Transitions, Overlaps. Spectroscopic Factors
|
|
- Καλλίστρατος Νικολαΐδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Transitions, Overlaps and Spectroscopic Factors A. Arriaga J. Carlson D. Kurath L. Lapikas T.-S. H. Lee L. E. Marcucci K. M. Nollett V. R. Pandharipande S. C. Pieper R. Schiavilla K. Varga R. B. Wiringa Pieper & Wiringa, Ann.Rev.Nucl.Part.Sci. 51, 53 (2002)
2 Hamiltonian H = K i + v ij + V ijk i i<j i<j<k K i = K CI i + K CSB i h2 4 [( 1 m p + 1 m n ) + ( 1 m p 1 m n )τ zi ] 2 i Argonne v 18 (AV18) v ij = v γ ij + vπ ij + v R ij = p v p (r ij )O p ij O p ij = [1, σ i σ j, S ij, L S, L 2, L 2 (σ i σ j ), (L S) 2 ] [1, τ i τ j ] + [1, σ i σ j, S ij, L S] [T ij, (τ iz + τ jz )] Urbana IX (UIX) V ijk = V 2πP ijk + V R ijk V 2πP ijk = A 2π {Xij, π Xik}τ π j τ k + i 4 [Xπ ij, Xik]τ π i τ j τ k cyc
3 Variational Monte Carlo E V = Ψ V H Ψ V Ψ V Ψ V E 0 Trial function Ψ V = [ 1 + U T NI ijk ] Ψ P Ψ P = [ S i<j i<j<k (1 + U ij ) ] Ψ J U ij = p=2,6 u p (r ij )O p ij ; U T NI ijk = ɛv ijk ( r ij, r jk, r ki ) s-shell nuclei [ ] Ψ J = f c (r ij ) Φ A (JMT T 3 ) i<j Φ α (0000) = A p p n n Functions f c (r ij ) and u p (r ij ) are obtained numerically from solution of coupled differential equations containing v ij
4 p-shell nuclei Ψ J = A i<j 4 4<l<m A f ss (r ij ) LS[n] Φ A (LS[n]JMT T 3 ) A = Φ α(0000) 1234 (β LS[n] k 4<l A f LS[n] sp (r kl ) ) } fpp LS[n] (r lm ) Φ A (LS[n]JMT T 3 ) A 4<l A φ LS[n] p (R αl ) { [Y m l 1 (Ω αl )] LML [χ l ( 1 2 m s)] SMS }JM [ν l( 1 2 t 3)] T T3 Permutation symmetry A [n] L (T, S) 6 [2] 0, 2 (1, 0), (0, 1) [11] 1 (1, 1), (0, 0) 7 [3] 1, 3 (1/2, 1/2) [21] 1, 2 (3/2, 1/2), (1/2, 3/2), (1/2, 1/2) [111] 0 (3/2, 3/2), (1/2, 1/2) 8 [4] 0, 2, 4 (0, 0) [31] 1, 2, 3 (1, 1), (1, 0), (0, 1) [22] 0, 2 (2, 0), (1, 1), (0, 2), (0, 0) [211] 1 (2, 1), (1, 2), (1, 1), (1, 0), (0, 1)
5 Diagonalization in β LS[n] basis to produce energy spectra E(Jx π ) and orthogonal excited states Ψ V (Jx π ) Expectation values Ψ V (R) is represented by a vector with 2 A ( A Z) spin-isospin components for each space configuration R = (r 1, r 2,..., r A ); Expectation values are given by summation over samples drawn from probability distribution W (R) = Ψ P (R) 2 : Ψ V O Ψ V Ψ V Ψ V = Ψ V (R)OΨ V (R) Ψ V / (R)Ψ V (R) W (R) W (R) Ψ Ψ is a dot product and Ψ OΨ a sparse matrix operation. Transition matrix elements Generate W from either initial or final state: Ψ f T Ψ i Ψ f Ψ i = Ψ f T Ψ i W / Ψf 2 W Ψi 2 W T may be a non-square matrix.
6 -20 Energy (MeV) He 1/2 α+n 3/2 α+2n 5 He He Li α+d 5/2 1/2 3/2 6 He+n 7 He Argonne v 18 + UIX VMC Trial & GFMC Calculations 15 July He+2n 5/2 5/2 7/2 3/2 5/2 5/2 7/2 7 Li α+t 3/2 1/2 8 He Li 7 Li+n 8 Li+n Li 7/2 3/2 5/2 1/2 3/2 8 Be+n 1/2 5/2-60 Ψ T GFMC α+α 8 Be Be 3/2
7 APPLICATIONS F 2 T (q) = 1 F 2 L (q) = 1 2J i + 1 J=1 2J i + 1 J=0 J f T El J Electromagnetic form factors J f T J Coul (q) J i 2 (q) J i 2 + J f T Mag (q) J J i 2 6 Li(e,e) 6 Li 6 Li(e,e) 6 Li F L (q 2 ) IA IA+MEC Stanford (q 2 ) F T IA IA+MEC Amsterdam Saskatoon Stanford 10 7 C0, C2 M q (fm 1 ) q (fm 1 ) 6 Li(e,e ) 6 Li* (3 +,T=0) 6 Li(e,e ) 6 Li* (0 +,T=1) F L 2 (q 2) 10 4 IA IA+MEC Mainz Saskatoon Stanford (q 2 ) F T IA IA+MEC Saskatoon Mainz 10 5 C2, C4 M q (fm 1 ) q (fm 1 ) Wiringa & Schiavilla, Phys.Rev.Lett. 81, 4317 (1998)
8 APPLICATIONS Pion scattering Compute quadrupole transition densities for p and n: ρ t 2J f + 1 Ψ Jf M f 3 i δ(r r i )r2 E2 (r) = i Y 2 M (ˆr i ) 1+2t 3 τ(i) 2 J f M f J i 2M i M Ψ Ji M i n=p 6 Li ( ) 7 Li ( 3 / 2 1 / 2 ) ρ E2 t 3 (fm 1 ) n p 7 Li ( 3 / 2 7 / 2 ) 7 Li ( 3 / 2 5 / 2 ) r (fm) B(E2 ) Experiment VMC p p n 6 Li( ) 21.8± ± ±0.4 7 Li( ) 7.59± ± ±0.3 7 Li( ) 15.5± ± ±0.5 7 Li( ) 4.1± ± ±0.2
9 Input to DWIA analysis of pion scattering: 6 Li(π,π) 6 Li 6 Li(π,π ) 6 Li Li(1 + ) 240 MeV π 6Li(3 + ) 240 MeV π dσ/dω (mb/sr) Li(1 + ) 180 MeV π 6 Li(3 + ) 180 MeV π Li(1 + ) 100 MeV π 6 Li(3 + ) 100 MeV π θ (deg) Conventional shell-model prediction required enhancement factor E p = E n = 2.5 to fit data; no such factor needed with Ψ V. Lee & Kurath, Phys.Rev.C 21, 293 (1980)
10 π + (π ) scattering sensitive to p (n) transition strength: 7 Li(π,π ) 7 Li 164 MeV π + 7 Li(5/2 ) p + n p only π 7 Li(5/2 ) p + n p only dσ/dω (mb/sr) π + 7 Li(7/2 ) p + n p only π 7 Li(7/2 ) p + n p only π + 7 Li(1/2 ) p + n p only π 7 Li(1/2 ) p + n p only θ (deg) Conventional shell-model required different enhancement factors E p = 2.5, E n = 1.75 to fit data; again none needed with Ψ V. Lee & Wiringa, Phys.Rev.C 63, (2001)
11 APPLICATIONS 7 Li(e, e p) 6 He reaction Coulomb DWIA analysis using VMC overlap in momentum distribution: ρ(p m ) = e ipm r 6 He a(r) 7 Li dr (x 10) ρ(p m ) [(MeV/c) -3 ] /2 - -> 0 + 3/2 - -> 2 + VMC: S=0.39 VMC: S=0.27 MFT: S=0.42(4) MFT: S=0.16(2) p m [MeV/c] Lapikás, Wesseling, & Wiringa, Phys.Rev.Lett. 82, 4404 (1999)
12 Cluster overlaps & spectroscopic factors Two-cluster overlap A ab (J a, J b, J, r ab ) = AΨ a (J a )Ψ b (J b ), r ab Ψ(J) = LM L,SM S LM L, SM S JM J J a M a, J b M b SM S R L (r ab )Y LML (ˆr ab ) Radial functions R L (r ab ) are evaluated in VMC calculation Momentum distribution N ab (k) = Ãab(J a, J b, J, k) 2 computed from Fourier transform of A ab Spectroscopic factor S ab (J a, J b, J) = = A 2 ab (J a, J b, J, r) d 3 r 1 (2π) 3 N ab (k) d 3 k
13 < 6 He(J + ) + p(p j ) 7 Li(3/2 - ) > AV18/UIX (VMC) Spectroscopic Factor CK VMC Expt* 7 6 Li(p) - He(p) He(0 )+p(p3/2) (4) 6 + He(2 )+p(p3/2) (2) He(2 )+p(p1/2) He + p total (5) N(k) (fm -1 ) * Lapikas et al., PRL 82, 4404 (1999) k (fm -1 )
14 Sum rules for p-shell spectroscopic factors Fixed Center For single-nucleon pickup or knockout reactions J,j while in stripping reactions, J,j 2J A + 1 S(J A 1, j, J A ) N p 2J A S(J A 1, j, J A ) N h where N p (N h) is the number of p-shell particles (holes) Translationally Invariant For Harmonic Oscillator wave functions S T I = A A 1 S F C assuming same HO parameter in s- and p-shells; similar modifcation to sum rules (known since 1970s)
15 Tests for 6 He + p 7 Li HO wave functions Ψ s (r i ) = exp[ α s (r i R A ) 2 ] Ψ p (r i ) = (r i R A )exp[ α p (r i R A ) 2 ] choose α s to give correct 4 He rms radius r p = r n = 1.47 fm A Z α s α p r p /r n S T I p 3/2 + p 1/2 7 Li(3/2-) / He(0+) / (1) 6 He(2+) / (1)+0.26(1) Total 1.16(1) 7 Li(3/2-) / He(0+) / (1) 6 He(2+) / (1)+0.22(1) Total 1.04(1) Woods-Saxon wave functions Single WS cannot produce both A=4,7 radii; TI/FC = 1.09 Double WS can produce both A=4,7 radii; TI/FC = 0.99
16 Fully correlated Ψ V and different Hamiltonians A Z H E(VMC) r p /r n S T I p 3/2 + p 1/2 7 Li(3/2-) AV (2) 1.47/ He(0+) -67.5(1) 1.31/ (1) 6 He(2+) -67.5(1) 1.31/ (1)+0.24(1) Total 1.10(2) 7 Li(3/2-) AV4-42.5(1) 2.32/ He(0+) -31.0(1) 1.83/ (2) 6 He(2+) -29.0(1) 1.86/ (1)+0.19(1) Total 0.82(4) 7 Li(3/2-) AV18/UIX -33.1(1) 2.32/ He(0+) -24.2(1) 1.96/ (1) 6 He(2+) -22.3(1) 1.98/ (1)+0.13(1) Total 0.66(2)
17 < 6 Li(J + ) + n(p j ) 7 Li(3/2 - ) > AV18/UIX (VMC) Spectroscopic Factor CK VMC 2[ 7 Li(n) - 6 Li(n)] Li(1 + ;0)+n(pj ) Li(3 + ;0)+n(pj ) N(k) (fm -1 ) Li(0 ;1)+n(pj ) Li(2 ;0)+n(pj ) Li(2 ;1)+n(pj ) Li + n total k (fm -1 )
18 Results Single-nucleon spectroscopic factors for A = 5 10 for AV18/UIX compared to N p and N h J + j J Pickup (J =gs) Stripping (J=gs) 4 He+n 5 He 6.07 / 6 = 101% 5 He+n 6 He 1.90 / 2 = 95% 5 He+p 6 Li 0.83 / 1 = 83% 6 He+n 7 He 4.25 / 4 = 106% 6 He+p 7 Li 0.71 / 1 = 71% 4.79 / 6 = 80% 6 Li +n 7 Li 1.57 / 2 = 79% 4.59 / 5 = 92% 7 He+n 8 He 3.83 / 4 = 96% 7 He+p 8 Li 0.86 / 1 = 86% 7 Li +n 8 Li 2.72 / 3 = 91% 3.66 / 4 = 91% 7 Li +p 8 Be 4.29 / 5 = 86% 8 He+n 9 He 2.04 / 2 = 102% 8 He+p 9 Li 0.73 / 1 = 73% 4.11 / 5.6 = 74% 8 Li +n 9 Li 3.46 / 4 = 87% 2.94 / 3 = 98% 8 Li +p 9 Be 1.53 / 2 = 77% 3.62 / 4.2 = 87% 8 Be+n 9 Be 2.50 / 3 = 83% 9 Be+p 10 B 2.07 / 3 = 69% 2.73 / 3.6 = 76% Stable A He+n unstable A+1 He no quenching Stable A He unstable A 1 He+n almost no quenching Pickup A Z much less bound A 1 Z-1+p lots of quenching Pickup A Z somewhat less bound A 1 Z+n moderate quenching
19 Cluster-cluster overlaps A αd A αt Li(1 ) L=0 6 + Li(1 ) L=2 (x10) 6 + Li(3 ) L=2 6 + Li(3 ) L=4 (x10) 7 - Li(3/2 ) 7 - Li(7/2 ) A αα Be(0 + ) 8 Be(2 + ) 8 Be(4 + ) r (fm)
20 Future prospects Paper on A = 5 10 VMC survey in preparation; will include CK factors for rare isotopes from Kurath. Incorporate A ab (J, j, J, r) overlaps into ptolemy code for direct reactions (Pieper). Utilize A ab (J, j, J, r) overlaps in coupled-channels reaction codes (Nunes). Explore relation between R-matrix reduced widths and spectroscopic factors (Schiffer & Nollett). Astrophysically interesting transitions such as 3 He(α, γ) 7 Li, 7 Be(ε) 7 Li, being studied (Marcucci, Nollett, Schiavilla,...).
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Fermion anticommutation relations
Fermion anticommutation relations {a α,a β } = a αa β + a β a α = δ α,β {a α,a β } = {a α,a β } =0 Easy to demonstrate Rewrite antsymmetric state α 1 α 2 α 3...α N = a α 1 α 2 α 3...α N = a α 1 a α 2 α
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
Electronic structure and spectroscopy of HBr and HBr +
Electronic structure and spectroscopy of HBr and HBr + Gabriel J. Vázquez 1 H. P. Liebermann 2 H. Lefebvre Brion 3 1 Universidad Nacional Autónoma de México Cuernavaca México 2 Universität Wuppertal Wuppertal
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation
Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
3+1 Splitting of the Generalized Harmonic Equations
3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM-2
Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM- J. Barea 1 J. Kotila,3 F. Iachello 3 1 Departamento de Física, Universidad de Concepción, Chile Department of Physics, University
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Spherical shell model
Nilsso Model Spherical Shell Model Deformed Shell Model Aisotropic Harmoic Oscillator Nilsso Model o Nilsso Hamiltoia o Choice of Basis o Matrix Elemets ad Diagoaliatio o Examples. Nilsso diagrams Spherical
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
The Hartree-Fock Equations
he Hartree-Fock Equations Our goal is to construct the best single determinant wave function for a system of electrons. We write our trial function as a determinant of spin orbitals = A ψ,,... ϕ ϕ ϕ, where
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Electronic Supplementary Information:
Electronic Supplementary Information: 2 6 5 7 2 N S 3 9 6 7 5 2 S N 3 9 Scheme S. Atom numbering for thione and thiol tautomers of thioacetamide 3 0.6 0. absorbance 0.2 0.0 0.5 0.0 0.05 0.00 N 2 Ar km/mol
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Orbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial
Many Electron Spin Eigenfunctions An arbitrary Slater determinant for N electrons can be written as ÂΦ,,,N )χ M,,,N ) Where Φ,,,N functions and χ M ) = a)b ) c N ) is a product of N orthonormal spatial,,,n
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors
BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Optimal Impartial Selection
Optimal Impartial Selection Max Klimm Technische Universität Berlin Head of Junior Research Group Optimization under Uncertainty Einstein-Zentrum für Mathematik Introduction select member of a set of agents
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations
General Equations Our goal is to construct the best single determinant wave function for a system of electrons. By best we mean the determinant having the lowest energy. We write our trial function as
Andreas Peters Regensburg Universtity
Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
NN scattering formulations without partial-wave decomposition
NN scattering formulations without partial-wave decomposition Departemen Fisika, Universitas Indonesia, Depok 644, Indonesia E-mail: imam.fachruddin@sci.ui.ac.id Agus Salam Departemen Fisika, Universitas
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,