Συναρτήσεις ΙΙ. Σημερινό μάθημα
|
|
- Λουκιανός Μεσσηνέζης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις Αναδρομή 2 1
2 Τοπικές μεταβλητές παράδειγμα/1 #include <iostream.h> float Convert(float); int main() { float TempFer; float TempCel; cout << ʺPlease enter the temperature in Fahrenheit: ʺ; cin >> TempFer; e TempCel = Convert(TempFer); cout << ʺ\nHereʹs the temperature in Celsius: ʺ; cout << TempCel << endl; return 0; 3 Τοπικές μεταβλητές παράδειγμα/2 float Convert(float TempFer) { float TempCel; TempCel = ((TempFer 32) * 5) / 9; return TempCel; Please enter the temperature in Fahrenheit: 212 Hereʹs the temperature in Celsius:
3 Σφαιρικές μεταβλητές #include <iostream.h> void myfunction(); int x = 5, y = 7; int main() { cout << ʺx from main: ʺ << x << ʺ\nʺ; cout << ʺy from main: ʺ << y << ʺ\n\nʺ; myfunction(); cout << ʺBack from myfunction!\n\nʺ; cout << ʺx from main: ʺ << x << ʺ\nʺ; cout << ʺy y from main: ʺ << y << ʺ\nʺ; ; return 0; x from main: 5 y from main: 7 x from myfunction: 5 y from myfunction: 10 Back from myfunction! x from main: 5 y from main: 7 void myfunction() { int y = 10; cout << ʺx from myfunction: ʺ << x << ʺ\nʺ; cout << ʺy from myfunction: ʺ << y << ʺ\n\nʺ; 5 Εμβέλεια Εμβέλεια μιας μεταβλητής είναι το τμήμα του προγράμματος που η μεταβλητή μπορεί να χρησιμοποιηθεί (που υπάρχει) Μια σφαιρική μεταβλητή έχει απεριόριστη εμβέλεια Η εμβέλεια μιας τοπικής μεταβλητής περιορίζεται μέσα στη συνάρτηση που δηλώνεται Η εμβέλεια μιας block μεταβλητής περιορίζεται μέσα στο block που δηλώνεται 6 3
4 Παράδειγμα int main(void) { int y=10; { int a = y; cout << a << endl; cout << a << endl; 7 Εμφωλίαση Στη C++ δεν υπάρχει εμφωλίαση συναρτήσεων αλλά υπάρχει εμφωλίαση blocks. 8 4
5 Εμφωλιασμένα Blocks void foo(void) { for (int j=0;j<10;j++) j<10 j++) { int k = j*10; cout << j <<, << k << endl; { int m = j+k; cout << m <<, << j << endl; cout << m << << j << endl; m k j 9 Τύπος αποθήκευσης Κάθε μεταβλητή έχει τύπο αποθήκευσης Ορίζει την περίοδο κατά την οποία μια μεταβλητή «υπάρχει» στη μνήμη Κάποιες μεταβλητές δημιουργούνται μια φορά και διατηρούνται στη μνήμη π.χ. Global Άλλες δημιουργούνται πολλές φορές π.χ local σε συνάρτηση 10 5
6 Τύπος αποθήκευσης auto δημιουργούνται κάθε φορά που μπαίνουμε στο block που υπάρχουν register το ίδιο με τις auto, αλλά υπαγορεύουν στον compiler να είναι πιο γρήγορος (πως;). static δημιουργείται μόνο μια φορά extern global μεταβλητή δηλωμένη αλλού 11 auto int j; Τύποι αποθήκευσης register int i_need_to_be_fast; static char remember_me; extern double a_global; 12 6
7 Πρακτική χρήση Οι Local μεταβλητές είναι auto εξ ορισμού Οι Global μεταβλητές είναι static εξ ορισμού Δηλώνοντας μια local μεταβλητή ως static σημαίνει ότι θα θυμάται την τελευταία τιμή της 13 static example int countcalls(void) { static int count = 0; count++; return(count); cout << countcalls() << endl; cout << countcalls() << endl; cout << countcalls() << endl; 14 7
8 Συναρτήσεις ως παράμετροι Answer = (double(triple(square(cube(myvalue))))); 15 Πέρασμα με τιμή παράδειγμα #include <iostream.h> void swap(int x, int y); int main() { int x = 5, y = 10; cout << ʺMain. Before swap, x: ʺ << x << ʺ y: ʺ << y << ʺ\nʺ; swap(x,y); cout << ʺMain. After swap, x: ʺ << x << ʺ y: ʺ << y << ʺ\nʺ; return 0; void swap (int x, int y) { int temp; cout << ʺSwap. Before swap, x: ʺ << x << ʺ y: ʺ << y << ʺ\nʺ; temp = x; x = y; y = temp; cout << ʺSwap. After swap, x: ʺ << x << ʺ y: ʺ << y << ʺ\nʺ; 16 8
9 Πέρασμα με τιμή έξοδος Main. Before swap, x: 5 y: 10 Swap. Before swap, x: 5 y: 10 Swap. After swap, x: 10 y: 5 Main. After swap, x: 5 y: Πολλαπλά return/1 #include <iostream.h> int Doubler(int AmountToDouble); int main() { int result = 0; int input; cout << ʺEnter a number between 0 and 10,000 to double: ʺ; cin >> input; cout << ʺ\nBefore doubler is called... ʺ; cout << ʺ\ninput: ʺ << input << ʺ doubled: ʺ << result << ʺ\nʺ; ; result = Doubler(input); cout << ʺ\nBack from Doubler...\nʺ; cout << ʺ\ninput: ʺ << input << ʺ doubled: ʺ << result << ʺ\nʺ; return 0; 18 9
10 Πολλαπλά return/2 int Doubler(int original) { if (original <= 10000) return original * 2; else return 1; cout << ʺYou canʹt get here!\nʺ; 19 Προκαθορισμένοι Παράμετροι #include <iostream.h> int AreaCube(int length, int width = 25, int height = 1); int main() { int length = 100; int width = 50; int height = 2; int area; area = AreaCube(length, width, height); cout << ʺFirst area equals: ʺ << area << ʺ\nʺ; area = AreaCube(length, width); cout << ʺSecond time area equals: ʺ << area << ʺ\nʺ; area = AreaCube(length); cout << ʺThird time area equals: ʺ << area << ʺ\nʺ; return 0; AreaCube(int length, int width, int height) { return (length * width * height); 20 10
11 Προκαθορισμένοι Παράμετροι έξοδος First area equals: Second time area equals: 5000 Third time area equals: Υπερφόρτωση συναρτήσεων Η C++ επιτρέπει τη πολλαπλή δημιουργία συναρτήσεων ρή με το ίδιο όνομα Οι συναρτήσεις αυτές πρέπει να διαφέρουν στο πλήθος ή τον τύπο των παραμέτρων: int myfunction (int, int); int myfunction (long, long); int myfunction (long); Κάθε φορά καλείται αυτόματα η κατάλληλη ανάλογα με τις παραμέτρους που περνάμε
12 Inline συναρτήσεις #include <iostream.h> inline int Double(int); int main() { int target; cout << ʺEnter a number to work with: ʺ; cin >> target; cout << ʺ\nʺ; target = Double(target); cout << ʺTarget: ʺ << target << endl; target = Double(target); cout << ʺTarget: ʺ << target << endl; target = Double(target); cout << ʺTarget: ʺ << target << endl; return 0; int Double(int target) { return 2*target; 23 Αναδρομή Έχουμε αναδρομή όταν μία συνάρτηση καλεί λίτον εαυτό της Η αναδρομή είναι πολύ χρήσιμη σε περίπτωση πολύπλοκων υπολογισμών 24 12
13 Αναδρομή char *chicken_or_egg( int gen ) { if (gen == 0) return("chicken!"); else if (gen == 1) return( Egg! ); else return(chicken_or_egg(gen-1)); 25 Υπολογισμός παραγοντικού int factorial( int x ) { if (x == 1) return(1); else return(x * factorial(x-1)); 26 13
14 Σχεδιασμός αναδρομικών συναρτήσεων Ορίζουμε συνθήκη τερματισμού: Πρόκειται για την περίπτωση όπου η συνάρτηση παύει να καλεί τον εαυτό της Ορίζουμε επανάκληση της συνάρτησης από τον εαυτό της 27 συνθήκη τερματισμού Η συνθήκη τερματισμού αντιστοιχεί σε μια περίπτωση που γνωρίζουμε ήδη την απάντηση ή υπολογίζεται εύκολα Αν δεν έχουμε συνθήκη τερματισμού δεν πρέπει να χρησιμοποιήσουμε αναδρομή ή δεν έχουμε καταλάβει το πρόβλημα 28 14
15 Επανάκληση Η επανάκληση χρησιμοποιείται για να λύσουμε κάποιο υπο πρόβλημαπρόβλημα Σε κάθε επανάκληση οι παράμετροι θα πρέπει να διαφέρουν ώστε να πλησιάζουμε στη λύση 29 Λάθη? #include <iostream.h> int myfunc(unsigned short int x); int main() { unsigned short int x, y; y = myfunc(x); cout << ʺx: ʺ << x << ʺ y: ʺ << y << ʺ\nʺ; int myfunc(unsigned short int x); { return (4*x); 30 15
16 Λάθη? #include <iostream.h> void myfunc(unsigned short int x); int main() { unsigned short int x, y; y = myfunc(int); cout << ʺx: ʺ << x << ʺ y: ʺ << y << ʺ\nʺ; void myfunc(unsigned short int x) { return (4*x); 31 16
Συναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2
Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται
Αναφορές (References)
Αναφορές (References) Σήμερα! Αναφορές (references) Που ορίζουμε αναφορά Αναφορές σε αντικείμενα Πέρασμα με αναφορά Πέρασμα πολλαπλών τιμών 2 1 Αναφορές (references) Οι αναφορές έχουν τη δύναμη των δεικτών
Συναρτήσεις & Κλάσεις
Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT
Classes. Σημερινό Μάθημα. Constructor και destructor Συναρτήσεις μέλη const Inline συναρτήσεις Δηλώσεις κλάσεων Σύνθετες κλάσεις
Classes Σημερινό Μάθημα Constructor και destructor Συναρτήσεις μέλη const Inline συναρτήσεις Δηλώσεις κλάσεων Σύνθετες κλάσεις 2 1 Constructor και destructor Αν δεν δηλώσουμε constructor ή/και destructor
Ειδικά Θέματα Ι. Σήμερα!
Ειδικά Θέματα Ι Σήμερα! Static Member Πρόσβαση χωρίς αντικείμενο private static member Static Member Functions Πρόσβαση συνάρτησης χωρίς αντικείμενο Δείκτες σε συνάρτηση η Πίνακες δεικτών σε συνάρτηση
Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading
Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ
Πολυμορφισμός. Σήμερα! Virtual Κληρονομικότητα Mixin classes Αφηρημένοι τύποι δεδομένων Pure Virtual συναρτήσεις
Πολυμορφισμός Σήμερα! Virtual Κληρονομικότητα Mixin classes Αφηρημένοι τύποι δεδομένων Pure Virtual συναρτήσεις 2 1 Virtual Κληρονομικότητα Η χρήση μιας virtual κλάσης βάσης μας επιτρέπει τη χρήση κοινών
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Πολυμορφισμός. Σήμερα!
Πολυμορφισμός Σήμερα! Ανάγκη για Πολυμορφισμό Πολυμορφισμός Constructors σε πολύμορφα αντικείμενα Διπλή συνάρτηση Κοινή κλάση βάσης 2 1 Ανάγκη για Πολυμορφισμό Ας υποθέσουμε ότι με τη βοήθεια της Ιεραρχίας
Κληρονομικότητα. Σήμερα!
Κληρονομικότητα Σήμερα! Overriding Overloading Vs Overriding Απόκρυψη συναρτήσεων Κλήση overridden συνάρτησης Virtual Συναρτήσεις Abstract Classes Κανόνες πρόσβασης Κληρονομικότητας 2 1 Υπερίσχυση Συναρτήσεων
Αριθμητικοί αλγόριθμοι
Αριθμητικοί αλγόριθμοι Υπολογισμός μέσω διαδοχικών προσεγγίσεων Κάνουμε μια πρώτη προσέγγιση για την απάντηση Χρησιμοποιούμε την προηγούμενη εκτίμηση για να παράγουμε μια καλύτερη Τερματίζουμε αν η εκτίμηση
Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.
Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Αλγόριθμοι & Βελτιστοποίηση
Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)
Επίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Ψηφιακή Εικόνα. Σημερινό μάθημα!
Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη
Αντικειμενοστραφής. Προγραμματισμού
Αντικειμενοστραφής προγραμματισμός Σημερινό μάθημα Μειονεκτήματα Δομημένου Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Ορισμοί Κλάσεις Αντικείμεναμ Χαρακτηριστικά ΑΠ C++ Class 1 Δομημένος Προγραμματισμός
Οι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ2007 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 2015-16
Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Η εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.
Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων
Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ 1) (2 μονάδες) Δεδομένης της περιγραφής που ακολουθεί δώστε το σχεδιασμό κλάσεων του συστήματος:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Μάθημα: Μεθοδολογίες και Γλώσσες Προγραμματισμού Ι (C++) Διδάσκουσα: Καβαλλιεράτου Εργίνα Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ
21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
CSE.UOI : Μεταπτυχιακό Μάθημα
Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &
Κεφάλαιο , 3.2: Συναρτήσεις II. (Διάλεξη 12)
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II (Διάλεξη 12) 12-1 Ανασκόπηση Δομής Προγράμματος με Συναρτήσεις 1 void PrintMessage (); Πρότυπο (Δήλωση) Συνάρτησης (Δηλώνουν τι επιπλέον συναρτήσεις θα χρησιμοποιήσουμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
Ειδικά Θέματα. Σήμερα. Ισότητα Αντικειμένων Friend classes Operator overloading
Ειδικά Θέματα Σήμερα Ισότητα Αντικειμένων Friend classes Operator overloading 2 1 Ισότητα Αντικειμένων Πότε δύο αντικείμενα είναι ίσα; Όταν έχουν τις ίδιες τιμές int m, n; if (m == n)... Όταν δείχνουν
Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
ΘΕΜΑ 1ο Α. α) Δίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι: F (x)=f (x)+g (x).
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΟΥΝΙΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο Α. α) Δίεται η
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II. ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 12-1 Ανασκόπηση οµής Προγράµµατος µε Συναρτήσεις #include 1 void PrintMessage (); Πρότυπο ( ήλωση) Συνάρτησης (
Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 4ο Τμήμα Διοίκησης Επιχειρήσεων α εξάμηνο Β. Φερεντίνος Συναρτήσεις (functions) 56 Τεμαχισμός του προγράμματος σε μικρότερα κομμάτια που είναι πιο κατανοητά, πιο εύκολα
Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
Προγραμματισμός Ι. Κλάσεις και Αντικείμενα. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Κλάσεις και Αντικείμενα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Κλάσεις Η γενική μορφή μιας κλάσης είναι η εξής: class class-name { private data and
ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Εφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0)
1. Κωδικός Μαθήματος: (Εισαγωγή στον Προγραμματισμό) 2. Α/Α Διάλεξης: 1 1. Τίτλος: Εισαγωγή στους υπολογιστές. 2. Μαθησιακοί Στόχοι: Συνοπτική παρουσίαση της εξέλιξης των γλωσσών προγραμματισμού και των
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1.1.
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Συναρτήσεις - Μεταβλητές ΔΙΔΑΣΚΟΝΤΕΣ: Iωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Συναρτήσεις / Μεταβλητές
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Μεταβλητές, Τύποι και Σταθερές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Η Μνήμη του Υπολογιστή 0 4 8 12 16 20 24 28 32
Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018
ΕΚΠΑ, Τμήμα Φυσικής Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΘΕΜΑ 1 Γραμμική κατανομή φορτίου εκτείνεται από h έως +h κατά μήκος του άξονα z με ετερογενή πυκνότητα λ 0 < 0 για h z < 0 και λ 0 >
Η εντολή if-else. Η απλή μορφή της εντολής if είναι η ακόλουθη: if (συνθήκη) { Η γενική μορφή της εντολής ifelse. εντολή_1; εντολή_2;..
Επιλογή - Επανάληψη Η εντολή if-else Ο τελεστής παράστασης συνθήκης H εντολή switch Η εντολές for και while Η εντολή do-while Η εντολές break - continue - goto Μαθηματικές συναρτήσεις Λέξεις κλειδιά στη
Προγραμματισμός Ι. Πίνακες, Δείκτες, Αναφορές και Δυναμική Μνήμη. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Πίνακες, Δείκτες, Αναφορές και Δυναμική Μνήμη Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Πίνακες Αντικειμένων Όπως στην C μπορούμε να έχουμε πίνακες από
5. ΣΥΝΑΡΤΗΣΕΙΣ. (Πρόχειρο σχέδιο - Μαθήµατος 3) p23-29. 5.1 Συναρτήσεις, που δεν επιστρέφουν κάποια τιµή
(Πρόχειρο σχέδιο - Μαθήµατος 3) p23-29 5. ΣΥΝΑΡΤΗΣΕΙΣ 5.1 Συναρτήσεις, που δεν επιστρέφουν κάποια τιµή Η συνάρτηση είναι void, δεν επιστρέφει κάποια τιµή. //Oρισµός συνάρτησης χωρίς παραµέτρους // 12.
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 9 Συναρτήσεις Μέρος II Θέματα ιάλεξης Μη- ομημένος
ΗΥ-150. Προγραμματισμός
ΗΥ-150 Εντολές Ελέγχου Ροής Σειριακή εκτέλεση εντολών Όλα τα προγράμματα «γράφονται» χρησιμοποιώντας 3 είδη εντολών: Σειριακές εντολές (sequential built in C) Εντολές απόφασης (if, if/else, switch) Περιλαμβάνει
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
Ο Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Προγραμματισμός Υπολογιστών με C++
Προγραμματισμός Υπολογιστών με C++ ( 2012-13 ) 5η διάλεξη Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Πίνακες ως ορίσματα συναρτήσεων. Τα ορίσματα argc και argv της main.
Χαρακτηριστικές συναρτήσεις
13 Χαρακτηριστικές συναρτήσεις 13.1 Μετασχηματισμός Fourier μέτρου πιθανότητας στο R Εστω (Ω, F, µ) χώρος μέτρου και f : Ω C Borel-μετρήσιμη συνάρτηση. Το πραγματικό και φανταστικό μέρος της f, που τα
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Συναρτήσεις και ορίσματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Διαφορά καθολικής μεταβλητής και σταθεράς
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy ιάλεξη 18 - Παραδείγματα Πίνακες Μονοδιάστατοι Πίνακες
Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραµµατισµού
Εισαγωγή στην πληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραμματισμού
Υπολογισμός - Εντολές Ελέγχου
Προγραμματισμός Η/Υ Ι Υπολογισμός - Εντολές Ελέγχου ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα συνεχίσουμε τη συζήτησή μας για τα βασικά στοιχεία
Προγραμματισμό για ΗΜΥ
ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 3 Εισαγωγή στην C Θέματα ιάλεξης Σύνταξη και Σημασιολογία
ΗΥ-150. Προγραμματισμός
ΗΥ-150 Εντολές Ελέγχου Ροής Σειριακή εκτέλεση εντολών Όλα τα προγράμματα «γράφονται» χρησιμοποιώντας 3 είδη εντολών: Σειριακές εντολές (sequential built in C) Εντολές απόφασης (if, if/else, switch) Περιλαμβάνει
ΗΥ-150. Πίνακες (Arrays)
ΗΥ-150 Προγραµµατισµός Πίνακες (Arrays) Προγραµµατισµός Εισαγωγικά Έστω ότι θέλουµε να αποθηκεύσουµε 100 ονόµατα φοιτητών και τους βαθµούς τους. Πως θα το κάναµε αυτό µε µεταβλητές; Πως θα µπορούσαµε να
Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
Προγραμματισμό για ΗΜΥ
ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 5 Συναρτήσεις Θέματα ιάλεξης Χρησιμότητα Συναρτήσεων Σύνταξη
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Δομές Ελέγχου ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές Ελέγχου Εισαγωγή Πριν
Επιχειρησιακή Ερευνα Ι
Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων Γιάννης Λιαπέρδος [gliaperd@teikal.gr] Μάρτιος 2012 1 Ηλεκτρονικά Ελεγχόμενοι ιακόπτες Για την υλοποίηση των λογικών κυκλωμάτων χρησιμοποιούνται ηλεκτρονικά
Κλάσεις και αντικείμενα #include <iostream.h<
Κλάσεις και αντικείμενα #include class Person private: char name[30]; int age; public: void readdata() cout > name; cout > age; void
Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Στοχαστικές διαφορικές εξισώσεις
14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B
ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κεφάλαιο 6 Επιμέλεια: Βασίλης Παλιουράς, Αναπληρωτής Καθηγητής Ευάγγελος Δερματάς, Αναπληρωτής Καθηγητής Σταύρος Νούσιας, Βοηθός Ερευνητή Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών
Η γλώσσα προγραμματισμού C
Η γλώσσα προγραμματισμού C Οι συναρτήσεις στη C Οι συναρτήσεις τι είναι Πρόκειται για ανεξάρτητα τμήματα ενός προγράμματος (υποπρογράμματα) που επιτελούν συγκεκριμένες εργασίες. Καλούνται από το κυρίως
Συναρτήσεις και Πίνακες
Συναρτήσεις και Πίνακες Συναρτήσεις καθιερωμένης βιβλιοθήκης της C++ Συναρτήσεις οριζόμενες από τον χρήστη Μεταβίβαση κατ αξία Συναρτήσεις void και λογικές συναρτήσεις Μεταβίβαση κατ αναφορά Επιστροφή
Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας
ιαφορικές Εξισώσεις Μετασχηματισμοί Laplace Μανόλης Βάβαλης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας Βόλος, 11 Μαΐου 2015 Περιεχόμενα Μετασχηματισμοί Laplace Ορισμός μετασχηματισμού
ΕΡΓΑΣΤΗΡΙΟ 1 - ΣΗΜΕΙΩΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017-2018 ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εισαγωγή ΕΡΓΑΣΤΗΡΙΟ 1 - ΣΗΜΕΙΩΣΕΙΣ Ένα πρόγραμμα σε C περιλαμβάνει μια ή περισσότερες συναρτήσεις
Εντολές εισόδου - εξόδου. Εισαγωγή στη C++
Εντολές εισόδου - εξόδου Εισαγωγή στη C++ Το πρώτο πρόγραμμα //my first program #include using namespace std; int main(){ cout
Η γλώσσα προγραμματισμού C
Η γλώσσα προγραμματισμού C Οι συναρτήσεις στη C Οι συναρτήσεις τι είναι Πρόκειται για ανεξάρτητα τμήματα ενός προγράμματος (υποπρογράμματα) που επιτελούν συγκεκριμένες εργασίες. Καλούνται από το κυρίως
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος
Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης
Συναρτήσεις. Εισαγωγή
Συναρτήσεις Εισαγωγή Η χρήση συναρτήσεων στα προγράμματα της γλώσσας C είναι πολύ σημαντική καθώς μας επιτρέπει τη διάσπαση ενός προβλήματος σε μικρότερα υποπροβλήματα τα οποία μπορούμε να επιλύσουμε πιο
Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.
2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Γλώσσες Περιγραφής Υλικού Ι
Γλώσσες Περιγραφής Υλικού Ι Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@uop.gr 24 Απριλίου 2012 Σκιαγράφηση της διάλεξης Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State Machine) Ορισμός
Κατασκευή της κίνησης Brown και απλές ιδιότητες
5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
5.1 Μετρήσιμες συναρτήσεις
5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο
Σε γενικές γραμμές, είναι καλή πρακτική να γράϕουμε προγράμματα C που αποτελούνται από πολλές και μικρές συναρτήσεις, παρά από λίγες και μεγάλες.
58 Δομή ενός προγράμματος C Συναρτήσεις Μία συνάρτηση C είναι ένα αυτόνομο, πακεταρισμένο τμήμα προγράμματος που ϕέρει σε πέρας μία διαδικασία η οποία έχει σαϕείς προδιαγραϕές εισόδου και εξόδου και συγκεκριμένο
Προγραμματισμός Αναδρομή
Προγραμματισμός Αναδρομή Προγραμματισμός Προγραμματισμός Κλήσεις Συναρτήσεων Όταν καλείται μια συνάρτηση, πρέπει Να θυμάται σε ποιο σημείο του προγράμματος θα επιστρέψει Να δεσμεύσει χώρο για την τιμή
Aντικειμενοστραφής. Προγραμματισμός. Κληρονομικότητα
Κληρονομικότητα Η κληρονομικότητα είναι ένα από τα πιο ισχυρά χαρακτηριστικά του αντικειμενοστραφούς προγραμματισμού. Είναι ο μηχανισμός που επιτρέπει σε μία κλάση να κληρονομεί όλη τη συμπεριφορά και
Δομημένος Προγραμματισμός (ΤΛ1006)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Ηλεκτρονικών Μηχανικών Τομέας Αυτοματισμού και Πληροφορικής Δομημένος Προγραμματισμός (ΤΛ1006) Δρ. Μηχ. Νικόλαος Πετράκης, Καθηγητής
Ανελίξεις σε συνεχή χρόνο
4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς
Εργαστήριο 3 Εντολή for while, do while
Εργαστήριο 3 Εντολή for while, do while Άσκηση 3.1 Εύρεση αθροίσματος ακεραίων με χρήση της εντολής for #include int main(int argc, char *argv[]) int num,sum; coutnum;
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ
ΣΥΝΑΡΤΗΣΕΙΣ Παραδείγματα χρήσης συναρτήσεων
ΣΥΝΑΡΤΗΣΕΙΣ Παραδείγματα χρήσης συναρτήσεων ΠΟΛΛΕΣ ΕΝΤΟΛΕΣ ΕΠΙΣΤΡΟΦΗΣ Να γραφτεί ένα πρόγραμμα που να διπλασιάζει ένα ποσό που του δίνει ο χρήστης μεταξύ 0 και 1000. Να ελέγχει εάν το ποσό που εισήχθη
Σχέσεις και ιδιότητές τους
Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση