Charmonium experimental overview

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Charmonium experimental overview"

Transcript

1 Charmonium experimental overview Stephen Lars Olsen Seoul National University Topical Seminar on Frontier of Particle Physics Hu Yu Village, Beijing CHINA August 27-28, 2010

2 outline Lecture1: History & the discovery of the bound charmonium states Yesterday Lecture 2: The non-charmonium, charmonium-like states & the future Today

3 Summary (lecture 1) The charmonium spectrum is strong evidence that hadrons are composed of spin=1/2 constituent particles All of the charmonium states below the M=2m D open charm threshold have been found Most of the above-threshold 1 -- states & the χ c2 have been identified The masses of the assigned states match theory predictions -variations are less than ~50 MeV Transitions between charmonium states are in reasonably good agreement with theoretical expectations

4 ψ(4415) ψ(4040) χ c2 ψ(4150) ψ 2m D 0

5 γ Transitions M1 transitions (Γ(keV)) Th. Expt J/ψ γ η c ± 0.4 ψ γ η c ± 0.2 ππ,η,π 0 γ e - E1 transitions Th. Expt ± ± ± ± ±

6 Hadronic transitions ππ,η,π 0 γ ψ J/ψ +hadrons Γ exp (kev) ψ π + π J/ψ 88 ± 7 ψ η J/ψ 9 ± 1 ψ π 0 J/ψ 0.4±0.1 ππ, η, π 0 ψ J/ψ Ispin violation: ψ π 0 J/ψ ψ ππj/ψ ~1/200

7 Predictions for the ψ γ γ Γ exp (kev) th. Expt ψ π + π J/ψ ~80 55 ± 15 ψ γχ c ± 17 ψ γχ c ±30 ππ,η,π 0 γ e -

8 Can we find other abovethreshold states? ψ(4415) ψ(4040) χ c2 η c2 ψ(4150) ψ ψ c2 These 2 may be simpler 2m D 0

9 _ 2 -+ & 2 -- DD not allowed η c2 ψ c2 J = 2 P=-1 c q Spin=0 D 0 or D + D ψ c2 (or η c2 ) c c q J = L P = (-1) L For J = 2 P = (-1) 2 = +1 q c D Spin=0 D 0 or D - ψ c2 (η c2 ) DD violates parity

10 Lowest possibility is DD* (or D*D) J = 2 P=-1 c q Spin=0 D 0 or D + D ψ c2 (or η c2 ) c c q J = L + S P = (-1) L For J = 2, L=1 is OK P = (-1) 1 = -1 q c D* Spin=1 D* 0 or D* - ψ c2 (η c2 ) DD* doesn t violate parity

11 ψ c2 & η c2 are expected to be below m D +m D* threshold ψ(4415) ψ(4040) χ c2 ψ(4150) η c2 ψ c2 ψ m D + m D* 2m D

12 Belle: search for ψ c2 in B Kψ c2 K(π + π - J/ψ) Eichten et al: PRL 98, (2002) c_ c ψ c2 π + π - J/ψ?? B meson ψ π + π - J/ψ s_ q K ψ c2??? M(π + π - J/ψ)-M(J/ψ) Belle PRL 91, (2003)

13 X(3872) M X =3872.0±0.6 MeV Γ<2.3 MeV Belle PRL 91, (2003)

14 X 3872 is well established seen in 4 experiments 9.4σ 11.6σ CDF X(3872) D0 BaBar X(3872)

15 Is the X(3872) the ψ c2? Eichten et al: PRL 98, (2002) Bf(ψ c2 γχ c1 ) Bf(ψ c2 π + π - J/ψ) >5 Look for X γ χ c1, you should be flooded by events Eichten

16 Belle search for X(3872) γχ c Belle PRL 91, (2003) Bf(ψ c2 γχ c1 ) Bf(ψ c2 π + π - J/ψ) <0.9 The X(3872) is not the ψ c2!!

17 If not ψ c2, what??? Look for other decay modes: X(3872) γ J/ψ? BaBar 2009: PRL 102, Belle 2010: Yes Agreement Yes X(3872) γ ψ? BaBar 2009: Belle 2010: Contradiction Yes No V. Bhardwaj QWG 2010

18 C(X 3872 )= + X 3872 γ J/ψ C = - C = - C(X 3872 ) must be (-) (-) = + if C(X 3872 ) is + : π + π - system in X 3872 π + π - J/ψ must come from ρ π + π - X 3872 C = - ρ π + π Belle agrees ρ π + π - lineshape CDF agrees C = - J/ψ M(π + π - ) M(π + π - )

19 0 -+?? p* ε r ρ ρ π + π L int J PC of X 3872 spin polarization vectors r r ( ε ) ρ ε p * J / ψ r J/ψ r X ε 3872 J /ψ p r * ε r ρ r ε J / ψ mutually perpendicular d dγ cosϑ μ sin 2 ϑ μ ϑr μ μ + d dγ cosϑ π 2 cos ϑ π ϑ π π + μ - ε J /ψ π - ε r ρ

20 Does the X(3872) J PC = 0 -+?? dγ 2 2 sin ψ sin ϑ d cosψd cosϑ 0 -+ r ε J /ψ p r * ε r ρ!!! No, the X(3872) cannot be 0 -+

21 Does the X(3872) J PC = 1 ++?? L int r r ( ) ε ε ε ρ J ψ X / r r ε X ε r ρ r ε J / ψ mutually perpendicular x K S=0 B X(3872) S x =0 ε r X ε J / ψ ε r r ρ

22 1 ++ fits well r ε J /ψ dγ sin dcosχd cosϑ μ 2 χsin 2 ϑ μ Belle Data ε r X ε r ρ

23 CDF angular correlation analysis Only 1 ++ or 2 -+ fit data PRL no adj. params adj. 2arams 1 -- O fits well with no adjustable parameters 2 -+ looks like 1 ++ o i for, at least with current statistics α 0.6e 20

24 _ a 1 ++ cc state for the X 3872? set by: Mχ c2 =3930 MeV Mass is too low? 3872 vs 3905 MeV χ c1 Γ(χ c1 γψ ) ~180 kev Γ(χ c1 γ J/ψ) ~14 kev T.Barnes et al PRD 72, Γ(γ ψ )/Γ( γ J/ψ)>>1 Γ π+π J/ψ =(3.4±1.2) Γ γj/ψ ~45 kev huge for Isospin-violating deca c.f.: Γ(ψ π 0 J/ψ) 0.4 kev

25 _ a 2 -+ cc state for the X 3872? set by: Mψ =3770 MeV Mass is too high? 3872 vs 3837 MeV T.J. Burns et al arxiv: η c2 Γ(η c2 γψ ) ~0.4 kev Γ(η c2 γ J/ψ) ~9 kev Y. Jia et al arxiv: Γ(η c2 γψ )/Γ(η c2 γ J/ψ)<<1 Γ π+π J/ψ =(3.4±1.2) Γ γj/ψ ~30 kev huge for Ispin-violating decay c.f.: Γ(ψ π 0 J/ψ) 0.4 kev B Kη c2 violates factorization B Kh c not seen B Kχ c2 barely seen η c2 DD* expected to be tiny Y. Kalasnakova et al arxiv: Belle & BaBar: Γ(X DD )/Γ(X ππj/ψ)=9.5±3.1

26 If not charmonium, what is it?

27 CDF X(3872) π + π J/ψ Mass recent results ~6000 events! arxiv: M X = ± 0.16 ± 0.19 MeV

28 M X(3872) M D 0 +M D* 0 <M X >= ± 0.19 MeV new Belle meas. new CDF meas. M D0 + M D* ±0.4 MeV δm = ± 0.41 MeV

29 X(3872) looks like a D 0 D* 0 molecule N. Tornqvist Z. Phys C 61, 525 (1994) predicted by Tornqvist in 1994, requires: J PC = 1 ++ or 0 -+

30 States near 3940 MeV

31 Search for other states in B K π + π - π 0 J/ψ decays B meson c_ c π + π 0 π J/ψ s_ q K ω π + π π 0

32 M(ω J/ψ) unexpected peak at 3940 MeV Y(3940) Y 3940 π + π π 0 J/ψ?? ω M=3940 ± 11 MeV Γ= 92 ± 24 MeV S.-K. Choi et al (Belle) PRL94, (2005)

33 Y(3940) confirmed by BaBar B ± K ± ωj/ψ B 0 K S ωj/ψ Μ(ωJ/ψ) ratio PRL 101, Some discrepancy in M & Γ; general features agree

34 Belle-BaBar direct comparison 492fb -1 Same binning (Belle published result : 253 fb -1 ) Belle will update with the complete ϒ(4S) date set later this Fall

35 Does Y(3940) DD*? _ B KDD* _ 3940 MeV 3940 MeV No signal:

36 Study e + e - J/ψ + anything detected J/ψ J/ψ recoil system is undetected e + e - Recoil Mass: M 2 recoil = ( E cm E J / ψ ) ( p J / ψ ) r 2

37 _ σ(e + e - J/ψ+cc) unexpectedly big Unexpected peak at 3940 MeV e + e - J/ψ+η c

38 Use partial reconstruction to study X 3940 DD or DD* J/ψ reconstruct these e + e - _ D (or D*) _ D (or D*) _ Recoil D ( * ) undetected _ (inferred from kinematics) M D (*) 2 2 = ( Ecm EJ / ψ E (*) ) ( pj / + p (*) ) D ψ D r r

39 _ X(3940) DD* is large 3940 MeV _ e + e - J/ψ + DD* M = ± 6 MeV Γ tot = ±12 MeV _ Nsig = ± -16 arxiv: PRL 98, (2007) Bg subtracted

40 Use partial reconstruction to search for X(3940) ωj/ψ J/ψ reconstruct these e + e - π π π ω 3π 3940 MeV J/ψ no signal: Recoil J/ψ undetected (inferred from kinematics)

41 X 3940 & Y 3940 are not the same from: _ e + e - J/ψ DD* & J/ψ ωj/ψ from: B K ωj/ψ & _ KDD*

42 _ M(D*D*) has a peak too _ e + e - J/ψ D* D* _ M = ± 15 MeV -20 Γ tot = ± -61 Nsig = arxiv: ± 11evts It has to have C=+; most likely 0 -+

43 _ cc assignments for X(3940), Y(3915) & X(4160)? η c 3940MeV η c χ c0 4160MeV 3915MeV Y(3915) = χ co? Γ(ωJ/ψ) too large? X(3940) = η c? mass too low? X(4160) = η c? mass too high? X(4160) = η c? mass much too low?

44 1 -- states seen via radiative return initial-state-radiation photon: γ ISR k γ E cm E 1 -- if k γ = 3.8~4.5 GeV, E = 3~5GeV

45 Radiative return γ B-factory energies ss cc bb GeV 3~5 GeV E cm (GeV)

46 e + e - γ isr Y(4260) at BaBar π + π - J/ψ BaBar PRL95, (2005) 233 fb -1 fitted values: M=4259 ± 8 +2 MeV Γ = 88 ± MeV Y(4260) ~50pb

47 (4260) confirmed by Belle M=4247 ± MeV -32 Γ = 108 ± 19 ±10 MeV BaBar values: M=4259 ± 8 +2 MeV Γ = 88 ± MeV M=4008 ± MeV -28 Γ = 226 ± 44 ±87 MeV??? C.Z Yuan et al (Belle) PRL 99,

48 Not seen in e + e - hadrons J.Z.Bai et al (BES), PRL 88, (2006) σ(e+e- hadrons) σ(e+e- μ+μ-) 4260 No sign of Y(4260) D ( * ) D ( * ) σ peak (Y(4260) π + π J/ψ) 50 pb ~3nb BES data Huge by charmonium standards Γ(Y 4260 π + π J/ψ) > 90% CL X.H. Mo et al, PL B640, 182 (2006)

49 cc assignment for the Y(4260)?? only unfilled state left 3 3 D MeV Y(4260) = 3 3 D 1? mass too low & Γ(π + π J/ψ) too large

50 another peak in e + e - γ ISR π + π - ψ e + e - γ ISR π + π - ψ 2 Events / 50MeV/c 10 BaBar Data Y(4260) + BKG New resonance + BKG BKG (non-ψ(2s)) M=4324 ± 24 MeV Γ = 172 ± 33 MeV m(2(π + π )J/ψ) (GeV/c ) Peak is 4324 MeV, distinct from 4260 MeV

51 4325 MeV π + π ψ peak in Belle Two peaks! (both relatively narrow) (& neither consistent with 4260) M=4361 ± 9 ±9 MeV Γ = 74 ± 15 ±10 MeV 4260 M=4664 ± 11 ±5 MeV Γ = 48 ± 15 ±3 MeV BaBar values M=4324 ± 24 MeV Γ = 172 ± 33 MeV X.L. Wang et al (Belle) PRL 99, (2007) 548 fb -1

52 At least three peaks for only one empty level 4664MeV 4260MeV 3 3 D MeV

53 exclusive e + e - γ ISR D ( * ) D ( * ) channels

54 DD DD * D * D * DD π Sum of all exclusive contributions DD * π Λ + c Λ c Phi to Psi 2009 Only small room for unaccounted contributions Charm strange final states Limited inclusive data above 4.5 GeV Galina Pakhlova Charm baryons final states

55 Experiment for BES III?: Search for other Y(4260) modes Scan the 4260 ± 100 MeV region & measure dominant channels to ± 1% DD * D * D * σ 2nb 4 Nevts 10 1 dtlum = = 50 pb / 3 s effic 2 10 pb points ~1 year of BES III data taking pt

56 The Z(4430) + π + ψ smoking gun for a four quark meson? ψ B 0 Z +? Ḵ B 0

57 B K ± π m ψ (in Belle)?? M 2 (π + ψ ) K*(1430) K + π -? K*(890) K + π - M 2 (K + π - )

58 The Z(4430) ± π ± ψ peak B K π + ψ M(Κπ ) GeV Z(4430) M(π ± ψ ) GeV M 2 (π ± ψ ) GeV 2 M 2 (Κπ ) GeV 2 K* Veto

59 Shows up in all data subsamples

60 Could the Z + (4430) be due to a reflection from the Kπ channel?

61 Cos θ π vs M 2 (πψ ) θ π π ψ K 22 GeV (4.43) 2 GeV cosθ π M 2 (πψ ) 16 GeV M (πψ ) & cosθ π are tightly correlated; a peak in cosθ π peak in M(πψ )

62 S- P- & D-waves cannot make a peak (+ nothing else) at cosθ π 0.25 not without introducing other, even more dramatic features at other cosθ π (i.e., other M πψ ) values.

63 HW θ π π ψ K Compute the relation between cosθ π and M 2 (πψ )

64 But

65 BaBar doesn t see a significant Z(4430) + For the fit equivalent to the Belle analysis we obtain mass & width values that are consistent with theirs, but only ~1.9σ from zero; fixing mass and width increases this to only ~3.1σ. Belle PRL: (4.1±1.0±1.4)x10-5

66 Reanalysis of Belle s B Kπψ data using Dalitz Plot techniques

67 2-body isobar model for Kπψ Our default model K*ψ κψ Β K 2 *ψ Kπψ K*(890)ψ K*(1410)ψ K 0 *(1430)ψ KZ + K 2 *(1430)ψ K*(1680)ψ KZ +

68 Results with no KZ + term C B 3 4 A A B 5 fit CL=0.1% C 51

69 Results with a KZ + term C A B B C 5 A fit CL=36%

70 Compare with PRL results K* veto applied With Z(4430) Signif: 6.4σ Published results Without Z(4430) Mass & significance similar, width & errors are larger BaBar: Belle: = ( )x No big contradiction

71 Variations of the model Z(4430) + significance Others: Blatt f-f term 0 r=1.6fm 4fm; Z + spin J=0 J=1; incl K* in the bkg fcn

72 HW Devise strategies to determine J P of the Z(4430) + π J P =0 - J P =?? Z + B Spin=0 J P =0 - Κ ψ J P =1 - Are any J P values immediately ruled out? Can we use parity conservation? For which decays?

73 The Z 1 (4050) + & Z 2 (4250) + π + χ c1 peaks R. Mizuk et al (Belle), PRD 78, (2008)

74 Dalitz analysis of B 0 K - π + χ c1 ΔE GeV Γ K*(890) K*(1400) s K*(1680) K3 *(1780) M(J/ψγ) GeV???

75 B Kπχ c1 Dalitz-plot analyses Default Model Β K*χ c1 K 2 *χ c1 Kπχ c1 κχ c1 K*(890)χ c1 K*(1410)χ c1 KZ + K 0 *(1430)χ c1 K 2 *(1430)χ c1 K*(1680)χ c1 K 3 *(1780)χ c1 KZ +

76 Fit model: all low-lying K* s (no Z + state) a b c d g f e a b e f c d g C.L.=

77 Fit model: all K* s + one Z + state a b c d g f e a b e f c d g C.L.=0.1%

78 Are there two????? a b c d

79 Fit model: all K* s + two Z + states a b c d g f e a b e f c d g C.L.=42%

80 Two Z-states give best fit Projection with K* veto

81 Systematics of B 0 K - π + χ c1 fit M=1.04 GeV; G=0.26 GeV Significance of Z 1 (4050) + and Z 2 (4250) + is high. Fit assumes J Z1 =0, J Z2 =0; no signif. improvement for J Z1 =1 &/or J Z2 =1.

82 Z states cannot be charmonium u c c ud Need confirmation from other experiments (CDF? D0?)

83 Are there XYZ counterparts in the b- and s-quark sectors? What about here? 233 fb -1 Y(4260)

84 b-quark threshold region

85 Belle: Γ(ϒ(4S) π + π - ϒ(1S)) 477 fb -1 ϒ(4S) ϒ(1S) π + π 2S 3S 52±10 4S N(ϒ 4S ) N(π + π - ϒ 1S ) B(Y 4S ππϒ 1S ) Γ(Y 4S ππϒ 1S ) Γ theory 535x ±10 9 ± 2 x ± 0.35 kev 1.47±0.03 kev

86 Belle: Γ(ϒ 5S π + π ϒ 1S ) 2 Entries / GeV/c fb (a) μμππ candidates in Υ(1S) μ μ region 325±20 evts! ΔM = M(μμππ)-M(μμ) (GeV/c ) 1/20 th the data & 1/10 th the cross-section >6 times as many events!! K.F. Chen et al (Belle) PRL 100, (2008)

87 Partial Widths Assuming the source is the ϒ(5S) PDG value taken for ϒ(nS) properties N.B. Resonance cross section ± nb at GeV PRD 98, (2007) [Belle] >300 times bigger than that for the ϒ 4S!! c.f. ϒ(2S) ϒ(1S)π + π ϒ(3S) ϒ(4S) ~ 6 kev 0.9 kev 1.8 kev

88 Are these events from the ϒ 5S? σ(e+e- π + π ϒ ns ) from a cm energy scan ϒ 5S peak position K.F. Chen et al (Belle) arxiv: PDG(ϒ 5S ): Fitted parameters

89 Peak & width in π + π - ϒ(nS) different from ϒ(5S) &ϒ(6S) Simplest interpretation: b-quark-sector equivalent to the c-quark-sector s Y(4260) e + e - π + π Y(nS) e + e - hadrons

90 Y(4260) equivalent with s-quarks? e+e- γ f 0 (980)φ σ(e + e - π + π φ(1020)) Y(2175) f 0 (980)φ BaBar f 0 (980) π + π - M(f 0 (980)φ) BaBar, PRD 74,

91 Confirmed by BES & Belle confirmed by BESII in J/ψ η φ f 0 (980) σ(e + e - f 0 (980)φ(1020)) BES Belle M(f 0 (980)φ GeV C.P.Shen et al (Belle) arxiv: M.Ablikim et al (BES) PRL 100, (2008)

92 The XYZ mesons

93 Concluding remarks Charmonium mesons are strong evidence for quarks All the lowest-lying charmonium states have been found Good agreement between their measured properties & theory Charmonium is the best understood hadronic system Higher-mass charmonium meson searches have produced surprizes A number of non-charmonium meson candidates have been found. They have strong transitions to ordinary charmonium states Corresponding states sem to exist in the b-qyark & s-quark sectors Most of the new states are in the BEPC-II E cm range We have to figure out how to access them (& find new ones) So far only final states with a J/ψ or ψ have been studied e.g., final states with an η c or a h c may be interesting Lots of opportunities for BES III Need creativity and new ideas

94 Thank You 감사합니다

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Light Hadrons and New Enhancements in J/ψ Decays at BESII Light Hadrons and New Enhancements in J/ψ Decays at BESII Guofa XU Representing BES Collaboration Institute of High Energy Physics Chinese Academy of Sciences Beijing, China xugf@ihep.ac.cn Outline Introduction

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Belle Hawaii activities in Belle New particles in BES & Belle

Belle Hawaii activities in Belle New particles in BES & Belle Belle Hawaii activities in Belle New particles in BES & Belle S. L. Olsen Belle highlights 2002-03 1 st measurement of φ 2 from B!π + π 1 st observation of B!K*l + l Discovery of a new charmonium state

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Solar Neutrinos: Fluxes

Solar Neutrinos: Fluxes Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005

e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005 e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005 OUTLINE Introduction Oldies but goodies τ mass measurement and R scan ψ(2s) scan and radiative

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική

Διαβάστε περισσότερα