Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων
|
|
- Θέμις Κρεστενίτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας 08 Ιουνίου 2011 Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου 2010 Εξεταστική περίοδος Σεπτεμβρίου 2010 Περιεχόμενο εξετάσεων Θεωρητικά ϑέματα Τι γνωρίζετε για ROM, RAM, FSM, FSMD Ερωτήσεις πολλαπλής επιλογής (multiple-choice) Συνδυαστικά κυκλώματα Μνήμες Ακολουθιακά κυκλώματα Μη-προγραμματιζόμενοι επεξεργαστές (FSMD) Ερωτήσεις πολλαπλής επιλογής (1) Ερωτήσεις πολλαπλής επιλογής (2) 1. Τι είναι ένα αρχείο testbench; Α) Το top-level αρχείο του κυκλώματος. Β) Αρχείο για τον έλεγχο του κυκλώματος. Γ) Ενα πακέτο με δηλώσεις του χρήστη. Δ) Εναλλακτική περιγραφή του κυκλώματος. 2. Δίνονται τα διανύσματα a[6:10], b[6:2], c[1:4]. Ποιο το εύρος του καθενός, αντίστοιχα; Α) 6, 4, 4. Β) 5, 3, 5. Γ) 5, 5, 4. Δ) 6, 4, Για τα παραπάνω διανύσματα a, b, c, ποια από τις παρακάτω αναθέσεις δεν είναι ορθή; Α) a[6:10] <= {c, 1 b1}; Β) a[5:4] <= b[4:5]; Γ) c[1:3] = a[6:8]; Δ) b[2:2] = 1; 4. Ποια από τις παρακάτω δεν αποτελεί λέξη-κλειδί της Verilog Α) in. Β) output. Γ) wire. Δ) reg. 5. Για το ακόλουθο τμήμα κώδικα Verilog συμπληρώστε τη σωστή λίστα ευαισθησίας. a = b + 1'b1; c = {1'b0, b[5:0]}; d = a ˆ c ˆ e; Α) a, b, c, e. Β) a, b, c, d, e. Γ) a, c, d. Δ) a, b, d, e. 6. Σε ποια κωδικοποίηση, δύο διαδοχικές τιμές διαφέρουν πάντα κατά ένα bit; Α) Gray. Β) One-hot. Γ) Two-hot. Δ) Binary. 7. Ποιο το ελάχιστο εύρος διανύσματος διεύθυνσης, για τη διευθυνσιοδότηση μνήμης RAM με 57 ϑέσεις; Α) 5. Β) 6. Γ) 7. Δ) Τι είδους κύκλωμα υλοποιεί ο ακόλουθος κώδικας; clk) q <= d; Α) Εναν πολυπλέκτη 2-σε-1. Γ) Εναν τρισταθή απομονωτή. Β) Ενα flip-flop τύπου D. Δ) Ενα μανδαλωτή. 9. Ποιο το αποτέλεσμα της a = b ˆ c;, αν b = 4 b1001, c = 4 b1101: Α) 4 b0100. Β) 4 b1000. Γ) 4 b1011. Δ) 4 b Εστω wire a[3:0] το οποίο οδηγείται ταυτόχρονα από δύο διαφορετικά σήματα, b = 4 b1111 και c = 4 b0000. Ποια είναι η τιμή του; Α) 4 b0000. Β) 4 b1111. Γ) 4 bzzzz. Δ) 4 bxxxx.
2 Συνδυαστική άσκηση 1 Συνδυαστική άσκηση 2 Πολυπλέκτης 3-σε-1 με εισόδους δεδομένων των 4-bit. module mux3to1_4b(f, a, b, c, sel); output [3:0] f; input [3:0] a, b, c; input [1:0] sel; reg [3:0] f; or b or c or sel) case (sel) 2'b00 : f = a; 2'b01 : f = b; 2'b10 : f = c; default : f = 4'hZ; case module Κύκλωμα πλειοψηφίας (majority voter) τεσσάρων εισόδων του 1-bit. Η έξοδος του είναι 1 b1 όταν τρεις ή παραπάνω από τις εισόδους του έχουν την τιμή 1 b1 αλλιώς είναι 1 b0. module majority_4b (y, a, b, c, d); input a, b, c, d; output y; reg [3:0] abcd; reg y; or b or c or d) abcd = {a, b, c, d}; case (abcd) 7, 11, 13, 14, 15: y = 1'b1; default: y = 1'b0; case module Συνδυαστική άσκηση 3 Αριθμητική μονάδα (1) Αποκωδικοποιητής 2-σε-4. module ex2_2 (sel, res); input [1:0] sel; output [3:0] res; reg [3:0] res; case (sel) 2'b00 : res = 4'b0001; 2'b01 : res = 4'b0010; 2'b10 : res = 4'b0100; 2'b11 : res = 4'b1000; default : res = 4'b0000; case module Αριθμητική μονάδα με εισόδους δεδομένων a, b των 8-bit (απρόσημοι), είσοδο επιλογής sel των 3-bit, και έξοδο δεδομένων y των 8-bit, η οποία να εκτελεί τις λειτουργίες: α) ADD: πρόσθεση των a, b, β) SUB: αφαίρεση των a, b, γ) XOR: αποκλειστικό- Η των a, b, δ) MOVB: μεταφορά του b στην έξοδο, ε) AVG: εξαγωγή του μέσου ((a + b)/2) των a, b χωρίς τη χρήση διαίρεσης, στ) CMP: σύγκριση των a, b. Η έξοδος y είναι 8 h01 όταν a > b, αλλιώς είναι 8 h00. Να γράψετε τις σωστές εξόδους κάθε λειτουργίας για a = 8 h53, b = 8 hbc.
3 Αριθμητική μονάδα (2) Ελεγχος ορθής λειτουργίας της αριθμητικής μονάδας module ex3_1(a, b, sel, y); input [7:0] a, b; input [2:0] sel; output [7:0] y; reg [7:0] y; reg [8:0] p; or b or sel) case (sel) // ADD 3'b000 : y = a + b; // SUB 3'b001 : y = a + ( b) + 1; // XOR 3'b010 : y = a ˆ b; // MOVB 3'b011 : y = b; // AVG 3'b100 : p = {1'b0, a} + {1'b0, b}; y = p[8:1]; // CMP 3'b101 : y = (a > b)? 1'b1 : 1'b0; default : y = 0; case module Εκτύπωση διαγνωστικής εξόδου στη στάνταρ έξοδο (κονσόλα) 10000: a=53, b=bc, sel=000, y=0f 20000: a=53, b=bc, sel=001, y= : a=53, b=bc, sel=010, y=ef 40000: a=53, b=bc, sel=011, y=bc 50000: a=53, b=bc, sel=100, y= : a=53, b=bc, sel=101, y= : a=53, b=bc, sel=110, y= : a=53, b=bc, sel=111, y=00 Σύγχρονη μνήμη ROM Μνήμη RAM σύγχρονης ανάγνωσης Σύγχρονη μνήμη ROM (είσοδοι clk, address, έξοδος data των 8-bit) για τους 8 διαδοχικούς πρώτους αριθμούς, ξεκινώντας από τον 2. Πρώτος αριθμός είναι αυτός που διαιρείται ακριβώς μόνο με το 1 και τον εαυτό του. Χρησιμοποιείστε κατάλληλο εύρος διεύθυνσης. module rom_8_8 (clk, address, data); input clk; input [2:0] address; output [7:0] data; reg [7:0] ROM [0:7]; reg [7:0] data; initial ROM[ 0] = 8'h02; ROM[ 1] = 8'h03; ROM[ 2] = 8'h05; ROM[ 3] = 8'h07; ROM[ 4] = 8'h0B; ROM[ 5] = 8'h0D; ROM[ 6] = 8'h11; ROM[ 7] = 8'h13; clk) data <= ROM[address]; module Μνήμη RAM των 32 ϑέσεων με σύγχρονη ανάγνωση και εισόδους clk, we του 1-bit, address κατάλληλου εύρους, din των 8-bit, και έξοδο dout των 8-bit. module ex2_1 (clk, we, address, din, dout); input clk, we; input [4:0] address; input [7:0] din; output [7:0] dout; reg [7:0] RAM [31:0]; reg [7:0] dout; clk) if (we) RAM[address] <= din; dout <= RAM[address]; module
4 Ακολουθιακό κύκλωμα (1) Ακολουθιακό κύκλωμα (2) Σύγχρονος απαριθμητής των 8-bit με δυνατότητα απαρίθμησης προς τα πάνω και προς τα κάτω (up-down counter). Ο απαριθμητής διαθέτει τις εισόδους clk, reset, up, down που είναι είσοδοι ελέγχου, την είσοδο δεδομένων data που φορτώνεται κατά το reset, και την έξοδο δεδομένων count. Οταν μόνο η είσοδος up είναι 1 απαριθμεί προς τα πάνω, όταν μόνο η down είναι 1 απαριθμεί προς τα κάτω και όταν και οι δύο είσοδοι ελέγχου είναι 1 δεν εκτελείται καμία από τις δύο λειτουργίες. module up_down_counter8 (clk, reset, up, down, data, count); input clk, reset, up, down; input [7:0] data; output [7:0] count; reg[7:0] count; clk or posedge reset) if (reset) count <= data; if ((up) && ( down)) count <= count + 1; if (( up) && (down)) count <= count - 1; count <= count; module FSMD 1: Κύκλωμα άθροισης όρων (summing circuit) Το διπλανό σχήμα περιγράφει το διάγραμμα καταστάσεων του FSMD για την άθροιση n διαδοχικών όρων (summing circuit). Το κύκλωμα διαθέτει είσοδο n με εύρος W-bit, είσοδο ρολογιού clk, επανατοποθέτησης reset, έξοδο δεδομένων y των W-bit, και έξοδο κατάστασης done που γίνεται 1 με την ολοκλήρωση των υπολογισμών. Ακόμη, υπάρχει καταχωρητής nreg που προσφέρει προσωρινή αποθήκευση για τα δεδομένα n και καταχωρητής sum των W-bit για το συσσωρευόμενο αποτέλεσμα. Περιγραφή της υλοποίησης FSMD του summing circuit module summing (clk, reset, start, n, y, done); parameter WIDTH = 8; parameter s0=3'b000, s1=3'b001, s2=3'b010, s3=3'b011, s4=3'b100, s5=3'b101; input clk, reset, start; input [WIDTH -1:0] n; output [WIDTH -1:0] y; output done; reg [WIDTH -1:0] y, sum, n_reg; reg done; reg[2:0] state; clk or posedge reset) done = 1'b0; if (reset) state = s0; done = 1'b0; y = 0; case (state) s0: if (start) state = s0; s1: sum = 0; state = s2; s2: n_reg = n; state = s3; s3: sum = sum + n_reg; state = s4; s4: n_reg = n_reg - 1; if (n_reg == 0) state = s5; state = s3; s5: y = sum; done = 1'b1; state = s0; default: state = s0; case module
5 Ελεγχος ορθής λειτουργίας του FSMD 1 με testbench (1) Ελεγχος ορθής λειτουργίας του FSMD 1 με testbench (2) Κλήση της διεργασίας $readmemh για την ανάγνωση δεδομένων εισόδου από αρχείο Κλήση της διεργασίας $fopen και εκτύπωση διαγνωστικής εξόδου σε αρχείο Τα περιεχόμενα του αρχείου κειμένου "summing_test_data_hex.txt" (n, y) a 05 0f c d 0a 37 0b 42 0c 4e 0d 5b 0e 69 0f Εκτύπωση διαγνωστικής εξόδου στο αρχείο "summing_alg_test_results.txt" SUMMING OK: Number of cycles = 6 SUMMING OK: Number of cycles = 8 SUMMING OK: Number of cycles = 10 SUMMING OK: Number of cycles = 12 SUMMING OK: Number of cycles = 14 SUMMING OK: Number of cycles = 16 SUMMING OK: Number of cycles = 18 SUMMING OK: Number of cycles = 20 SUMMING OK: Number of cycles = 22 SUMMING OK: Number of cycles = 24 SUMMING OK: Number of cycles = 26 SUMMING OK: Number of cycles = 28 SUMMING OK: Number of cycles = 30 SUMMING OK: Number of cycles = 32 SUMMING OK: Number of cycles = 34 SUMMING OK: Number of cycles = 36 SUMMING algorithm test has passed Προσομοίωση του επεξεργαστή summing FSMD 2: Κύκλωμα πολλαπλασιασμού αλά ρωσικά (1) Χρονικό διάγραμμα (τιμές στο δεκαδικό) Χρονικό διάγραμμα (τιμές στο δεκαεξαδικό) Ο επόμενος πίνακας περιγράφει σε φυσική γλώσσα κατά βήματα τον αλγόριθμο του πολλαπλασιασμού αλά ρωσικά (Russian peasant multiplication). Ζητείται ο σχεδιασμός του αντίστοιχου κυκλώματος FSMD σε Verilog. Το κύκλωμα διαθέτει ϑετικές εισόδους m1, m2 με εύρος 16-bit, είσοδο ρολογιού clk, επανατοποθέτησης reset, ενεργοποίησης start καθώς και έξοδο δεδομένων y των 16-bit, και έξοδο κατάστασης done που γίνεται 1 με την ολοκλήρωση των υπολογισμών. Ακόμη, υπάρχει καταχωρητής p που προσφέρει αποθήκευση του προσωρινού αποτελέσματος και βοηθητικοί καταχωρητές t1, t2 των 16-bit.
6 FSMD 2: Κύκλωμα πολλαπλασιασμού αλά ρωσικά (2) Περιγραφή της υλοποίησης FSMD του Russian peasant multiplication (1) Περιγραφή λειτουργίας του πολλαπλασιαστή Κατάσταση Λειτουργία S1 p = 0; t1 = m1; t2 = m2; S2 Αν t2 > 0, τότε επόμενη κατάσταση είναι η S3, αλλιώς η S7 S3 Αν ο t2 είναι περιττός, τότε p = p + t1; S4 Διπλασιασμός του t1 S5 Υποδιπλασιασμός του t2 S6 Επόμενη κατάσταση η S2 S7 y = p; module ex4 (clk, reset, start, m1, m2, y, done); parameter WIDTH = 16; parameter s1=3'b000, s2=3'b001, s3=3'b010, s4=3'b011, s5=3'b100, s6=3'b101, s7=3'b110; input clk, reset, start; input [WIDTH -1:0] m1; input [WIDTH -1:0] m2; output [WIDTH -1:0] y; output done; reg [WIDTH -1:0] y, p; reg [WIDTH -1:0] t1, t2; reg done; reg[2:0] state; clk or posedge reset) done = 1'b0; if (reset) p = 0; t1 = 0; t2 = 0; case (state) s1: if (start) p = 0; t1 = m1; t2 = m2; state = s2; s2: if (t2 > 0) state = s3; state = s7; s3: if (t2[0] == 1'b1) p = p + t1; state = s4; Περιγραφή της υλοποίησης FSMD του Russian peasant multiplication (2) Ελεγχος ορθής λειτουργίας του FSMD 2 με testbench (1) s4: t1 <= {t1[width -2:0], 1'b0}; state = s5; s5: t2 <= {1'b0, t2[width -1:1]}; state = s6; s6: state = s2; s7: y = p; done = 1'b1; default: case module Τα περιεχόμενα του αρχείου κειμένου "ex4_test_data.txt" (m1, m2, y) a a 003c 06 0b c d 004e 06 0e f 005a e c a f 07 0a 0046
7 Ελεγχος ορθής λειτουργίας του FSMD 2 με testbench (2) Προσομοίωση του επεξεργαστή rpmult Εκτύπωση διαγνωστικής εξόδου στο αρχείο "ex4_alg_test_results.txt" RPMULT OK: Number of cycles = 28 RPMULT OK: Number of cycles = 8 RPMULT OK: Number of cycles = 13 RPMULT OK: Number of cycles = 13 RPMULT algorithm test has passed Χρονικό διάγραμμα (τιμές στο δεκαδικό) Χρονικό διάγραμμα (τιμές στο δεκαεξαδικό)
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 29 Μαΐου 2012 Σκιαγράφηση της διάλεξης Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου
nkavv@physics.auth.gr nkavv@uop.gr
Γλώσσες Περιγραφής Υλικού Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 26 Μαΐου 2009 Σκιαγράφηση της διάλεξης Μη προγραμματιζόμενοι επεξεργαστές Υλοποίηση με
Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Γενικά χαρακτηριστικά του επεξεργαστή MU0. nkavv@uop.gr. Προγραμματιζόμενοι επεξεργαστές
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr Προγραμματιζόμενοι επεξεργαστές Ρεαλιστικό παράδειγμα: ο επεξεργαστής MU0 (MicroProcessor
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@uop.gr 24 Απριλίου 2012 Σκιαγράφηση της διάλεξης Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State Machine) Ορισμός
Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση συνδυαστικών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 06 Μαρτίου 2012 Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων
Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Μηχανές Πεπερασμένων Καταστάσεων: Εισαγωγή και.
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@uop.gr 24 Απριλίου 2012 Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State Machine) Ορισμός
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr 08 Μαΐου 2012 Σκιαγράφηση της διάλεξης Μη προγραμματιζόμενοι επεξεργαστές Η οργάνωση των μη-προγραμματιζόμενων
Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι (1) Μη προγραμματιζόμενοι επεξεργαστές
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr 04 Μαΐου 2011 Μη προγραμματιζόμενοι επεξεργαστές Η οργάνωση των μη-προγραμματιζόμενων
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση ακολουθιακών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 13 Μαρτίου 2012 Σκιαγράφηση της διάλεξης Στοιχεία ακολουθιακής σχεδίασης με Verilog HDL Λίστα ευαισθησίας
Σκιαγράφηση της διάλεξης. Η οργάνωση ενός μη-προγραμματιζόμενου επεξεργαστή (1) Μη προγραμματιζόμενοι επεξεργαστές
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 26 Μαΐου 2009 Μη προγραμματιζόμενοι επεξεργαστές Υλοποίηση με
Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Διαφορές μεταξύ των περιγραφών συνδυαστικών και ακολουθιακών κυκλωμάτων
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση ακολουθιακών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 13 Μαρτίου 2012 Στοιχεία ακολουθιακής σχεδίασης με Verilog HDL Λίστα ευαισθησίας
Σχεδίαση Ψηφιακών Κυκλωμάτων
Σχεδίαση Ψηφιακών Κυκλωμάτων Η γλώσσα περιγραφής υλικού VHDL - Μέρος ΙΙ Νικόλαος Καββαδίας nkavv@uop.gr 08 Δεκεμβρίου 2010 Σκιαγράφηση της διάλεξης Σύνταξη κώδικα για λογική σύνθεση Σχεδίαση μνημών ROM
Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Απαριθμητοί τύποι δεδομένων (enumerated data types)
Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Η γλώσσα περιγραφής υλικού VHDL - Μέρος ΙΙ Νικόλαος Καββαδίας nkavv@uop.gr Σύνταξη κώδικα για λογική σύνθεση Σχεδίαση μνημών ROM και RAM Δομές ελέγχου/επαλήθευσης
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση συνδυαστικών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 06 Μαρτίου 2012 Σκιαγράφηση της διάλεξης Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων
Σκιαγράφηση της διάλεξης. Μηχανές Πεπερασμένων Καταστάσεων: Εισαγωγή και.
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@physics.auth.gr, nkavv@uop.gr 12 Μαΐου 2009 Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State
Γλώσσες Περιγραφής Υλικού Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@physics.auth.gr, nkavv@uop.gr 12 Μαΐου 2009 Σκιαγράφηση της διάλεξης Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων Γιάννης Λιαπέρδος [gliaperd@teikal.gr] Μάρτιος 2012 1 Ηλεκτρονικά Ελεγχόμενοι ιακόπτες Για την υλοποίηση των λογικών κυκλωμάτων χρησιμοποιούνται ηλεκτρονικά
Η δήλωση `ifdef...`else...` endif
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Σύνταξη παραμετρικών περιγραφών και σχεδίαση μνημών Νικόλαος Καββαδίας nkavv@uop.gr 03 Απριλίου 2012 Σύνταξη παραμετρικών περιγραφών Δηλώσεις του προεπεξεργαστή
Σκιαγράφηση της διάλεξης. Η εντολή ASSERT (2) nkavv@physics.auth.gr nkavv@uop.gr
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Δομές ελέγχου/επαλήθευσης λειτουργίας των κυκλωμάτων Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr Δομές ελέγχου/επαλήθευσης λειτουργίας των κυκλωμάτων
Σχεδίαση Ψηφιακών Κυκλωμάτων
Σχεδίαση Ψηφιακών Κυκλωμάτων Συνδυαστική και ακολουθιακή λογική Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Σκιαγράφηση της διάλεξης Αρχές σχεδίασης συνδυαστικών κυκλωμάτων CMOS Λογικές πύλες και
Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Ορισμοί για τις χρονικές καθυστερήσεις διάδοσης. Συνδυαστική και ακολουθιακή λογική
Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Συνδυαστική και ακολουθιακή λογική Νικόλαος Καββαδίας nkavv@uop.gr Αρχές σχεδίασης συνδυαστικών κυκλωμάτων CMOS Λογικές πύλες και βασικά συνδυαστικά
τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές
Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση
Γλώσσες Περιγραφής Υλικού Δομές ακολουθιακού και συντρέχοντος κώδικα Νικόλαος Καββαδίας nkavv@physics.auth.gr 24 Μαρτίου 2009 Σκιαγράφηση της διάλεξης Συντρέχων και ακολουθιακός κώδικας Ανάθεση σε ΜΕΤΑΒΛΗΤΗ
Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Αρχιτεκτονικά χαρακτηριστικά των συσκευών Xilinx Spartan-3.
Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Οι αρχιτεκτονικές FPGA Xilinx Spartan-3 και Virtex-5 Νικόλαος Καββαδίας nkavv@uop.gr Η αρχιτεκτονική Xilinx Spartan-3 CLB Ενσωματωμένοι πολλαπλασιαστές
Σκιαγράφηση της διάλεξης. Ανάθεση σε VARIABLE. Ανάθεση σε SIGNAL. identifier := expression; Συντρέχων και ακολουθιακός κώδικας
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Δομές ακολουθιακού και συντρέχοντος κώδικα Νικόλαος Καββαδίας nkavv@physics.auth.gr 24 Μαρτίου 2009 Συντρέχων και ακολουθιακός κώδικας Ανάθεση σε ΜΕΤΑΒΛΗΤΗ
ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Γλώσσες Περιγραφής Υλικού Ι. Εισαγωγικά. Οργάνωση των παραδόσεων. nkavv@uop.gr. 1 Εισαγωγή στη Verilog HDL. 28 Φεβρουαρίου 2012
Αντικείμενο του μαθήματος CST304: Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Εισαγωγή στη Verilog HDL Νικόλαος Καββαδίας nkavv@uop.gr 28 Φεβρουαρίου 2012 Επιμέρους στόχοι του μαθήματος Σχεδιασμός
Γλώσσες Περιγραφής Υλικού. Εισαγωγικά. Οργάνωση των παραδόσεων. 02 Ιουνίου 2009
Αντικείμενο και περίγραμμα του μαθήματος: Γλώσσες Περιγραφής Υλικού Γλώσσες Περιγραφής Υλικού Ανασκόπηση του μαθήματος Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 02 Ιουνίου 2009 Αντικείμενο
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Γλώσσες Περιγραφής Υλικού Ανασκόπηση του μαθήματος Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 02 Ιουνίου 2009 Αντικείμενο και περίγραμμα του μαθήματος: Γλώσσες Περιγραφής Υλικού Αντικείμενο
Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 2
Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 2 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)
Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Ο πλήρης αθροιστής (full adder) Κυκλωματικός σχεδιασμός του πλήρους αθροιστή.
Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Αριθμητικά κυκλώματα και μνήμες Νικόλαος Καββαδίας nkavv@uop.gr 24 Νοεμβρίου 2010 Ο πλήρης αθροιστής Δομές αθροιστών διάδοσης κρατουμένου Πολλαπλασιαστές
Σχεδίαση Ψηφιακών Κυκλωμάτων
Σχεδίαση Ψηφιακών Κυκλωμάτων Αριθμητικά κυκλώματα και μνήμες Νικόλαος Καββαδίας nkavv@uop.gr 24 Νοεμβρίου 2010 Σκιαγράφηση της διάλεξης Ο πλήρης αθροιστής Δομές αθροιστών διάδοσης κρατουμένου Πολλαπλασιαστές
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων.
Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Ανασκόπηση του μαθήματος και ϑέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr Αναδρομή στο περιεχόμενο του μαθήματος εξετάσεων (ϑεωρία και
Σχεδίαση Ψηφιακών Κυκλωμάτων
Σχεδίαση Ψηφιακών Κυκλωμάτων Ανασκόπηση του μαθήματος και ϑέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 26 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Αναδρομή στο περιεχόμενο του μαθήματος Ενδεικτικά
Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων
Γλώσσες Περιγραφής Υλικού Δομές ελέγχου/επαλήθευσης λειτουργίας των κυκλωμάτων Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 5 Μαΐου 2009 Σκιαγράφηση της διάλεξης Δομές ελέγχου/επαλήθευσης λειτουργίας
Σχεδίαση Ψηφιακών Κυκλωμάτων
Σχεδίαση Ψηφιακών Κυκλωμάτων Η γλώσσα περιγραφής υλικού VHDL - Μέρος Ι Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Σκιαγράφηση της διάλεξης Εισαγωγή στη VHDL Δομές ακολουθιακού και συντρέχοντος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Εισαγωγικά. Δομές ακολουθιακού και συντρέχοντος κώδικα
Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Η γλώσσα περιγραφής υλικού VHDL - Μέρος Ι Νικόλαος Καββαδίας nkavv@uop.gr Εισαγωγή στη VHDL Δομές ακολουθιακού και συντρέχοντος κώδικα Προχωρημένα
Συναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων. Πολυπλέκτες Καμπύλη Παρέτο. Κωδικοποιητές/Από-κωδικοποιητές D FF
HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων Διδάσκων: Χ. Σωτηρίου, Βοηθός: (θα ανακοινωθεί) http://inf-server.inf.uth.gr/courses/ce430/ Περιεχόμενα Περιγραφές και Συνθέσιμες Δομές Πολυπλέκτες Καμπύλη Παρέτο Κωδικοποιητές/Από-κωδικοποιητές
Οι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ
Σκιαγράφηση της διάλεξης. Η έννοια του πακέτου (PACKAGE) στη VHDL. Σύνταξη ενός πακέτου. Σύνταξη παραμετρικών περιγραφών
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Σύνταξη παραμετρικών περιγραφών Νικόλαος Καββαδίας nkavv@physics.auth.gr 7 Απριλίου 2009 Σύνταξη παραμετρικών περιγραφών Βιβλιοθήκες και πακέτα (libraries
Σχεδίαση Ψηφιακών Κυκλωμάτων
Σχεδίαση Ψηφιακών Κυκλωμάτων Η αρχιτεκτονική οργάνωση των FPGA Νικόλαος Καββαδίας nkavv@uop.gr 21 Δεκεμβρίου 2010 Σκιαγράφηση της διάλεξης Εισαγωγή στις προγραμματιζόμενες συσκευές Η αρχιτεκτονική οργάνωση
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους
Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Γλώσσες Περιγραφής Υλικού Σύνταξη παραμετρικών περιγραφών Νικόλαος Καββαδίας nkavv@physics.auth.gr 7 Απριλίου 2009 Σκιαγράφηση της διάλεξης Σύνταξη παραμετρικών περιγραφών Βιβλιοθήκες και πακέτα (libraries
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας
ΗΥ220: Εργαστήριο σχεδίασης ψηφιακών κυκλωμάτων Χριστόφορος Κάχρης
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο σχεδίασης ψηφιακών κυκλωμάτων Χριστόφορος Κάχρης 4-11-2009 Πρόοδος Θέμα 1 ο (25%): 1. Βρείτε την μεγίστη συχνότητα λειτουργίας του παρακάτω
Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0)
1. Κωδικός Μαθήματος: (Εισαγωγή στον Προγραμματισμό) 2. Α/Α Διάλεξης: 1 1. Τίτλος: Εισαγωγή στους υπολογιστές. 2. Μαθησιακοί Στόχοι: Συνοπτική παρουσίαση της εξέλιξης των γλωσσών προγραμματισμού και των
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο
Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο Α) Το γενικό πλαίσιο.ε.π.π.σ. και Α.Π.Σ. Β) Ο Υπολογιστής στην τάξη Γ) Ενδεικτικές ραστηριότητες Α) Το γενικό πλαίσιο.ε.π.π.σ.
Συναρτήσεις & Κλάσεις
Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT
Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό
ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Σκιαγράφηση της διάλεξης
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Προχωρημένα στοιχεία της VHDL Νικόλαος Καββαδίας nkavv@physics.auth.gr 31 Μαρτίου 2009 Προχωρημένα στοιχεία της VHDL Τύποι και υποτύποι προκαθορισμένοι
Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ
Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Μηχανές Πεπερασμένων Καταστάσεων Χειμερινό Εξάμηνο 2009 2010 ΗΥ220 University of Crete 1 Τι είναι οι FSMs? 10 FSM Κερματοδέκτης open Μηχανισμός Αυτόματου 20 Απελευθέρωσης
Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10
Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά
ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ
ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2017-2018 Μηχανές Πεπερασμένων Καταστάσεων ΗΥ220 - Βασίλης Παπαευσταθίου & Γιώργος Καλοκαιρινός 1 FSMs Οι μηχανές πεπερασμένων καταστάσεων Finite
Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της
Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν
ΠΛΕ- 027 Μικροεπεξεργαστές 4ο μάθημα: γλώσσα περιγραφής υλικού Verilog
ΠΛΕ- 027 Μικροεπεξεργαστές 4ο μάθημα: γλώσσα περιγραφής υλικού Verilog Αρης Ευθυμίου Τι είναι η γλώσσα Verilog Γλώσσα περιγραφής υλικού (hardware descripjon language) Επιτρέπει τη περιγραφή (μοντελοποίηση)
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων Χειµερινό Εξάµηνο 2007-2008 Μηχανές Πεπερασµένων Καταστάσεων ΗΥ220 - Βασίλης Παπαευσταθίου 1 FSMs Οι µηχανές πεπερασµένων καταστάσεων Finite State Machines (FSMs) πιο
Επιβεβαίωση ορθής λειτουργίας απλών ψηφιακών κυκλωμάτων
Επιβεβαίωση ορθής λειτουργίας απλών ψηφιακών κυκλωμάτων Δημήτρης Κωνσταντίνου, Γιώργος Δημητρακόπουλος Εφόσον έχουμε περιγράψει το κύκλωμά μας σε System Verilog θα πρέπει να βεβαιωθούμε πως λειτουργεί
Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Η έννοια της ενδιάμεσης αναπαράστασης Ενδιάμεση αναπαράσταση (IR: intermediate representation): απλοποιημένη,
Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
έγγραφο σε κάθε διάσταση αντιστοιχούν στο πλήθος εμφανίσεων της λέξης (που αντιστοιχεί στη συγκεκριμένη διάσταση) εντός του εγγράφου.
Π Π Σ Τ Π Ε Τ Ψ Σ Δομές Δεδομένων 2016-2017 2η Εργασία Χρήστος Δουλκερίδης Ορέστης Τελέλης 1 Περιγραφή Η ομαδοποίηση εγγράφων (document clustering) με βάση τα περιεχόμενά τους είναι ένα πολύ ενδιαφέρον
ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά
Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Διαιρέτης ρολογιού (clock divider) Ειδικά κυκλώματα
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Κυκλώματα για προχωρημένους και στοιχεία λογικής σύνθεσης Νικόλαος Καββαδίας nkavv@uop.gr 25 Μαΐου 2011 Ειδικά κυκλώματα Διαιρέτης ρολογιού Στοιχεία
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Κυκλώματα για προχωρημένους και στοιχεία λογικής σύνθεσης Νικόλαος Καββαδίας nkavv@uop.gr 25 Μαΐου 2011 Σκιαγράφηση της διάλεξης Ειδικά κυκλώματα Διαιρέτης ρολογιού Στοιχεία
HY130 Ψηφιακή Σχεδίαση
HY130 Ψηφιακή Σχεδίαση Διδάσκων Εργαστηρίου: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce130/ 1 2 1 3 Μοιάζει αρκετά με την C Προ-επεξεργαστή (Preprocessor) Λέξεις Κλειδιά (Keywords) Τελεστές =
E n. (, ) Η χρονοεξαρτώµενη εξίσωση Schrödinger, έχει την µορφή ˆ
Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςα(ΓΕΚα Σε ένα μονοδιάστατο κβαντικό σύστημα να δειχθεί ότι η γενική λύση της χρονοεξαρτώμενης εξίσωσης Schrödiger είναι της μορφής Ψ ( x,t c ( x e i E t, όπου τα E
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά
ΜΥΥ- 402 Αρχιτεκτονική Υπολογιστών Γλώσσα περιγραφής υλικού: Verilog
ΜΥΥ- 402 Αρχιτεκτονική Υπολογιστών Γλώσσα περιγραφής υλικού: Verilog Αρης Ευθυμίου Το σημερινό μάθημα! Η γλώσσα περιγραφής υλικού Verilog Περίληψη των αντίστοιχων μαθημάτων Ψηφιακής σχεδίασης έμφαση σε
Εισαγωγή στη Verilog με το ISE
Εισαγωγή στη Verilog με το ISE Πατάμε new project Δίνουμε όνομα και κατάλογο όπου θα αποθηκευτεί το project. Next όπου επιλέγουμε chip και preferred language βάζουμε Verilog Next και στο Create new source
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Προχωρημένα στοιχεία της Verilog HDL Νικόλαος Καββαδίας nkavv@uop.gr 27 Μαρτίου 2012 Σκιαγράφηση της διάλεξης Προχωρημένα στοιχεία της Verilog HDL Χρήση τελεστών στη σύνταξη
Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Verilog: Στυλ Κώδικα και Synthesizable Verilog Χειμερινό Εξάμηνο 2009 2010 Τα στυλ του κώδικα Τρεις βασικές κατηγορίες Behavioral (procedural) Dataflow Structural Synthesizable
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1.1.
ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΣΥΝΘΗΚΩΝ ΒΑΣΙΣΜΕΝΟ ΣΕ ARDUINO ΚΑΙ WinCC_OA
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΕΙΡΑΜΑΤΙΚΗΣ ΦΥΣΙΚΗΣ ΥΨΗΛΩΝ ΕΝΕΡΓΕΙΩΝ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΣΥΝΘΗΚΩΝ ΒΑΣΙΣΜΕΝΟ
Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή
www.cslab.ece.ntua.gr
Ε ό Μ ό Π ί Σ ή Η ό Μ ώ Μ ώ Η/Υ Τ έ Τ ί Π ή Υ ώ Εργαστήριο Υπολογιστικών Συστημάτων www.cslab.ece.ntua.gr Διπλωματική εργασία Συγκριτική μελέτη μεθόδων αποθήκευσης αραιών πινάκων σε μπλοκ για την βελτιστοποίηση
Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2
Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται
Συναρτήσεις ΙΙ. Σημερινό μάθημα
Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις
ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚ3Ν ΕΠΙΣΤΗΜ3Ν Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚ3Ν ΕΠΙΣΤΗΜ3Ν Γ ΛΥΚΕΙΟΥ Ε4ι6έλεια: Βουδούρη Καλλιρρόη ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 1, 2, 4 ΟΝΟΜΑ:.. ΘΕΜΑ Α Α. Να ση6ειώσετε