An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions"

Transcript

1 An Introduction to Quantum Field Theory Pekin and Schroeder Solution Andrzej Pokraka December, 7 Content The Dirac Equation. Lorentz grou.... Gordon Identity Sinor roduct Majorana fermion Suerymmetry Fierz tranformation....7 Dicrete ymmetrie of the Dirac field Bound tate The Dirac Equation. Lorentz grou The Lorentz commutation relation are J µν,j ρσ ]ig νρ J µσ g µρ J νσ g νσ J µρ + g µσ J νρ. a Define the generator of rotation and boot a L i ϵijk J jk and K i J i, where ijk i a ermutation of 3. AninfiniteimalLorentztranformationcanthenbewritten Φ iθ L iβ KΦ. Write the commutation relation of thee vector oerator exlicitly. Show that the combination J + L + ik and J L ik

2 commute with one another and earately atify the combination relation of angular momentum. Proof: The L oerator commutation relation are L i,l j] L i L j L j L i 4 ϵ ikl J kl,ϵ jmn J mn] 4 ϵikl ϵ jmn J kl,j mn] i 4 ϵikl ϵ jmn g lm J kn g km J ln g ln J km + g kn J lm] i ϵ ikl ϵ jmn g lm J kn ϵ ikl ϵ jmn g km J ln ϵ ikl ϵ jmn g ln J km + ϵ ikl ϵ jmn g kn J lm] 4 for the econd and lat term k l i ϵ ikl ϵ jmn g lm J kn ϵ ilk ϵ jmn g lm J kn ϵ ikl ϵ jmn g ln J km + ϵ ilk ϵ jmn g ln J km] 4 i ϵ ikl ϵ jmn g lm J kn + ϵ ikl ϵ jmn g lm J kn ϵ ikl ϵ jmn g ln J km ϵ ikl ϵ jmn g ln J km] 4 for the third and lat term m n i ϵ ikl ϵ jmn g lm J kn + ϵ ikl ϵ jmn g lm J kn ϵ ikl ϵ jnm g lm J kn ϵ ikl ϵ jnm g lm J kn] 4 i ϵ ikl ϵ jmn g lm J kn + ϵ ikl ϵ jmn g lm J kn + ϵ ikl ϵ jmn g lm J kn + ϵ ikl ϵ jmn g lm J kn] 4 iϵ ikl ϵ jmn g lm J kn iϵ ikl ϵ jmn δ lm J kn iϵ ikl ϵ jln J kn iϵ ikl ϵ jnl J kn i δ ij δ kn δ in δ kj J kn i δ ij J kk J ji ij ij iϵ ijk L k where Jαβ kk i δα k δk β δk β δk α and ϵ ijk L k ϵijk ϵ klm J lm ϵkij ϵ klm J lm δ il δ jm δ im δ jl J lm J ij J ji J ij.

3 The K commutation relation are K i,k j] K i K j K j K i J i J j J j J i i g i J j g J ij g ij J + g j J i. Thi i imlified uing roertie of the metric g i, g, g ij and the generator J K i,k j] ij ij Next, we need iϵ ijk L k. L i,k j] ϵikl J kl,j j] i ϵikl g lj J k + g kj J l i ϵikl δ lj J k δ kj J l i ϵ ikj J k ϵ ijl J l i ϵ ijk J k + ϵ ijk J k iϵ ijl K l. Latly we comute the angular momentum commutator J +, J ] L + ik, ] L ik L, L] i L, K]+i K, L]+K, K]} 4 i K, L] i K i,l j] ê i ê j i K i,l i] ] J± i,jj ± L i ± ik i, L j ± ik j] L i,l j] ± i L i,k j] ± i K i,l j] K i,k j]} 4 iϵ ijk L k ± i iϵ ijl K l i iϵ jil K l + iϵ ijk L k} 4 iϵ ijk L k ϵ ijl K l ± ϵ ijl K l + iϵ ijk L k} iϵ ijk L k ϵ ijl K l} i ϵijk L k ± ik k} i ϵijk J k ± 3

4 b The finite-dimenional rereentation of the rotation grou correond reciely the to the allowed value for angular momentum: integer or half-integer. The reult of art a imlie that all finite-dimenional rereentation of the Lorentz grou correond to air of integer or half integer, j +,j,correondingtoairofrereentationofthe rotation grou. Uing the fact that J σ/ in the in-/ rereentation of angular momentum, write exlicitly the tranformation law of the -comonent object tranforming according to the, and, rereentation of the Lorentz grou. Show that thee correond reciely to the tranformation of ψ L and ψ R giving in Proof: The rereentation of the Lorentz grou are denoted by m, n π m,n where m, n are either half-integer or integer. The irreducible rereentation are given by π m,n L i I m+ J n i + J m i I n+ π m,n K i i I m+ J n i J m i I n+. With J σ/ the, rereentation i found to be π m,n L i I I + σi I I + σi I σi I σi π m,n K i i I I σi I i I σi I i σi I i σi. Thu, with L i σ i / and K i iσ i / the tranformation law become Φ, e i ωµν J µν Φ, i ω µνj µν Φ, i ω νj ν i ω iνj iν Φ, i ω J i ω ij i i ω ij i i ω ijj ij i ω ij i i ω ij i i ω ijj ij Φ, iω i K i i ω ijϵ ijk L k Φ, iβ K iθ L Φ, β σ i θ σ Φ, where we have defined β i ω i ω i and θ k ω ij ϵ ijk. Now for the, rereentation we have Φ, π m,n L i I σi σ i + I I I + I σi π m,n K i i I σi σ i I I i I I i σi I. 4

5 Thu, with L i σ i / and K i iσ i / the tranformation law become Φ, Uon comarion with equation 3.37 we identify e i ωµνj µν Φ, iβ K iθ L Φ, + β σ i θ σ Φ,. Φ, ψ L and Φ, ψ R. Thu, the left- and right-handed inor tranform according toearaterereentationofthelorentzgrou. c The identity σ T σ σσ allow u to rewrite the ψ L tranformation in the unitarily equivalent form ψ ψ + iθ σ/+β σ/, where ψ ψl T σ.uingthilaw,wecanrereenttheobjectthattranforma, a a matrix that ha the ψr tranformation law on the left and imultaneouly, the tranoed ψ L tranform on the right. Parametrize thi matrix a V + V 3 V iv V + iv V V 3. Show that the object V µ tranform a a 4-vector. Proof: Left-handed inor tranform according to ψ L β σ i θ σ ψ L. With ψ ψ T L σ we verify the tranformation law ψ β σ i θ σ ψ L T σ ψ T L σ σ β σ i θ σ T σ ψ σ β σt i θ σt σ ψ + β σ + i θ σ. Now we are intereted in the tranformation roertie of a, object. We arameterize the, object a the matrix V Φ, + V 3 V iv V + iv V V 3 V µ σ µ 5

6 where it will be hown that V µ i a 4-vector. Alying the tranformation to Φ, we get Φ, + β σ i θ σ Φ +, β σ + i θ σ + β iθ σ V µ σ µ + β σ + iθ σ V µ σ µ + β iθ σv µ σ µ + V µ σ µ β + iθ σ + O θ,β V µ σ µ + V µ β σσ µ + σ µ σ V µ iθ σσ µ σ µ σ V µ σ µ + V µ βi σ i,σ µ } V µ iθi σ i,σ µ ] V µ σ µ + V βi σ i,σ } + V j βi σ i,σ j } V iθi σ i,σ ] V j iθi σ i,σ j ] V µ σ µ + V βi σ i, I} + V j βi σ i,σ j } V iθi σ i, I] V j iθi σ i,σ j ] V µ σ µ + V βi σ i + V j βi δ ij V j iθi iϵ ijk σ k V µ σ µ + V β i σ i V i β i + V j θ i ϵ ijk σ k where σ i, I} σ i, σ i, I], σ i,σ j } δ ij, σ i, I] iϵ ijk σ k. Alo note that β i V j δ ij β i V i becaue g ij δ ij. Recall that we have defined the anti-ymmetric tenor ω i β i and ω ij ϵ ijk θ k. Inerting thee exreion into the above, we have V µ σ µ + V β i σ i V i β i + V j θ i ϵ ijk σ k V µ σ µ + V ω i σ i V i ω i + V j ω jk σ k V µ σ µ + V ω i σ i + V i ω i σ + ω ij V i σ j V µ σ µ + ω µν σ ν V µ δ ν µ + ω ν µ Vν σ µ. We would like to how that thi i identical to equation 3.9inP&S.P&Saertthata4-vectorV µ tranform a follow V α δβ α i ω µν J µν α β V β for J µν αβ δ µ αδ ν β δν αδ µ β.withthidefinitionofj µν α β the tranformation condition become δ α β i ω µν J µν α β δ α β i ω µν J µν γβ g γα δ α β i ω µν δ γ µ δβ ν δγδ ν µ β g γα δ α β i ω γβ ω βγ g γα δ α β iω γβg γα δ α β iω α β. Thi i the identical reult obtained from tranforming V µ σ µ.thu,weeethatv µ i indeed a 4-vector. 6

7 . Gordon Identity Derive the Gordon identity, where q. Proof: The comutation i traightforward: ū γ µ u ū µ + µ ] m + iσµν q ν u, m σ µν q ν i γµ,γ ν ] ν ν i γµ γ µ i γµ γµ i gµν ν γ µ γ µ i γµ gµν ν + γ µ i µ γ µ i γ µ µ ū µ + µ ] m + iσµν q ν u ū µ + µ µ γ µ +γ µ µ m m ū γ µ + γ µ ] u m mγ ū µ + γ µ ] m u m ū γ µ u where we have ued the Fourier tranformed Dirac equation and it adjointequation m u and ū m. ] u.3 Sinor roduct Together i Problem 5.3 and 5.6 we develo an efficient comutational method for rocee involving male article. Let k µ, kµ be fixed 4-vector atifying k, k, k k. Define baic inor in the following way: Let u L be the left-handed inor for for a fermion with momentum k.letu R k u L.Then,foranyuch that i lightlike define u L k u R and u R k u L. Thi et of convention define the hae of inor unambiguouly excet when i arallel to k. a Show that k u R.Showthat,foranylightlike, u R. Proof: k u R k k u L k µ kν γ µ γ ν u L k µ kν g µν γ ν γ µ u L k k u L k k u L 7

8 where we have ued the Dirac equation for a male article k u L and the dot roduct k k.nowforanylightlike 4-momentum the definition of the inor above atify the male Dirac equation u R k u L k u L. b For the choice k E,,, E, k,,,, contructu L, u R, u L, andu R exlicitly. Proof: For thi roblem we will need the oerator k which in the Chiral or Weyl bai i given by k k k σ k + k σ k k 3 k ik k + ik k + k 3 k + k 3 k ik. k + ik k k 3 From equation 3.5 in P&S the Dirac inor for are given by k σξ u k k σξ E σ + σ 3 ξ E σ σ 3 ξ ξ E ξ ξ E T } T where ξ, and σ σ σ.takingξ ξ u L E E T the left-handed inor i while the right-handed inor i given by taking ξ u R E T E. 8

9 The chiral inor for any momentum are then given by u L k u R E E i + i i + i 3 + i + 3 u R k u L E E i 3 i + i i + i 3 c Define the inor roduct, and t,for, lightlike, by, ū R u L and t, ū L u R. Uing the exlicit form for the u λ given in art b, comute the inor roduct exlicitly and howthatt,, and,,.inaddition,howthat,. Thu the inor roduct are the quare root of 4-vector dot roduct. Proof: 9

10 , ū R u L i i i + i i i i + i 3 + i + 3 i i ,, Since and are lightlike i i i + i i 3 i i + 3 i i 3 i we have,

11 .4 Majorana fermion Recall form Eq. 3.4 that one can write a relativitic equation for male -comonent fermion field that tranform a the uer two comonent of a Dirac inor ψ L.Callucha-comonentfieldχ a x, a,. a Show that it i oible to write an equation for χ x a a maive field in the following way: i σ χ imσ χ. That i, how, that thi equation i relativitically invariant and, econd, that it imlie the Klein-Gordon equation, + m χ.thiformofthefermionmaicalledmajoranamaterm. Proof: The unitary matrix, Λ,whichLorentztranformafermionfieldinorigivenbyequation3.3 where Λ θ, β ex i ω µνs µν S µν i 4 γµ,γ ν ] Λ, Λ, i the Lorentz tranformation generator for inor, β i ω i ω i and θ k ω ij ϵ ijk. Thi tranformation matrix i block diagonal. Thi i een from the block diagonal form of the generator of boot 3.6 and 3.7 S i i σ i σ i where the in oerator of Dirac theory i S ij ϵijk Σ k Σ k σ i σ i. The block Λ, and Λ are the left and right handed rereentation of the Lorentz grou. A inor which, tranform according to Λ i called a Dirac inor. Becaue of the block diagonal form left and right inor tranform in different rereentation of the Lorentz grou Λ Λ ψ, ψl Λ,ψ L Λ, ψ R Λ, ψ. R Under infiniteimal rotation by θ and boot β the tranformation law for the left and right handed inor are β σ i θ σ Λ, Λ, β σ + i θ σ. Now equation 3.4 tell u that we can write the relativitic field equation for a male fermion which tranform under Λ, a i σ χ.furthermore,weknowhowγµ tranform. Thi i given by equation 3.9 Λ γ µ Λ Λµ ν γν. On the left the Lorentz tranformation are acting on the inor indice of γ µ while on the right the Lorentz tranformation

12 act on the ace time index µ. Wecanworkoutthetranformationfor σ becaue σ µ i jut the off-diagonal block of γ µ Λ µ ν σν Λ µ ν σ ν Λ µ νγ ν Λ γ µ Λ Λ,σµ Λ, Λ, σµ Λ, From the above we conclude that σ µ Λ ν µ Λ, σν Λ,. Wewillaloneedthefactthatifχtranform according to Λ, then σ χ tranform under Λ, i.e., χ i left-handed and σ χ i right-handed. We rove thi here. Alying Λ, to σ χ yield σ χ σ β σ i θ σ χ σ β σ + i θ σ + β σ i θ σ χ Λ, χ. χ. Lorentz tranform; review of a calar field χ no atial orientation.. χ: UnderLorentztranformationthecalarχ tranform a χ x χ x χ Λ x where x x Λx.. µ χ:underlorentztranformation µ χ tranform a µ χ x µ χ x xν Λ x µ x ν χ β α x α Λ ν ρ x ρ Λ x µ x ν χ β Λ Λ νρ gρ µ x ν χ β Λ ν µ νχ Λ x α x α α x α where x x Λx. Noticethatthiiooitetohowthevectorx µ tranform x µ x µ Λ µ νx ν.thihow that while x µ i a contravariant vector, µ i a covariant vector. Alying the Lorentz tranformation to the field equation we have i σ χx imσ χ x i σ µ Λ νµ νλ,χ Λ x imλ, σ χ Λ x where we know how µ χ tranform. Uing σ µ Λ ν µ Λ, σν Λ, we conclude i σ χx imσ χ x iλ, σν Λ, νλ,χ Λ x imλ, σ χ Λ x Λ, i σ ν ν χ Λ x imσ χ Λ x }. Thu, we ee that the field equation i σ χx imσ χ x i relativitically invariant. Next, we mut how that i σ χx imσ χ x imlie the Klein-Gordon equation. The equation i σ χ x+ imσ χ x imlie χ x m σ σ χx. Subtitutionintothecomlexconjugateofi σ χx imσ χ x

13 we have a required. i σ µ µ χ x imσ χ x i σ µ µ m σ σ ν ν χ x imσ χ x σ σ σ µ σ σ ν µ ν χ x+m σ χ x σ σ µ σ ν µ ν χ x+m σ χ x σ µ σ ν µ ν χ x m χ x g µν µ ν χ x m χ x χ x+m χ x b Doe the Majorana equation follow from a Lagrangian? The ma term would eem to be the variation of σ ab χ a χ b ; however, ince σ i antiymmetric, thi exreion would vanih if χ x were an ordinary c-number field. When we go to quantum field theory, we know that χ x will become an anti-commuting quantum field. Therefore, it make ene to develo it claical theory by conidering χ x a a claical anti-commuting field, that i, a a field that take a value Gramann number which atify αβ βα for any α, β. Note that thi relation imlie that α.agramannfieldξ x can be exanded in a bai of function a ξ x n α n φ n x, where the φ n x are orthogonal c-number function and the α n are a et of indeendent Gramann number. Define the comlex conjugate of a roduct of Gramann number to revere the order: αβ β α α β. Thi rule imitate the Hermitian conjugation of quantum field. Show that the claical action, S d 4 x χ i σ χ + im χ T σ χ χ σ χ ], where χ χ T ireals S, andthatvaryingthis with reect to χ and χ yield the Majorana equation. Proof: The trick to thi roblem i realizing that S C and o S S.Thecomlexconjugateoftheactionitherefore χ S d 4 x i σ µ µ χ im ] + χ T σ χ χ σ χ d 4 x µ χ i σ µ χ im χ σ χ T χ σ χ ] d 4 x µ χ i σ µ χ im χ σ χ χ T σ χ ] ] d 4 x µ χ im i σ µ χ + d 4 x χ T σ χ χ σ χ ] IBP ds µ iχ σ µ χ ] d 4 x χ i σ µ µ χ ] im + d 4 x χ T σ χ χ σ χ ] d 4 x χ i σ µ µ χ ] im + d 4 x χ T σ χ χ σ χ ] S. 3

14 Notice that we have aumed that the field χ vanihe at the boundary of the integration region. Recall that the action i the integral of the Lagrange denity L. Inourcaewehave L χ i σ χ + im χ ai σ µ ab µχ b + im χ T σ χ χ σ χ σ ab χ a χ b σ abχ aχ b. The Euler-Lagrange equation are derived from variation oftheaction,requiringthattofirtorderδχ that δs. However, we cannot jut ue the Euler-Lagrange equation becaue χ i a Gramann field. Varying the action with reect to χ yield δs S χ + δχ ] S χ ] d 4 xl χ + δχ, µ χ + µ δχ d 4 xl χ, µ χ d 4 x χ a + δχ a i σµab µχ b + im ] σab χ aχ b χ a + δχ a χ b + δχ b d 4 x χ ai σ µ ab µχ b + im ] σ ab χ a χ b χ aχ b d 4 x δχ a i σµab µχ b + im ] σab χ a δχ b δχ a χ b d 4 x δχ ai σ µ ab µχ b + im σ ab δχ aχ b σabδχ aχ ] b d 4 xδχ a i σ µ ab µχ b imσabχ ] b Since thi hold for all integration volume i σ µ µ χ imσ χ which i the Majorana equation. Similarly, with the action S S d 4 x µ χ i σ µ χ im χ σ χ χ T σ χ ] and varying with reect to χ yield the comlex conjugate equation i σ µ µ χ imσ χ. c Let u write a 4-comonent Dirac field a ψ x ψl ψ R, and recall that the lower comonent of ψ tranform in a way equivalent by a unitary tranformation to the comlex conjugate of the rereentation ψ L.Inthiwaywecanrewritethe4-comonentDiracfieldintermoftwo-comonent inor: ψ L x χ x and ψ R x iσ χ x. Rewrite the Dirac Lagrangian in term of χ and χ and note the form of the ma term. 4

15 Proof: The Dirac Lagrange denity i L D ψ iγ µ µ m ψ. TheDiracinoriψ T ψ L ψ R χ iσ χ T. where we have ued σ σ µ σ σ µ. L D ψ iγ µ µ m ψ χ iχ T m iσ µ µ χ σ i σ µ µ m iσ χ iχ T σ χ mχ + iσ µ µ iσ χ i σ µ µ χ miσ χ iχ T σ mχ + iσ µ µ iσ χ + χ i σ µ µ χ miσ χ iχ T σ σ σ χ + iχ σ χ + imχ T σ χ miχ σ χ iχ σ χ + iχ T σ σσ χ χ + im T σ χ χ σ χ iχ σ χ + iχ T σ χ χ + im T σ χ χ σ χ iχ σ χ + iχ T σ χ + im χ T σ χ χ σ χ Since the econd term, iχ T σ χ,ijutanumberwecanimlyitfurtheruingthefactthat σµ T σ µ iχ T σµ µ χ iχ T σµ µ χ T i µ χ σµ χ i µ χ σµ χ. Thu, the Lagrange denity i L D iχ σ χ + iχ σ χ + im χ T σ χ χ σ χ. Notice that if χ χ we have twice the Majorana Lagrange denity from art b: L M iχ σ χ + iχ σ χ + im χ T σ χ χ σ χ iχ σ χ + im χ T σ χ χ σ χ }. d Show that the action of art c ha a global ymmetry. Comute the divergence of the current J µ χ σ µ χ and J µ χ σµ χ χ σµ χ, for the theorie of art b and c, reectively, and relate your reult to the ymmetrie of thee theorie. Contruct atheoryofnfreemaive-comonentfermionfieldwitho N ymmetry that i, the ymmetry of rotation in an N-dimenional ace. Proof: The action S i invariant under the U ymmetry ψ e iθ ψ. ] d 4 x iχ σ χ + iχ σ χ + im χ T σ χ χ σ χ 5

16 To verify thi we write χ iσ χ ψ e iθ ψ e iθ χ iσ e iθ χ. Thu, in term of the χ the tranformation ψ e iθ ψ i χ e iθ χ and χ e iθ χ. Becaue in each term of the action χ i artnered with either it comlex conjugate or χ and vice vera for χ the action i invariant under the U ymmetry χ e iθ χ and χ e iθ χ. We now comute the divergence of the current, J µ χ σ µ χ J µ χ σµ χ χ σµ χ, for the theorie of art b and c. To derive thee current we aly equation.. Part c: Under the U tranformation the Lagrangian of art c i invariant. To comute the current we need to know the equation of motion. The equation of motion i obtained from the Euler-Lagrange equation L µ L. µ χ i χ i With χ i χ the EL equation yield µ iχ σµ imχ T σ µ χ σ µ mχ T σ σ µ µ χ mσ χ T σ µ µ χ mσ χ. Similarly, for χ i χ µ iχ σµ + im µ χ χ χ T σ χ σ µ m χ T χ σ χ µ χ σ µ mχ T σ σ µ µ χ mσ χ. Now the divergence of the current can be comuted µ J µ µ χ σµ χ χ σµ χ µ χ σµ χ µ χ σµ χ + χ σµ µ χ χ σµ µ χ σ µ µ χ χ σ µ µ χ χ + χ σµ µ χ χ σµ µ χ mσ χ χ mσ χ χ + χ mσ χ χ mσ χ mχ T σ χ mχ T σ χ + mχ σ χ mχ σ χ. 6

17 Since the divergence of the current vanihe, the current i conerved under U tranformation. Part c: Under the U tranformation the Lagrangian of art b i NOT invariant χ i σ χ + im χ T σ χ χ σ χ χe iφ i σ χe iφ + im χe iφ T σ χe iφ χe iφ σ χe iφ χ i σ χ + im χ T σ χe iφ χ σ χ e iφ L. However, if m then the Lagrangian i ymmetric under U hae rotation. The equation of motion are σ µ µ χ mσ χ µ χ σ µ mχ T σ. Thu the divergence of the current i Like the Lagrangian the current i only conerved if m. µ χ σ µ χ µ χ σ µ χ + χ σ µ µ χ mχ T σ χ + χ mσ χ mχ T σ χ + mχ σ χ. For the lat art of thi quetion we contruct a theory of N free maive -comonent fermion field with ON ymmetry the ymmetry of rotation in an N-dimenional ace. Each free maive article i decribed by the Lagrangian of art b L a χ ai σ χ a + im χ T a σ χ a χ aσ χ a where a,,..., N}. ThetotalLagrangianitheumoftheindividualLagrangian L a χ a i σ χ a + im χ T a σ χ a χ a σ χ a. Each fermion field atifie the equation of motion σ µ µ χ a mσ χ a µ χ a σ µ mχ T a σ. To have ON ymmetry the Lagrangian mut be invariant under rotation in N-dimenional ace. Let the rotation oerator be denoted by R ab where a, b are the comonent of the oerator. Alied to the b th fermion field the rotation oerator take the b th fermion field to the a th fermion field R ab χ b χ a. Since R i a rotation, it i an orthogonal matrix i.e., R R T and R ab R. Alication of R to the Lagrangian yield L R ab χ b i σ R ab χ b + im R ab χ b T σ R ab χ b R ab χ b σ R ab χ b ab ab ab b R ab R abχ b i σ χ b + im R ba R ab χ b i σ χ b + im χ b i σ χ b + im RabR T ab χ T b σ χ b R ab R abχ b σ χ b R ba R ab χ T b σ χ b R ba R ab χ b σ χ b χ T b σ χ b χ b σ χ b L. 7

18 Thu, we ee that the Lagrangian for maive two-comonent fermion i invariant under ON tranformation. e Quantize the Majorana theory of art a and b. That i, romoteχ x to a quantum field atifying the canonical anti-commutation relation χ a x,χ b y } δ ab δ 3 x y, contruct a Hermitian Hamiltonian, and find a rereentation ofthecanonicalcommutationrelationthatdiagonalize the Hamiltonian in term of a et of creation and annihilation oerator. Hint: Comareχ x to the to two comonent of the quantized Dirac field. Proof: The book ugget comaring χ to the uer two comonent of the quantized Dirac field d 3 ψ a π 3 u e i x + b v e i x E d 3 π 3 E σξ a σξ ση e i x + b ση e i x. Setting ψ R iσ ψ L in the Dirac Lagrangian yield the Majorana Lagrangian. Thu, we exect the Dirac field to be a olution to the Majorana equation under certain retriction i.e., η iσ ξ. Setting χ equal to ψ L,thequantized Majorana field become d 3 σ χ a π 3 E ξ e i x + b η e i x. The condition of charge conjugation u iγ v and v iγ u lace a retriction on the inor, namely η iσ ξ.thu,themajoranafieldbecome d 3 σ χ a π 3 E iσ η e i x + b η e i x. We will now tet our olution in the Majorana equation of motion i σ µ µ χ imσ χ.therhsbecome i σ µ µ χ i σ µ d 3 σ µ a π 3 E iσ η e i x + b η e i x i σ µ d 3 σ a π 3 E iσ η i µ e i x +i µ b η e i x d 3 i σ π 3 d 3 im π 3 σ E σ σ E where we have ued the fact that σ σ m.thelhsi imσ χ imσ imσ d 3 σ π 3 E σ d 3 π 3 E a σ η e i x + ib η e i x a σ η e i x + ib η e i x 8 a iσ η e i x + b η e i x ia σ η e i x + b η e i x.

19 To deal with the quare root of σ we note that the quare root i defined a a taylor erie. Inerting unity in the form σ σ between each conecutive term of σ, σ n σ σσ and the taylor erie become one in σ intead of σ.withthi in mind the LHS become imσ χ imσ im d 3 π 3 σ d 3 π 3 σ E σ E σ Comaring the LHS and RHS we ee that they are equal only if ia σ η e i x + b η e i x. a iη e i x + b σ η e i x. b a. Thu, the quantized Majorana field i χ d 3 σ a π 3 E iσ η e i x + a η e i x. From thi mode exanion of the Majorana field we can ee that the Majorana article i it own anti-article. To determine the commutation relation of the article oerator a we imlify the commutator } χ a x,χ b y δ ab δ 3 x y in term of a commutator. Simlifying, we have } δ ad δ 3 x y χ a x,χ d y d 3 d3 ] / σ σ π 3 π 3 E r ab E ia σbcη c e i x + a ηbe i x, d 3 d3 ] / σ σ π 3 π 3 E r ab E σbcη c σ feη r f iη bσ feη r f ] / ed ia r σ feη r f e i y + a r ηr ] / ed } a,a r e i x+i y + iσbcη c ηe r } a,a r e i x+i y + η bη r e } i y e e a,a r } e i x i y a,a r } e i x i y ]. Thi i very comlicated and it i not obviou what commutation relation for a yield the RHS. However, ince we are uing a modified Dirac field we would exect that a atifie the uual relation a,a r } a } a,a r },ar π 3 δ r δ. 9

20 Let tet if thee commutation relation are indeed the one we require χ a x,χ d y } When taken at equal time the commutator become χ a x,χ d y } ] / d 3 d3 σ σ π 3 π 3 E r ab E ed } σbc η c σ fe ηr f a,ar e i x+i y + η } b ηr e a,ar e i x i y ] d 3 π 3 d 3 ] / ] / σ σ E r ab E ed ] δ r δ σbc η c σ fe ηr f e i x+i y + ηb ηr e ei x i y d 3 ] / ] / σ σ π 3 E ab E ed σbc η c σ fe η x+ie y y f e iex + η b ηe x ie y y ] eiex d 3 σ π 3 E d 3 π 3 σ E ] / ab ] / ab σ E ] / ed σ bc η c η f σ fe ] / σ bc η c σ fe ηr f ei x i y + η b η e e i x+i y] σ E To imlify thi further we um over and ue the identity, ηa ηb δ ab, to get χ a x,χ d y } d 3 π 3 d 3 π 3 d 3 π 3 σ E ] σ E ] σ E ] / ab σ bc δ cfσ fe e i x y + ad e i x y + ad σ ] / E ] σ ] / ed E ] σ E ed σ e i x y + E σ e i x y + E ] e i x y ad ] e i x y. ad To imlify further we need to know σ ad.here,weworkoutthematrixelementof σ, ] / ] / ab ab η b η e σ E ] / ed e i x y ] ] ] / σ δ be e i x y E ed Subtitution into the commutation relation yield σ ad E σ ad E δ ad i σad. i χ a x,χ d y } d 3 E δ ad i σad i π 3 E d 3 π 3 δ ad δx y δad ei x y + δ ad e i x y e i x y + E δ ad i σad i ] e i x y E ] d 3 i σad i π 3 e i x y + i σ i ] ad e i x y E E

21 where the econd integral i odd in. We now turn to calculating the Hamiltonian for Majorana field. The Hamiltonian i the Legendre tranform of the Lagrangian, H d 3 x π χ L d 3 x iχ χ iχ σ χ + im χ T σ χ χ σ χ where The imlification i traight forward and mey. We jut note the reult here Which i exactly / the Dirac Hamiltonian, H D with the retriction b a. L iχ σ χ + im π L χ iχ. H d 3 π 3 E d 3 π 3 E We imlify the Hamiltonian term by term. The firt term i iχ χ i i χ T σ χ χ σ χ, a a. a a + b b, d 3 d3 ia π 3 π 3 η T σ e i x + a η e i x σ E r d 3 d3 π 3 π 3 E ia η T σ e i x + a η e i x σ E r σ a r E iσ η r e i x + a r ηr e i x σ a r E σ η r e i x + ia r ηr e i x.5 Suerymmetry It i oible to write field theorie with continuou ymmetrie linking fermion and boon; uch tranformation are called uer-ymmetrie. a The imlet examle of a uerymmetric field theory i the theory of a free comlex boon and a free Weyl fermion, written in the form L µ φ µ φ + χ i σ χ + F F. Here F i an auxiliary comlex calar field whoe field equation i F.ShowthatthiLagrangianiinvariantutoa total divergence under the infiniteimal tranformation δφ iϵ T σ χ, δχ ϵf σ φσ ϵ, δf iϵ σ χ,

22 where the arameter ϵ a i a -comonent inor of Gramann number. b Show that the term L mφf + ] imχt σ χ +comlex conjugate i alo left invariant by the tranformation given in art a. Eliminate F from the comlete Lagrangian L+ L by olving it field equation, and how that the fermion and boon field φ and χare given the ame ma. c It i oible to write uerymmetric nonlinear field equation by adding cubic and higher-order term to the Lagrangian. Show that the following rather general field theory, containing the field φ i,χ i, i,..., n, iuerymmetric: L µ φ i µ φ i + χ i i σ χ i + Fi F i W φ] + F i + i W φ] χ T i φ i φ i φ σ χ j + c.c, j where W φ] i an arbitrary function of the φ i,calledtheuer-otential. Fortheimlecaen and W gφ 3 /3, write out the field equation for φ and χ after elimination of F..6 Fierz tranformation Let u i, i,...4, befour4-comonentdiracinor.inthetext,werovedthefierzrearrangementformulae3.78and The firt of thee formulae can be written in 4-comonent notation a +γ ū γ µ 5 +γ 5 +γ u ū 3 γ µ u 4 ū γ µ 5 +γ 5 u 4 ū 3 γ µ u. The above identity lay an imortant art in the weak interaction. Thu, we derive thi equation from 3.78 and 3.79 ū R σ µ u R ū 3R σ µ u 4R ū R σ µ u 4R ū 3R σ µ u R ū L σ µ u L ū 3L σ µ u 4L ū 3L σ µ u 4L ū L σ µ u L. Denoting the handedne oerator by P R +γ5 and P L γ5 we have the following: ū γ µ P R u ū 3 γ µ P R u 4 ū R γ µ u R ū 3R γ µ u 4R ū R σ µ u R ū 3R σ µ u 4R ū R σ µ u 4R ū 3R σ µ u R ū γ µ P R u 4 ū 3 γ µ P R u ū γ µ P L u ū 3 γ µ P L u 4 ū 3L γ µ P L u 4L ū L γ µ P L u L. In fact, there are imilar rearrangement formulae for any roduct ū Γ A u ū3 Γ B u 4, where Γ A, Γ B are any of the 6 combination of Dirac matrice lited in Section 3.4. a To begin, normalize the 6 matrice Γ A to the convention Tr Γ A Γ B] 4δ AB. Thi give Γ A,γ,iγ j,... } ;writeall6elementofthiet. Proof: We already know that the 6 Dirac matrice are orthogonal ubject to the inner roduct Tr AB]. Thu,weonly have to find the normalization contant.

23 . Scalar Γ A : Tr ] 4 thu, the identity i roerly normalized.. Vector Γ A γ µ : Tr γ ] Tr ] 4 Tr γ i ] Tr σ i ] σ i Tr ] 4 Thu, the normalized vector matrice are: γ and iγ i. 3. Tenor Γ A σ µν : Tr σ µν ] i Tr γ µ,γ ν ] ] 4 Tr γµ γ ν γ µ γ ν γ ν γ µ γ µ γ ν γ ν γ µ γ µ γ ν + γ ν γ µ γ ν γ µ ] 4 Tr γµ γ ν γ µ γ ν ] Tr γ ν γ µ γ µ γ ν ]} 4 Tr γµ γ ν γ µ γ ν ]+Tr γ µ γ ν γ µ γ ν ] 4g µν Tr γ µ γ ν ]} 4 4Tr γµ γ ν γ µ γ ν ] 6g µν g µν } 4 6 gµν g µν g µµ g νν + g µν g µν ] 6g µν g µν } 4 6 gµν g µν g µµ g νν ] 4 g µν g µν g µµ g νν } µ ν 4g µµ g νν µ ν µ ν 4 µ ν and both µ, ν are acelike or timelike 4 µ ν and µ i acelike timelike and ν i timelike acelike Thu, the normalized tenor matrice are: σ i, σ i,σ,σ ii. 4. Peudo-vector Γ A γ µ γ 5 : Tr γ µ γ 5] Tr γ µ γ 5 γ µ γ 5] Tr γ µ γ 5 γ 5 γ µ] Tr γ µ γ µ ] 4g µµ 4 µ 4 µ i Thu, the normalized eudo-vector matrice are: γ γ 5,γ i γ Peudo-calar Γ A γ 5 : Thu, γ 5 i already roerly normalized. Tr γ 5 γ 5] 3

24 b Write the general Fierz identity a an equation ū Γ A u ū3 Γ B u 4 C AB CD ū Γ C u 4 ū3 Γ D u with unknown coefficient C AB CD.Uingthecomleteneofthe6ΓA matrice, how that Proof: C,D C AB CD 6 Tr Γ C Γ A Γ D Γ B]. Uing the comletene of the Gamma matrice we write Γ A abγ B cd C AB C Γ C ad C AB D Γ D bc C AB CDΓ C adγ D bc C D CD from which it follow ū Γ A u ū3 Γ B u 4 We now calculate C AB C D.MultilyingbyΓC da ΓD bc we have C,D C AB CD ū Γ C u 4 ū3 Γ D u. Γ C da ΓD bc ΓA ab ΓB cd C,D C AB CD ΓC da ΓD bc ΓC ad ΓD bc which imlie Tr Γ C Γ A Γ D Γ B] C AB CDTr Γ C Γ C] Tr Γ D Γ D] C,D Thu, we ee that C AB CD 6 Tr Γ C Γ A Γ D Γ B]. 6 C,D 6C AB C D. C AB CD δcc δ DD c Work out exlicitly the Fierz tranformation law for the roductū u ū 3 u 4 and ū γ µ u ū 3 γ µ u 4. Proof: Firt, the roduct ū u ū 3 u 4 ū Γ A u ū3 Γ B u 4 where Γ A,B.Thu,weneedallnonzerotraceoftheform C CD 6 Tr Γ C Γ D ] 6 Tr Γ C Γ D] 4 δ CD. Thu, the roduct rule for Γ A,B become ū u ū 3 u 4 C AB CD ū Γ C u 4 ū3 Γ D u C,D 4 δ CD ū Γ C u 4 ū3 Γ D u C,D ū Γ C u 4 ū3 Γ C u 4 C 4

25 where the index C cycle through all 6 Γ C. Next, we examine the roduct ū γ µ u ū 3 γ µ u 4.ThecoefficientC AB CD are determined a uual C µµ CD 6 Tr Γ C γ µ Γ D γ µ ]. Uing the matrice from our normalized bai of art a we define Γ µ γ,iγ.intermofγ µ we have C µµ CD Tr Γ C Γ Γ D Γ ] 6 Tr Γ C Γ Γ D Γ ] Tr Γ C iγ i Γ D iγ i]} i 3 Tr Γ C Γ i Γ D Γ i]}. i Suoe that Γ C γ then C µµ D Tr Γ Γ Γ D Γ ] 3 + Tr Γ Γ i Γ D Γ i]} 6 i Tr Γ D Γ ] 3 Tr Γ Γ D]} 6 δ D. i Similarly, if Γ C γ j then C µµ jd Tr Γ j Γ Γ D Γ ] + 6 Tr Γ j Γ D] δ Dj i 3 Tr Γ j Γ i Γ D Γ i]} i Tr g ij Γ i Γ j Γ D Γ i]} 3 g ij Tr Γ D Γ i] i 4δ Dj Tr Γ D Γ j] 4δ Dj 8δ Dj δ Dj} δdj 3 Tr Γ i Γ j Γ D Γ i]} i 3 Tr Γ j Γ D]} i 3 δdj Thu, we ee that for Γ C γ ν we mut have Γ D γ ν and vice vera. For Γ C,D we have C µµ CD. The remaining matrice are the anti-ymmetric matrice form theetγσ µν,γ µ γ 5,γ 5 }we have 5

26 for: Γ C γ 5 for: Γ C γ γ 5 C µµ 5D Tr Γ 5 Γ Γ D Γ ] + 6 Tr Γ 5 Γ D] 3 6 δ D5 i 3 Tr Γ 5 Γ i Γ D Γ i]} i Tr Γ 5 Γ D]} C µµ ν5,d Tr Γ 5 Γ Γ D Γ ] 3 + Tr Γ 5 Γ i Γ D Γ i]} 6 i Tr γ γ 5 γ Γ D γ ] 3 + Tr γ γ 5 iγ i Γ D Γ i]} 6 i Tr γ 5 γ Γ D] 3 + Tr iγ i γ γ 5 Γ D Γ i]} 6 6 Tr Γ 5 Γ D] + i 3 Tr Γ 5 Γ D]} i 6 6δ5,D δ 5,D for: Γ C γ i γ 5 C µµ j5,d Tr Γ j5 Γ Γ D Γ ] + 6 Tr Γ Γ j5 Γ D Γ ] δj5,d Tr Γ j5 Γ D] 4δ j5,d 4δ j5,d + 3 Tr Γ j5 Γ i Γ D Γ i]} i 3 Tr iγ j γ 5 iγ i Γ D Γ i]} i 3 Tr iγ j iγ i γ 5 Γ D Γ i]} i 3 Tr i g ij iγ i iγ j γ 5 Γ D Γ i]} i 3 Tr g ij γ 5 Γ D Γ i] + i 4δ j5,d +Tr γ 5 Γ D Γ j] + 4δ j5,d +Tr Γ D Γ j5] + 3 Tr iγ i iγ j γ 5 Γ D Γ i]} i 3 Tr Γ j5 Γ D]} i 3 Tr Γ j5 Γ D]} i 3 δj5,d 6

27 for: Γ C Γ µν σ i, σ i,σ,σ ii σ µν,γ α } i γµ γ ν γ ν γ µ,γ α } i γµ γ ν,γ α } i γν γ µ,γ α } i γµ,γ α } γ ν + i γµ γ ν,γ α ] i γν,γ α } γ µ i γν γ µ,γ α ] ig µα γ ν + iγ µ γ ν γ α g να ig να γ µ iγ ν γ µ γ α g µα ig µα γ ν + iγ µ γ ν γ α iγ µ g να ig να γ µ iγ ν γ µ γ α + iγ ν g µα ig µα γ ν ig να γ µ + iγ µ γ ν γ α iγ ν γ µ γ α ig µα γ ν ig να γ µ + iγ µ γ ν γ α iγ ν γ µ γ α.7 Dicrete ymmetrie of the Dirac field Thi roblem concern the dicrete ymmetrie P, C, andt. a Comute the tranformation roertie under P, C, and T of the antiymmetric tenor fermion bilinear, ψσ µν ψ,with σ µν i γµ,γ ν ].Thicomletethetableofthetranformationroertieof bilinear at the end of thi chater. Proof: Starting with the arity tranformation we have P ψσ µν ψp P ψpp i γµ,γ ν ] PPψP η aη a ψ t, x γ i γµ,γ ν ] γ ψ t, x ψ t, x γ i γµ γ ν γ ν γ µ γ ψ t, x. Notice that µ ν otherwie the commutator vanihe. There are two cae:. µ ν where µ, ν,, 3. P ψσ ij ψp i ψ t, x γ i γ j γ j γ i γ γ ψ t, x ψ t, x σ ij ψ t, x.. µ ν and either µ or ν.forν the arity tranformation i Similarly, for µ the arity tranformation i P ψσ i ψp ψ t, x γ i γ i γ γ γ i γ ψ t, x ψ t, x i γ i γ γ γ i γ γ ψ t, x ψ t, x σ i ψ t, x. P ψσ j ψp ψ t, x σ j ψ t, x. 7

28 The arity tranformation of the bilinear tenor can be ummarized by the following formula P ψσ µν ψp µ ν ψ t, x σ µν ψ t, x where µ µ µ,, 3. Next we look at the time reveral tranformation Since γ γ, T ψσ µν ψt T ψtt i γµ,γ ν ] TTψT ψ t, x γ γ 3 i γµ,γ ν ] γ γ 3 ψ t, x ψ t, x γ γ 3 i γµ γ ν γ ν γ µ γ γ 3 ψ t, x γ µ γ γ 3 γ γ 3 γ µ µ γ γ 3 γ µ µ,, 3 and we can imlify the tranformation law. Like the arity tranformation there are two cae:. µ ν and µ, ν,, 3. T ψσ ij ψt ψ t, x γ γ 3 γ γ 3 i γ i γ j γ j γ i ψ t, x ψ t, x σ ij ψ t, x.. µ ν and either µ or ν.forν the time reveral tranformation i T ψσ i ψt ψ t, x γ γ 3 i γ i γ γ γ i γ γ 3 ψ t, x ψ t, x γ γ 3 γ γ 3 i γ i γ γ γ i ψ t, x ψ t, x σ µ ψ t, x. Similarly, for µ the arity tranformation i T ψσ j ψt ψ t, x σ j ψ t, x. The time reveral tranformation of the bilinear tenor can be ummarized by the following formula T ψσ µν ψt µ ν ψ t, x σ µν ψ t, x. Latly, we work out how the bilinear tenor tranform under charge conjugation C ψσ µν ψc C ψcσ µν CψC iγ γ ψ T σ µν i ψγ γ T ψγ γ σ µν T γ γ ψ ψγ γ σ µν T γ γ ψ ] T 8

29 where in the lat line we have ued the fact that iγ γ ψ T σ µν i ψγ γ T i jut a number o the tranoe doe not change anything. The tranoe of the gamma matrice are γ µ T σ µ T σ σ ν µ T σ ν T. Since, σ T σ T σ T σ 3 T σ σ σ σ 3 we ee that γ µ T γ µ µ, γ µ µ, 3. Therefore, γ γ γ µ T γ µ γ γ and we can how that γ γ σ µν T σ µν γ γ.thu,thebilineartenorunderchargeconjugationbecome C ψσ µν ψc ψσ µν γ γ γ γ ψ ψσ µν ψ. The charge conjugation tranformation of the bilinear tenor can be ummarized by the following formula C ψσ µν ψc ψ t, x σ µν ψ t, x. b Let φ x be a comlex-valued Klein-Gordon field, uch a we conidered inproblem.. Findunitaryoerator P, C and an anti-unitary oerator T all defined in term of their action on the annihilation oerator a and b for the Klein-Gordon article and antiarticle that give the following tranformation of the Klein-Gordon field: Pφt, x P φ t, x; Tφt, x T φ t, x; Cφt, x C φ t, x. Find the tranformation roertie of the comonent of the current J µ i φ µ φ µ φ φ under P, C and T. Proof: The quantized Klein-Gordon field i φ t, x φ t, x d 3 π 3 a e i x + b ei x E d 3 π 3 a e i x + b e i x E 9

30 The natural definition for the arity oerator i Pa P a Pb P b. Let u tet thi definition on the KG field. Alication of P yield d 3 PφP π 3 Pa Pe i x +Pb P e i x E d 3 π 3 a e iet+i x + b eiet i x. E Defining E, E,, theaboveequationmaybewrittena PφP d3 π 3 a e ie t i x + b eie t+i x E d 3 π 3 a e i t, x + b ei t, x E φt, x. Thu, P take φt, x to φt, x a required. We note here that Pφ P φ t, x. Thi will be ued later to find the tranformation roertie of the current. Define the time reveral oerator to be anti-linear o that when commuted at a c-number it conjugate the c-number. The time reveral oerator acting on the creation oerator i defined to be: Ta T a Tb T b. Let u tet thi definition on the KG field. Alication of T yield d 3 TφT π 3 Ta Te i x +Tb T e i x E d 3 π 3 a e i x + b e i x E d 3 π 3 a e i t, x + b e i t, x E d 3 π 3 a e i t,x + b e i t,x E a required. We note here that φ t, x Tφ T φ t, x. Thi will be ued later to find the tranformation roertie of the current. Define the time reveral oerator to be anti-linear o that when commuted at a c-number it conjugate the c-number. The time reveral oerator acting on the creation oerator i defined to be: Ca C b Cb C a. 3

31 Let u tet thi definition on the KG field. Alication of T yield d 3 CφC π 3 Ca Ce i x +Cb C e i x E d 3 π 3 b e i x + a e i x E d 3 π 3 b e i x + a ei x E a required. We note here that φ t, x Cφ C φt, x. Thi will be ued later to find the tranformation roertie of the current. Now, we can find the tranformation roertie of the current. Inadditiontoknowinghowφ and φ tranform under P, T,andC, weneedthetranformationruleforthederivative µ.paritytakex x and t t and therefore, and.timereveraltakex x and t t and therefore, and.chargeconjugationdoenot effect the derivative. With g µµ defined uch that there i no um we can write the tranformation of the derivative in a comact way, Thu, under P, T,andC, thecurrentbecome P µ P g µµ µ T µ T g µµ µ C µ C µ. PJ µ t, xp i Pφ t, xp µ Pφt, xp µ Pφ t, xppφt, xp i φ t, xg µµ µ φt, x g µµ µ φ t, x φt, x µ J µ t, x TJ µ t, xt i Tφ t, xt µ Tφt, xt T µ Tφ t, xttφt, xt i φ t, x g µµ µ φ t, x g µµ µ φ t, x φ t, x µ J µ t, x CJ µ t, xc i Cφ t, xc µ Cφt, xc µ Cφ t, xccφt, xc i φt, x µ φ t, x µ φt, x φ t, x i φt, x µ φ t, x µ φt, x φ t, x J µ t, x. c Show that any Hermitian Lorentz-calar local oerator built from ψ x, φ x, and their conjugate ha CPT +. Proof: A Hermitian, Lorentz invariant oerator mut have φ aired with φ and ψ aired with ψ. Additionally, the Lorentz indice mut be contracted to form a Lorentz calar. Looking at table in P&S we can ee that any combination of thee bilinear which yield a Hermitian, Lorentz invariant will have CPT. 3

32 .8 Bound tate Two in-/ article can combine to a tate of total in either or. The wavefunction for thee tate are odd and even, reectively, under the interchange of the two in. a Ue thi information to comute the quantum number under P and C of all electron-oitron bound tate with S, P, or D wavefunction. The P Schrodinger equation i the Schrodinger equation for aarticleofelectricchargee and reduced ma µ m e / in the Coulomb otential V x α/ x where e < itheelectroncharge,m e i the electron ma, α /37 i the fine tructure contant and x i the earation ditance between the electron and oitron in P. Intead of directly olving the P Schrodinger equation, the oition ace wave functionofpcanbeobtainedbytakingadvantageofthe imilarity between the Schrodinger equation for P and that for hydrogen. Secifically, the oition ace wave function can be obtained by relacing the hydrogen Bohr radiu with the P Bohr radiu in the hydrogen oition ace wave function. Thee wave function are characterized by the rincial quantum number or energy quantum number, n, theorbitalangularmomentumquantumnumber, l, andtheorbitalangular momentum rojection quantum number, m l.theoitionacewavefunctionare ψ nlml x 3 n l! na n n +!] 3 e x /na l x L l+ n l na where a /m e α i the Bohr radiu of P, L m n m are aociated Laguerre olynomial and Y m l l x Yl m θ, φ,. na are herical harmonic. Now that we have the oition ace wave function of P, we can contructthepboundtate. Inthecentreofma frame, the P bound tate can be exreed by Ψ nlml ;,m d 3 k m P π 3 ψ nlm l k k; k;, m,. me me where i the total in of the P bound tate and m i the in rojection along the z-axi. The momentum ace wavefunction, ψ nlml k d 3 xe ik r ψ nlml x,.3 give the amlitude for finding P in a given configuration where the electron ha momentum k. Thefreetateinequation. i k; k;, a k b k a k b k /, for -P m and k; k;,m for o-p where i the vacuum tate. Alying the arity oerator, we obtain P Ψ nlml ; me me a k b η a me k for m, a k b k + a k b k / for m, a k b k for m, d 3 k π 3 ψ nlm l kp k; k; d 3 k π 3 ψ nlm l kp d 3 k π 3 ψ nlm l kp a k b k a k b k P a k b k a k b k P 3

33 where we have aumed that the vacuum tate i even under arity. To imlify the above further, note from equation.3, that the arity of ψ nlml k i the ame a ψ lnml x. Therefore, we can invert the atial coordinate in. to obtain the arity of the momentum ace wavefunction. The only art of. thatienitivetouchaninverioni the herical harmonic, Y lm θ, φ l Y lm θ, φ. Thu,-Ptranforma under arity. Similarity, o-p tranform a P Ψ nlml ; l+ Ψ nlml ; P Ψ nlml ;m l+ Ψ nlml ;m under arity and ha an P eigenvalue of l+. Notice that the relative hae difference between the fermion and anti-fermion inverion hae, ηb η a,contributeafactorof to the arity of P -P and o-p in addition to the arity of the wave function; thi extra factor i called the intrinic arity of a fermion--anti-fermion ytem. The remaining C and T eigenvalue of P are obtained in a imilar manner and are lited below in Table. Dicrete Tranform P Eigenvalue P l+ C l+ T + Table : P, C and T eigenvalue of the P tate Ψ nlml ;m.here,l i the orbital angular momentum quantum number and i the in angular momentum quantum number. b Since the electron-hoton couling i given by the Hamiltonian H d 3 xea µ j µ, where j µ i the electric current, electrodynamic i invariant to and C if the comonent of the vector otential have the ame P and C arity a the correonding comonent of j µ. Show that thi imlie the following urriing fact: The in- ground tate of oitronium can decay to hoton, but the in- tate mut decay to 3 hoton. Find the election rule for the annihilation of higher oitronium tate, and for -hoton tranition between oitronium level. 33

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4 Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Physics 513, Quantum Field Theory Examination 1

Physics 513, Quantum Field Theory Examination 1 Physics 513, Quantum Field Theory Examination 1 Due Tuesday, 28 th October 2003 Jacob Lewis Bourjaily University of Michigan, Department of Physics, Ann Arbor, MI 48109-1120 1 2 JACOB LEWIS BOURJAILY 1.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations P4 Stre and Strain Dr. A.B. Zavatk HT08 Lecture 5 Plane Stre Tranformation Equation Stre element and lane tre. Stree on inclined ection. Tranformation equation. Princial tree, angle, and lane. Maimum hear

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc 4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

HW #5. 1. Harmonic Oscillator. (a) (b) HW5.nb 1. . We first calculate a a. We rewrite the Hamiltonian H. i p, x. Therefore, 1

HW #5. 1. Harmonic Oscillator. (a) (b) HW5.nb 1. . We first calculate a a. We rewrite the Hamiltonian H. i p, x. Therefore, 1 HW5.nb HW #5. Harmonic Oscillator (a) We rewrite the Hamiltonian H m x using a x i, a x i. We first calculate a a x i x i x i, x m Ω x. m Ω Therefore, Ω a a x Ω m, and hence H Ωa a. (b) The ground state

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3) PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Physics 582, Problem Set 2 Solutions

Physics 582, Problem Set 2 Solutions Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 2 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ z, which obey both commutation

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 s Free graviton Hamiltonian Show that the free graviton action we discussed in class (before making it gauge- and Lorentzinvariant), S 0 = α d 4 x µ h ij µ h ij, () yields the correct free Hamiltonian

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

1 Lorentz transformation of the Maxwell equations

1 Lorentz transformation of the Maxwell equations 1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz

Διαβάστε περισσότερα

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial Many Electron Spin Eigenfunctions An arbitrary Slater determinant for N electrons can be written as ÂΦ,,,N )χ M,,,N ) Where Φ,,,N functions and χ M ) = a)b ) c N ) is a product of N orthonormal spatial,,,n

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants F. Kleefeld and M. Dillig Institute for Theoretical Physics III, University of Erlangen Nürnberg, Staudtstr.

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα