|
|
- ÁἸσαάκ Βασιλειάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 7
20
21
22 Table 1: FIML estimate of the econometric models Panel A: The US Panel B: Germany Parameter Estimate Std dev. t-statistic Estimate Std dev. t-statistic Phillips curve α π α π α π α π α y I-S curve β 0 (x100) β y β y β ρ Reaction function (1968:1-79:2) δ 0 (x100) δ π δ y δ i (1979:3-98:4) δ 0 (x100) δ π δ y δ i Likelihood σ y σ ε LBc(8) (p-value) LM(8) (p-value) σ y σ ε LBc(8) (p-value) LM(8) (p-value) Phillips curve (0.909) (0.095) (0.468) (0.452) I-S curve (0.714) (0.071) (0.049) (0.102) Reaction function (1968:1-79:2) (0.133) (0.011) (0.072) (0.590) Reaction function (1979:3-98:4) (0.179) (0.000) (0.038) (0.009) Real rate Inflation (79:3-98:4) Nominal rate Real rate Inflation (79:3-98:4) Nominal rate Steady-state values Note: LBc(8) is the Ljung-Box statistic, corrected for heteroskedasticity, obtained by regressing residuals on 8 lags. LM(8) is the Engle statistic for heteroskedasticity, obtained by regressing squared residuals on 8 lags. These statistics are distributed as χ 2 (8). Steady-state values are defined in Section 2.4.
23 Table 2: Stability tests The US Germany Panel A: Test for global stability p Sup-LR Avg-LR Exp-LR p Sup-LR Avg-LR Exp-LR Unknown date a a a b b Break in 1979: a b Panel B: Test for stability of policy-rule parameters p Sup-LR Avg-LR Exp-LR p Sup-LR Avg-LR Exp-LR Unknown date a a a a 8.14 a Break in 1979: a Panel C: Test for stability of non-policy parameters p Sup-LR Avg-LR Exp-LR p Sup-LR Avg-LR Exp-LR Unknown date b b Break in 1979: Note: Asymptotic critical values for the Sup-LR statistic are from Andrews (1993) and asymptotic critical values for the Exp-LR and the Avg-LR statistics are from Andrews and Ploberger (1994). p denotes the number of parameters allowed to shift at the break point. We assume that the break may occur over the subsample [π 0 T,(1-π 0 )T], with π 0 = a and b denote that the statistic is significant at the 1 percent and 5 percent levels, respectively.
24 Table 3: Implied parameters for optimal monetary-policy rules using program (9) Weights in the Optimal parameter values Unconditional standard deviations loss function (λ;1 λ) δ π 1 δ y δ i σ π σ y σ i (k) Panel A: The US k=6 (0.00;1.00) (0.50;0.50) (1.00;0.00) k=5 (0.00;1.00) (0.50;0.50) (1.00;0.00) k=4.7 (0.00;1.00) (0.50;0.50) (1.00;0.00) Model estimate Panel B: Germany k=6 (0.00;1.00) (0.50;0.50) (1.00;0.00) k=5 (0.00;1.00) (0.50;0.50) (1.00;0.00) k=4.7 (0.00;1.00) (0.50;0.50) (1.00;0.00) Model estimate
25 Table 4: Implied parameters for optimal monetary-policy rules using program (8) Weights in the Optimal parameter values Unconditional standard deviations loss function (µ π ; µ y ; 1 µ π µ y ) δ π 1 δ y δ i σ π σ y σ i Panel A: The US Inflation targeter (0.95;0.00;0.05) Output-gap targeter (0.00;0.95;0.05) Interest-rate targeter (0.00;0.00;1.00) Balanced preferences (0.35;0.35;0.30) Model estimate Panel B: Germany Inflation targeter (0.95;0.00;0.05) Output-gap targeter (0.00;0.95;0.05) Interest-rate targeter (0.00;0.00;1.00) Balanced preferences (0.35;0.35;0.30) Model estimate
26 Table 5: Implied parameters for the German optimal monetary-policy rules for various values of α y, using program (9) Weights in the Optimal parameter values Unconditional standard deviations loss function (µ π ; µ y ; 1 µ π µ y ) δ π 1 δ y δ i σ π σ y σ i Model estimate Optimal rule with the estimated nonpolicy parameters (α y =0.106) (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30) Optimal rule with α y =0.158 (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30) Optimal rule with α y =0.054 (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30)
27 Table 6: Implied parameters for the German optimal monetary-policy rules for various values of β ρ, using program (9) Weights in the Optimal parameter values Unconditional standard deviations loss function (µ π ; µ y ; 1 µ π µ y ) δ π 1 δ y δ i σ π σ y σ i Model estimate Optimal rule with the estimated nonpolicy parameters (β ρ =-0.508) (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30) Optimal rule with β ρ =-0.84 (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30) Optimal rule with β ρ =-0.17 (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30)
28 Table 7: Implied parameters for the German optimal monetary-policy rules for various values of β y1 +β y2, using program (9) Weights in the Optimal parameter values Unconditional standard deviations loss function (µ π ; µ y ; 1 µ π µ y ) δ π 1 δ y δ i σ π σ y σ i Model estimate Optimal rule with the estimated nonpolicy parameters (β y1 +β y2 =0.98) (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30) Optimal rule with β y1 +β y2 =1.05 (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30) Optimal rule with β y1 +β y2 =0.91 (0.00;0.70;0.30) (0.35;0.35;0.30) (0.70;0.00;0.30)
29 Fig. 1: Inflation rate, output gap and short-term interest rate The US Short-term interest rate Inflation rate Output gap Germany Short-term interest rate Inflation rate Output gap
30 Fig. 2a: The US optimal policy frontier Model estimate ( ) (σ π=3.4, σ y =3.1, σ i =4.8) k=4.7 k =5.0 k= Standard deviation of inflation Fig. 2b: The German optimal policy frontier Model estimate ( ) (σ π=3.8, σ y =4.0, σ i =4.9) k= k = k = Standard deviation of inflation
31 Fig. 3: Simulation of a temporary I-S shock under estimated rule (ER) and optimal rule (OR) The US Output gap (ER) Output gap (OR) Inflation (ER) Inflation (OR) Short nominal rate (ER) Short nominal rate (OR) Long real rate (ER) Long real rate (OR) Germany Output gap (ER) Output gap (OR) Inflation (ER) Inflation (OR) Short nominal rate (ER) Short nominal rate (OR) Long real rate (ER) Long real rate (OR)
32 Fig. 4: Shifts in German optimal policy frontier (with µ i =0.3) - Change in the sensitivity of inflation to movements in the output gap Model estimate ( ) (σ π=3.8, σ y =4.0, σ i =4.9) 3 α y =0.054 α y =0.158 Estimated α y Standard deviation of inflation
33 Fig. 5: Shifts in German optimal policy frontier (with µ i =0.3) - Change in the interestsensitivity of the I-S curve Model estimate ( ) (σ π=3.8, σ y =4.0, σ i =4.9) 3.5 Estimated β ρ 3.0 β ρ = β ρ = Standard deviation of inflation
34 Fig. 6: Shifts in German optimal policy frontier (with µ i =0.3) - Change in the persistence of the output-gap equation Model estimate ( ) (σ π=3.8, σ y =4.0, σ i =4.9) 3.5 β y1 +β y2 =0.91 β y1 +β y2 = Estimated β y1 and β y Standard deviation of inflation
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3
Monetary Policy Design in the Basic New Keynesian Model
Monetary Policy Design in the Basic New Keynesian Model Jordi Galí CREI, UPF and Barcelona GSE June 216 Jordi Galí (CREI, UPF and Barcelona GSE) Monetary Policy Design June 216 1 / 12 The Basic New Keynesian
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1
Managing Economic Fluctuations -Keynesian macro: - -term nominal interest rates. - - P. - - P. Managing Macroeconomic Fluctuations 1 Review: New Keynesian Model -run macroeconomics: - π = γ (Y Y P ) +
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Supplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
MATHACHij = γ00 + u0j + rij
Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns
Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Δυναμική του χρέους και του ελλείμματος Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
NMBTC.COM /
Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration
d 1 d 1
É É d 1 d 1 n n ;,x E ; x E X0 X X)0 0Ld 0Ld 0Ld 0Ld 0Ld 0Ld 1 0Ld 0Ld 0 0 0 1 ' 0 0d 0 0d 0 0d 0 0 0 0 0 0 0d 0 0 0 0d 0 0 0 0 0d 0 0 0Ld 0 0Ld 0d 0 0 0 0 0 0 0 0 0 0 \g 0,Q 0 i 0)( 0)( 0 0 0 0d 0 0
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Metal thin film chip resistor networks
Metal thin film chip resistor networks AEC-Q200 Compliant Features Relative resistance and relative TCR definable among multiple resistors within package. Relative resistance : ±%, relative TCR: ±1ppm/
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates
Αρτίκης Γ. Παναγιώτης Κόστος Κεφαλαίου Estimating Inputs: Discount Rates Critical ingredient in discounted cashflow valuation. Errors in estimating the discount rate or mismatching cashflows and discount
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
Sticky Leverage. Joao Gomes, Urban Jermann & Lukas Schmid. Wharton School, Duke & UCLA
Sticky Leverage Joao Gomes, Urban Jermann & Lukas Schmid Wharton School, Duke & UCLA We consider nominal debt that is long-term and defaultable We consider nominal debt that is long-term and defaultable
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Sy-Miin Chow Pennsylvania State University Katie Witkiewitz University of New
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Aluminum Electrolytic Capacitors
Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47
Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square
Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Repeated measures Επαναληπτικές μετρήσεις
ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
ΔΙΑΣΤΑΣΕΙΣ ΕΣΩΤΕΡΙΚΗΣ ΓΩΝΙΑΣ INTERNAL CORNER SIZES
ΔΙΑΣΤΑΣΕΙΣ ΕΣΩΤΕΡΙΚΗΣ ΓΩΝΙΑΣ 90 90 INTERNAL CORNER SIZES ΟΠΤΙΚΗ PERSPECTIVE ΠΑΝΩ ΟΨΗ TOP VIEW ΔΙΑΣΤΑΣΕΙΣ ΡΑΦΙΩΝ SHELF DIMENSIONS T1 ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΦΟΡΤΙΟ (1) MAXIMUM LOADING CAPACITIES (1) ΤΥΠΙΚΑ
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018
Color Temperature: 62 K Total Lumen Output: 21194 lm Light Quality: CRI:.7 Light Efficiency: 27 Lumen/Watt Peak: 1128539 cd Power: 793 W x: 0.308 y: 0.320 Test: Narrow Date: 4/27/2018 0 Beam Angle 165
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Thin Film Chip Resistors
FETURES PRECISE TOLERNCE ND TEMPERTURE COEFFICIENT EI STNDRD CSE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERLE (Pb FREE TERMINTION FINISH) Type EI Size Power Rating at 70
Strasbourg & ISC Paris Εξέλιξη επιτοκίων (term structure)
Domestic and International Markets University of Macedonia 2011-2012 Η Εξέλιξη των Επιτοκίων και ο Κανόνας του Taylor Σημειώσεις για το 2 ο μέρος του Lecture 4 που δεν συμπεριλαμβάνονται στις διαφάνειες
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W
Features 1. Reliable low cost construction utilizing molded plastic technique 2. Both bi-directional and uni-directional devices are available 3. Fast response time 4. Excellent clamping capacity 5. 1500
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
CEMENT FIXED RESISTORS
Self extinguishing Excellent flame and moisture resistance Extremely small sturdy and mechanically safe Non-inductive types available for all Royal Ohm Cement Types Too low or too high ohmic values on
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Supporting Information
Supporting Information Wiley-VCH 27 69451 Weinheim, Germany Supplementary Figure 1. Synthetic results as detected by XRD (Cu-Kα). Simulation pattern of MCM-68 Relative Intensity / a.u. YNU-2P Conventional
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT
ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT # # NO ΠΕΡΙΓΡΑΦΗ ΠΡΟΪΟΝΤΟΣ PRODUCT DESCRIPTION 1 ΚΟΛΩΝΑ UPRIGHT ΠΟΔΑΡΙΚΟ BASELEG 3 ΠΛΑΤΗ BACK PANEL 4 ΒΡΑΧΙΟΝΑΣ BRACKET 5 ΡΑΦΙ SHELF 6 ΚΟΡΝΙΖΑ ΤΙΜΩΝ PRICE STRIP 7 ΜΠΑΖΟ PLINTH
Υγιεινή Εγκαταστάσεων Βιομηχανιών Τροφίμων
Υγιεινή Εγκαταστάσεων Βιομηχανιών Τροφίμων Ενότητα 13 η - ΜΕΡΟΣ Γ ΑΠΟΤΙΜΗΣΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ Όνομα καθηγητή: ΠΑΝ. Ν. ΣΚΑΝΔΑΜΗΣ Τμήμα: Επιστήμης τροφίμων και διατροφής του ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Κατανόηση
DATA SHEET Surface mount NTC thermistors. BCcomponents
DATA SHEET 2322 615 1... Surface mount N thermistors Supersedes data of 17th May 1999 File under BCcomponents, BC02 2001 Mar 27 FEATURES High sensitivity High accuracy over a wide temperature range Taped
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Aluminum Electrolytic Capacitors (Large Can Type)
Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction
exchange rate exposure of companies.
This paper has been prepared to enable the MNB to fulfil its monetary policy obligations and support the compilation of monetary statistics on the exchange rate exposure of companies. This paper has been
χ 2 test ανεξαρτησίας
χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Global energy use: Decoupling or convergence?
Crawford School of Public Policy Centre for Climate Economics & Policy Global energy use: Decoupling or convergence? CCEP Working Paper 1419 December 2014 Zsuzsanna Csereklyei Geschwister Scholl Institute
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
2 4 5
f Æ 2 4 5 6 e D S. 7 8 9 : H ; BhL Ä,giU W? i?t ),giu 2 b 6 6 6 6 6 6 6 6 6 f < 43 3 3 2 2 2 44 45 46 w wã4 w wã4 BhL Ä,giU W? i?t ),giu 2 e D S ^ 2 M^ e D S ^ M^ Figure 1 US GDP and Exports, 1980-1994
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Table A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical