης, τα οποία σε αυτή την περίπτωση έχουν δυσδιάστατη είσοδο (q=). Επίσης, έχουμε κάνει ομαδοποίηση για =3 ομάδες, άρα προκύπτουν τρία υποσύνολα εκπαίδευσης. Τα όρια των υποσυνόλων συμβολίζονται με τις συνεχείς γραμμές: Υποσύνολο - Κόκκινο, Υποσύνολο - Πράσινο, Υποσύνολο 3 Μωβ 6
6 3.3 Τοπικά Μοντέλα Παλινδρόμησης με ε- Στην προηγούμενη ενότητα μελετήσαμε τον τρόπο με τον οποίο μπορούμε να φτιάξουμε υποσύνολα εκπαίδευσης με συγκεκριμένα όρια. Έτσι δημιουργήσαμε μικρότερα και ανεξάρτητα προβλήματα παλινδρόμησης τα οποία εξειδικεύονται σε συγκεκριμένες περιοχές του αρχικού συνόλου εκπαίδευσης. Σε καθένα από αυτά τα υποσύνολα θα εφαρμόσουμε ένα τοπικό μοντέλο προσέγγισης συνάρτησης ε- (βλ. ενότητα.4) με πυρήνα RBF (βλ. εξίσωση.). Συνεπώς, η απόκριση του τοπικού μοντέλου θα συμβολίζεται με LRM και σύμφωνα με την εξίσωση.0 θα είναι: p LRM a a K x, x b x,,..., (3.6) Όπου:,,, p είναι το πλήθος των δεδομένων (δειγμάτων) εκπαίδευσης που βρίσκονται μέσα στο υποσύνολο a, a, και b είναι οι παράμετροι της μεθόδου ε- για το υποσύνολο. Όπως είναι φυσιολογικό, μεγάλο ρόλο στην απόκριση των LRM παίζει το σύνολο των παραμέτρων,, του όπου: είναι η τυπική απόκλιση του πυρήνα RBF (βλ. εξίσωση.) είναι η σταθερά που καθορίζει το σημείο που συσχετίζει το εμπειρικό σφάλμα με την πολυπλοκότητα είναι το πλάτος της ε-ζώνης Το ίδιο σύνολο παραμέτρων,, χρησιμοποιείται για όλα τα υποσύνολα. Επίσης, για να είναι δίκαια και σωστή η σύγκριση της προτεινόμενης μεθόδου με τη γενική μέθοδο παλινδρόμησης με ένα (Global ), δεν αλλάζουμε τις τιμές των παραπάνω παραμέτρων. 7
7 3.4 Εξαγωγή της ολικής απόκρισης του συστήματος Η προτεινόμενη μέθοδος βασίζεται πάνω στο μοντέλο TSK (Taag-Sugeno-Kang) που περιγράψαμε στην ενότητα.5. Το ασαφές σύστημα συμπερασμού TSK μπορεί να συνδυάσει πολλά απλά υποπροβλήματα και να εξάγει την ολική απόκριση του συστήματος. Όπως έχει προαναφερθεί, το μοντέλο TSK βασίζεται σε ένα σετ από κανόνες IF-THEN που έχουν τη μορφή: R IFx s A and andx s A THENy a a x a x (3.7) q q q 0 q για,,...,. Στην παραπάνω σχέση είναι ο αριθμός των κανόνων, τα,..., a a0 a q είναι το σετ παραμέτρων του κανόνα. A s είναι ασαφή σύνολα, και Η εκτιμώμενη απόκριση του TSK δίνεται από τον Απο-ασαφοποιητή Σταθμισμένων Κέντρων. Έστω μια είσοδος Συστήματος TSK είναι: x x x q q U. Τότε η έξοδος f ( x) V του Ασαφούς y f ( x) y w w (3.8) όπου τα βάρη w υπολογίζονται από τη σχέση: w q ( xs ) (3.9) s A s είναι συναρτήσεις συμμετοχής. Όπου οι ( ) A x s s 8
8 Πώς εφαρμόζεται το μοντέλο TSK για την υλοποίηση της προτεινόμενης μεθόδου; Για να γίνει κατανοητός ο τρόπος εφαρμογής του μοντέλου TSK για την υλοποίηση της προτεινόμενης μεθόδου, θα παρουσιαστεί ένα παράδειγμα με p δείγματα εκπαίδευσης x, y, όπου x x U x (άρα q διαστάσεις). Θα ομαδοποιήσουμε τα δεδομένα σε 3 ομάδες και θα περιγράψουμε την ολική απόκριση του συστήματος με τη σύνθεση των αποκρίσεων των υποσυνόλων που θα δημιουργηθούν. Έστω ότι το σύνολο εκπαίδευσης έχει την παρακάτω είσοδο: Σχήμα 3.4 Είσοδος του Συνόλου Εκπαίδευσης Σύμφωνα με όσα είπαμε στην ενότητα 3., ο αλγόριθμος χωρίζει το σύνολο εκπαίδευσης στα παρακάτω υποσύνολα F,G,H: Σχήμα 3.5 Διαχωρισμός του Συνόλου Εκπαίδευσης σε =3 υποσύνολα 9
9 Εφόσον έχουμε 3 υποσύνολα, θα σχεδιαστούν 3 ασαφείς κανόνες IF-THEN: : 3 3 : 3 R : f x sf andx sf theny LRM x R f x s G and x s G then y LRM x R f x s H and x s H then y LRM x Όπου LRM x σύμφωνα με την εξίσωση 3.6 είναι η εκτιμώμενη απόκριση του υποσυνόλου χρησιμοποιώντας μία μηχανή διανυσμάτων στήριξης ε-. LRM Για να συνθέσουμε όμως τις επιμέρους αποκρίσεις, χρειάζεται να έχουμε γνώση του βαθμού σύμφωνα με τον οποίο ένα δείγμα εκπαίδευσης ανήκει στο καθένα από τα 3 υ- ποσύνολα. Αυτό το πετυχαίνουμε ως εξής: Με βάση τα κέντρα και τα πλάτη, των υποσυνόλων, δημιουργούνται για,..., οι τριγωνικές συναρτήσεις συμμετοχής: Σχήμα 3.6 Τριγωνικές Συναρτήσεις συμμετοχής για τον υπολογισμό των βαρών w s του σημείου x. 30
10 w x για s s Από τις τριγωνικές συναρτήσεις συμμετοχής παίρνουμε τα βάρη,,..., p,,,...,, s,..., q σύμφωνα με τον τύπο: w x s s s s s s max mn x, x,0 s s s s s s s s (3.0) Ο βαθμός στον οποίο ανήκει το σημείο x στο υποσύνολο δίνεται από το γινόμενο: W x w x w x w x q q (3.) Η γενική εκτιμώμενη απόκριση του προτεινόμενου Ασαφώς Σταθμισμένου με Ασαφή Διαμέριση (Fuzzy Weghted wth Fuzzy Partton) δίνεται από τον παρακάτω απόασαφοποιητή: yˆ x W x LRM x W x (3.) Επιστρέφοντας στο παράδειγμα του σχήματος 3.6,σύμφωνα με την σχέση 3.0 βλέπουμε ότι: για το ασαφές σύνολο F, το σημείο x έχει βάρη: w, w για το ασαφές σύνολο G, το σημείο x έχει βάρη: w, w για το ασαφές σύνολο H 3, το σημείο x : Συνεπώς, σύμφωνα με τη σχέση 3. το σημείο x Έχει βαθμό συμμετοχής στο σύνολο F Έχει βαθμό συμμετοχής στο σύνολο G Έχει βαθμό συμμετοχής στο σύνολο H 3 έχει βάρη: w3 x w x W x w w W x w w W x : : : 0 Η εκτιμώμενη απόκριση του x δίνεται με αντικατάσταση στη σχέση 3.: 3 W x LRM x W x LRM x W3 x LRM x yˆ x W x W x W3 x 3 w w LRM x w w LRM x 0 LRM x w w w w 0 0, 0 3
11 3.5 Περιγραφή της Μεθόδου σε Μορφή Αλγόριθμου Βήμα ) Όρισε το πλήθος των ομάδων και των τοπικών μοντέλων παλινδρόμησης LRM, καθώς και την παράμετρο επικάλυψης. Βήμα ) Με τον αλγόριθμο FM υπολόγισε τους βαθμούς συμμετοχής u (εξίσωση 3.), τα κέντρα των ομάδων (εξίσωση 3.3) Βήμα 3) Αν δεν ικανοποιείται το κριτήριο τερματισμού επέστρεψε στο Βήμα ), διαφορετικά προχώρησε στο Βήμα 4) s Βήμα 4) Υπολόγισε τα πλάτη (εξίσωση 3.4). Με βάση τα πλάτη και τα κέντρα των ομάδων, κατασκεύασε τα υποσύνολα εκπαίδευσης (σχέση 3.5) Βήμα 5) Καθόρισε το σετ παραμέτρων,, για τη μέθοδο ε- Βήμα 6) Υπολόγισε την απόκριση κάθε τοπικού μοντέλου παλινδρόμησης LRM με τη μέθοδο ε- Βήμα 7) Υπολόγισε τη απόκριση του FW wth fuzzy partton χρησιμοποιώντας τη σχέση 3. με τον ασαφώς σταθμισμένο μηχανισμό της σχέσης 3. 3
ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j
Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s
4.4 Βάσεις Δεδομένων με πολλές Μεταβλητές
4.4 Βάσεις Δεδομένων με πολλές Μεταβλητές Σε αυτή την ενότητα θα παρουσιάσουμε μερικά παραδείγματα με βάσεις δεδομένων που έχουν μονοδιάστατη έξοδο και πολυδιάστατη είσοδο. Οι βάσεις δεδομένων προέρχονται
ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM
ΚΕΦΑΛΑΙΟ 5 Matlab GUI για FWSVM και Global SVM Προκειμένου να γίνουν οι πειραματικές προσομοιώσεις του κεφαλαίου 4, αναπτύξαμε ένα γραφικό περιβάλλον (Graphical User Interface) που εξασφαλίζει την εύκολη
ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x
ΚΕΦΑΛΑΙΟ 1 Ασαφή Συστήματα Η τεχνολογική πρόοδος των τελευταίων ετών επέβαλλε τη δημιουργία συστημάτων ικανών να εκτελέσουν προσεγγιστικούς συλλογισμούς, παρόμοιους με αυτούς του ανθρώπινου εγκέφαλου.
Επαναληπτικές Διαδικασίες
Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας
Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
Εξαγωγή κανόνων από αριθµητικά δεδοµένα
Εξαγωγή κανόνων από αριθµητικά δεδοµένα Συχνά το σύστηµα που θέλουµε να µοντελοποιήσουµε η να ελέγξουµε αντιµετωπίζεται ως µαύρο κουτί και η πληροφορία για τη λειτουργία του διατίθεται υπό µορφή ζευγών
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Σειρά Προβλημάτων 1 Λύσεις
ΕΠΛ: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Θεωρείστε τις γλώσσες Α = { n n } και Β = {w η w είναι λέξη επί του αλφαβήτου {,} τ.ώ. w }. (α) Για κάθε μια από τις πιο κάτω γλώσσες
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Στατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α είναι f 1, για κάθε. Μονάδες
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ
ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ Εισαγωγή Τεχνικές διαχωριστικής ομαδοποίησης: Ν πρότυπα k ομάδες Ν>>k Συνήθως k καθορίζεται από χρήστη Διαχωριστικές τεχνικές: επιτρέπουν πρότυπα να μετακινούνται από ομάδα σε
Εργασία για το μεταπτυχιακό μάθημα Παράλληλοι υπολογισμοί από τον φοιτητή Μουζακίδη Αλέξανδρο AM M 853
Εργασία για το μεταπτυχιακό μάθημα Παράλληλοι υπολογισμοί από τον φοιτητή Μουζακίδη Αλέξανδρο AM M 853 Θέμα Παράλληλη Αριθμητική Επίλυση Μερικών Διαφορικών Εξισώσεων με τις μεθόδους Jacob και Jacob over
Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;
Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης
Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.
ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε
ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις
ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ
. ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο
Δυναμικός προγραμματισμός για δέντρα
ΘΕ5 Ιδιότητες Δέντρων και Αναδρομή για Δέντρα Δυναμικός προγραμματισμός για δέντρα Έστω ότι, για k=1,..., m, το γράφημα Γ k = (V k, E k ) είναι δέντρο. Έστω w V 1... V m, z k V k, για k=1,..., m. Συμβολίζουμε
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε
ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 5 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))
Υπολογισμοί με Μ.Τ. Εστω M = (K, Σ, δ, s, {y, n}) μια Μ.Τ. Κάθε συνολική κατάσταση τερματισμού της οποίας η κατάσταση τερματισμού είναι το y, θα ονομάζεται συνολική κατάσταση αποδοχής, ενώ αν η κατάσταση
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες
Η Δομή Επανάληψης Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Οι 2 πρώτες διδακτικές ώρες στην τάξη Η τρίτη διδακτική ώρα στο εργαστήριο Γενικός Διδακτικός Σκοπός Ενότητας Να εξοικειωθούν
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,
Ζητήματα ηήμ με τα δεδομένα
Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 10: Προσέγγιση μειωμένου φορτίου
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 0: Προσέγγιση μειωμένου φορτίου Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1)
3.1. Εισαγωγή Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) Αν ϑελήσουμε να υπολογίσουμε το έργο της δύναμης αυτής μεταξύ δύο
Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ
Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 11: Είδη Ταξινομήσεων Επιβλεπόμενες Ταξινομήσεις Ακρίβειες.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 11: Είδη Ταξινομήσεων Επιβλεπόμενες Ταξινομήσεις Ακρίβειες. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΕΤΑΡΤΗ ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Περιεχόμενα. 2.1 Εισαγωγή Προγενέστερη έρευνα Ανάπτυξη υποδειγμάτων παραποίησης Πρόλογος... 11
Περιεχόμενα Πρόλογος... Κεφάλαιο Παραποίηση λογιστικών καταστάσεων και ελεγκτική... 7. Ιστορικά στοιχεία... 7.2 Ελεγκτικά λάθη... 20.3 Ορισμοί και ερμηνεία της έννοιας της παραποίησης λογιστικών καταστάσεων...
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Λύσεις 4ης Σειράς Ασκήσεων
Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής
Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΦΑΣΜΑΤΙΚΕΣ ΥΠΟΓΡΑΦΕΣ - ΤΑΞΙΝΟΜΗΣΕΙΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως,
Ε..Ε. ΙI ΑΠΑΓΟΡΕΥΜΕΝΗΕΡΕΥΝΑ TABU SEARCH ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ MANAGEMENT SCIENCE IN PRACTICE II
ΑΠΑΓΟΡΕΥΜΕΝΗΕΡΕΥΝΑ TABU SEARCH ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΑΠΑΓΟΡΕΥΜΕΝΗ ΕΡΕΥΝΑ TABU SEARCH ΛΟΓΙΚΗ ΑΠΑΓΟΡΕΥΜΕΝΗΣ ΈΡΕΥΝΑΣ: Όταν ο άνθρωπος επιχειρεί να λύσει προβλήµατα, χρησιµοποιεί την εµπειρία του και τη µνήµη
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 2-22 Support vector machies (συνέχεια) Support vector machies (συνέχεια) Usupervised learig: Clusterig ad Gaussia mixtures Kerel fuctios: k( xx, ') = ϕ ( x) ϕ( x
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα
Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό
Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα
Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Δυναμικός Προγραμματισμός Δυναμικός Προγραμματισμός 1 Περίληψη
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.
Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.
Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης
Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων. Βασίλης Γαγάνης
Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων Μέθοδοι μηχανικής εκμάθησης Εύρεση μαθηματικής έκφρασης μοντέλου (κανόνα) ο κανόνας διέπει το υπό μελέτη πρόβλημα ανάπτυξη
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
8 ΧΡΟΝΙ ΕΠΕΙΡΙ ΣΤΗΝ ΕΠΙΔΕΥΣΗ ΘΗΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΓΕΝΙΗΣ ΠΙΔΕΙΣ ΘΕΤ ΘΕ 1. ν οι συναρτήσεις f και g είναι παραγωγίσιμες στο, να αποδείξετε ότι f x g x f x g x, για κάθε x ονάδες 7. Έστω μια συνάρτηση
P(A ) = 1 P(A). Μονάδες 7
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Αναπαράσταση δεδομένων Υπολογιστικά συστήματα: Στρώματα 1 επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Τύποι δεδομένων 2 Τα δεδομένα
Επαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Ο Ι ΚΟ Ν Ο Μ Ι Κ Α / Σ ΤΑΤ Ι Σ Τ Ι Κ Η
Ο Ι ΚΟ Ν Ο Μ Ι Κ Α / Σ ΤΑΤ Ι Σ Τ Ι Κ Η Σ χ ε τ ι κ ά μ ε τ ι ς ε κ τ ι μ ή σ ε ι ς - σ υ ν ο π τ ι κ ά Σεμινάριο Εκτιμήσεων Ακίνητης Περιουσίας, ΣΠΜΕ, 2018 ΣΤΑΤΙΣΤΙΚΗ Σ Χ Ε Τ Ι Κ Α Μ Ε Τ Ι Σ Ε Κ Τ Ι Μ
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Ενημέρωση αλλαγών στην αξιολόγηση ΟΠΣ_ΕΣΠΑ Εγκατάσταση στην Παραγωγή: 13/9/2010
Ενημέρωση αλλαγών στην αξιολόγηση ΟΠΣ_ΕΣΠΑ ΠΕΡΙΕΧΟΜΕΝΑ Ι. Αλλαγές στο ΣΤΑΔΙΟ Α στην αξιολόγηση (εξέταση πληρότητας) I.1. Προσδιορισμός ερωτημάτων λίστας εξέτασης Λ1 στο ΕΠ I.2. Προσδιορισμός της λίστας
Κατανεμημένα Συστήματα Ι
Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη