Charmonium experimental overview
|
|
- ÏἈχαϊκός Αλαφούζος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Charmonium experimental overview Stephen Lars Olsen Seoul National University Topical Seminar on Frontier of Particle Physics Hu Yu Village, Beijing CHINA August 27-28, 2010
2 outline Lecture1: History & the discovery of the bound charmonium states Yesterday Lecture 2: The non-charmonium, charmonium-like states & the future Today
3 Summary (lecture 1) The charmonium spectrum is strong evidence that hadrons are composed of spin=1/2 constituent particles All of the charmonium states below the M=2m D open charm threshold have been found Most of the above-threshold 1 -- states & the χ c2 have been identified The masses of the assigned states match theory predictions -variations are less than ~50 MeV Transitions between charmonium states are in reasonably good agreement with theoretical expectations
4 ψ(4415) ψ(4040) χ c2 ψ(4150) ψ 2m D 0
5 γ Transitions M1 transitions (Γ(keV)) Th. Expt J/ψ γ η c ± 0.4 ψ γ η c ± 0.2 ππ,η,π 0 γ e - E1 transitions Th. Expt ± ± ± ± ±
6 Hadronic transitions ππ,η,π 0 γ ψ J/ψ +hadrons Γ exp (kev) ψ π + π J/ψ 88 ± 7 ψ η J/ψ 9 ± 1 ψ π 0 J/ψ 0.4±0.1 ππ, η, π 0 ψ J/ψ Ispin violation: ψ π 0 J/ψ ψ ππj/ψ ~1/200
7 Predictions for the ψ γ γ Γ exp (kev) th. Expt ψ π + π J/ψ ~80 55 ± 15 ψ γχ c ± 17 ψ γχ c ±30 ππ,η,π 0 γ e -
8 Can we find other abovethreshold states? ψ(4415) ψ(4040) χ c2 η c2 ψ(4150) ψ ψ c2 These 2 may be simpler 2m D 0
9 _ 2 -+ & 2 -- DD not allowed η c2 ψ c2 J = 2 P=-1 c q Spin=0 D 0 or D + D ψ c2 (or η c2 ) c c q J = L P = (-1) L For J = 2 P = (-1) 2 = +1 q c D Spin=0 D 0 or D - ψ c2 (η c2 ) DD violates parity
10 Lowest possibility is DD* (or D*D) J = 2 P=-1 c q Spin=0 D 0 or D + D ψ c2 (or η c2 ) c c q J = L + S P = (-1) L For J = 2, L=1 is OK P = (-1) 1 = -1 q c D* Spin=1 D* 0 or D* - ψ c2 (η c2 ) DD* doesn t violate parity
11 ψ c2 & η c2 are expected to be below m D +m D* threshold ψ(4415) ψ(4040) χ c2 ψ(4150) η c2 ψ c2 ψ m D + m D* 2m D
12 Belle: search for ψ c2 in B Kψ c2 K(π + π - J/ψ) Eichten et al: PRL 98, (2002) c_ c ψ c2 π + π - J/ψ?? B meson ψ π + π - J/ψ s_ q K ψ c2??? M(π + π - J/ψ)-M(J/ψ) Belle PRL 91, (2003)
13 X(3872) M X =3872.0±0.6 MeV Γ<2.3 MeV Belle PRL 91, (2003)
14 X 3872 is well established seen in 4 experiments 9.4σ 11.6σ CDF X(3872) D0 BaBar X(3872)
15 Is the X(3872) the ψ c2? Eichten et al: PRL 98, (2002) Bf(ψ c2 γχ c1 ) Bf(ψ c2 π + π - J/ψ) >5 Look for X γ χ c1, you should be flooded by events Eichten
16 Belle search for X(3872) γχ c Belle PRL 91, (2003) Bf(ψ c2 γχ c1 ) Bf(ψ c2 π + π - J/ψ) <0.9 The X(3872) is not the ψ c2!!
17 If not ψ c2, what??? Look for other decay modes: X(3872) γ J/ψ? BaBar 2009: PRL 102, Belle 2010: Yes Agreement Yes X(3872) γ ψ? BaBar 2009: Belle 2010: Contradiction Yes No V. Bhardwaj QWG 2010
18 C(X 3872 )= + X 3872 γ J/ψ C = - C = - C(X 3872 ) must be (-) (-) = + if C(X 3872 ) is + : π + π - system in X 3872 π + π - J/ψ must come from ρ π + π - X 3872 C = - ρ π + π Belle agrees ρ π + π - lineshape CDF agrees C = - J/ψ M(π + π - ) M(π + π - )
19 0 -+?? p* ε r ρ ρ π + π L int J PC of X 3872 spin polarization vectors r r ( ε ) ρ ε p * J / ψ r J/ψ r X ε 3872 J /ψ p r * ε r ρ r ε J / ψ mutually perpendicular d dγ cosϑ μ sin 2 ϑ μ ϑr μ μ + d dγ cosϑ π 2 cos ϑ π ϑ π π + μ - ε J /ψ π - ε r ρ
20 Does the X(3872) J PC = 0 -+?? dγ 2 2 sin ψ sin ϑ d cosψd cosϑ 0 -+ r ε J /ψ p r * ε r ρ!!! No, the X(3872) cannot be 0 -+
21 Does the X(3872) J PC = 1 ++?? L int r r ( ) ε ε ε ρ J ψ X / r r ε X ε r ρ r ε J / ψ mutually perpendicular x K S=0 B X(3872) S x =0 ε r X ε J / ψ ε r r ρ
22 1 ++ fits well r ε J /ψ dγ sin dcosχd cosϑ μ 2 χsin 2 ϑ μ Belle Data ε r X ε r ρ
23 CDF angular correlation analysis Only 1 ++ or 2 -+ fit data PRL no adj. params adj. 2arams 1 -- O fits well with no adjustable parameters 2 -+ looks like 1 ++ o i for, at least with current statistics α 0.6e 20
24 _ a 1 ++ cc state for the X 3872? set by: Mχ c2 =3930 MeV Mass is too low? 3872 vs 3905 MeV χ c1 Γ(χ c1 γψ ) ~180 kev Γ(χ c1 γ J/ψ) ~14 kev T.Barnes et al PRD 72, Γ(γ ψ )/Γ( γ J/ψ)>>1 Γ π+π J/ψ =(3.4±1.2) Γ γj/ψ ~45 kev huge for Isospin-violating deca c.f.: Γ(ψ π 0 J/ψ) 0.4 kev
25 _ a 2 -+ cc state for the X 3872? set by: Mψ =3770 MeV Mass is too high? 3872 vs 3837 MeV T.J. Burns et al arxiv: η c2 Γ(η c2 γψ ) ~0.4 kev Γ(η c2 γ J/ψ) ~9 kev Y. Jia et al arxiv: Γ(η c2 γψ )/Γ(η c2 γ J/ψ)<<1 Γ π+π J/ψ =(3.4±1.2) Γ γj/ψ ~30 kev huge for Ispin-violating decay c.f.: Γ(ψ π 0 J/ψ) 0.4 kev B Kη c2 violates factorization B Kh c not seen B Kχ c2 barely seen η c2 DD* expected to be tiny Y. Kalasnakova et al arxiv: Belle & BaBar: Γ(X DD )/Γ(X ππj/ψ)=9.5±3.1
26 If not charmonium, what is it?
27 CDF X(3872) π + π J/ψ Mass recent results ~6000 events! arxiv: M X = ± 0.16 ± 0.19 MeV
28 M X(3872) M D 0 +M D* 0 <M X >= ± 0.19 MeV new Belle meas. new CDF meas. M D0 + M D* ±0.4 MeV δm = ± 0.41 MeV
29 X(3872) looks like a D 0 D* 0 molecule N. Tornqvist Z. Phys C 61, 525 (1994) predicted by Tornqvist in 1994, requires: J PC = 1 ++ or 0 -+
30 States near 3940 MeV
31 Search for other states in B K π + π - π 0 J/ψ decays B meson c_ c π + π 0 π J/ψ s_ q K ω π + π π 0
32 M(ω J/ψ) unexpected peak at 3940 MeV Y(3940) Y 3940 π + π π 0 J/ψ?? ω M=3940 ± 11 MeV Γ= 92 ± 24 MeV S.-K. Choi et al (Belle) PRL94, (2005)
33 Y(3940) confirmed by BaBar B ± K ± ωj/ψ B 0 K S ωj/ψ Μ(ωJ/ψ) ratio PRL 101, Some discrepancy in M & Γ; general features agree
34 Belle-BaBar direct comparison 492fb -1 Same binning (Belle published result : 253 fb -1 ) Belle will update with the complete ϒ(4S) date set later this Fall
35 Does Y(3940) DD*? _ B KDD* _ 3940 MeV 3940 MeV No signal:
36 Study e + e - J/ψ + anything detected J/ψ J/ψ recoil system is undetected e + e - Recoil Mass: M 2 recoil = ( E cm E J / ψ ) ( p J / ψ ) r 2
37 _ σ(e + e - J/ψ+cc) unexpectedly big Unexpected peak at 3940 MeV e + e - J/ψ+η c
38 Use partial reconstruction to study X 3940 DD or DD* J/ψ reconstruct these e + e - _ D (or D*) _ D (or D*) _ Recoil D ( * ) undetected _ (inferred from kinematics) M D (*) 2 2 = ( Ecm EJ / ψ E (*) ) ( pj / + p (*) ) D ψ D r r
39 _ X(3940) DD* is large 3940 MeV _ e + e - J/ψ + DD* M = ± 6 MeV Γ tot = ±12 MeV _ Nsig = ± -16 arxiv: PRL 98, (2007) Bg subtracted
40 Use partial reconstruction to search for X(3940) ωj/ψ J/ψ reconstruct these e + e - π π π ω 3π 3940 MeV J/ψ no signal: Recoil J/ψ undetected (inferred from kinematics)
41 X 3940 & Y 3940 are not the same from: _ e + e - J/ψ DD* & J/ψ ωj/ψ from: B K ωj/ψ & _ KDD*
42 _ M(D*D*) has a peak too _ e + e - J/ψ D* D* _ M = ± 15 MeV -20 Γ tot = ± -61 Nsig = arxiv: ± 11evts It has to have C=+; most likely 0 -+
43 _ cc assignments for X(3940), Y(3915) & X(4160)? η c 3940MeV η c χ c0 4160MeV 3915MeV Y(3915) = χ co? Γ(ωJ/ψ) too large? X(3940) = η c? mass too low? X(4160) = η c? mass too high? X(4160) = η c? mass much too low?
44 1 -- states seen via radiative return initial-state-radiation photon: γ ISR k γ E cm E 1 -- if k γ = 3.8~4.5 GeV, E = 3~5GeV
45 Radiative return γ B-factory energies ss cc bb GeV 3~5 GeV E cm (GeV)
46 e + e - γ isr Y(4260) at BaBar π + π - J/ψ BaBar PRL95, (2005) 233 fb -1 fitted values: M=4259 ± 8 +2 MeV Γ = 88 ± MeV Y(4260) ~50pb
47 (4260) confirmed by Belle M=4247 ± MeV -32 Γ = 108 ± 19 ±10 MeV BaBar values: M=4259 ± 8 +2 MeV Γ = 88 ± MeV M=4008 ± MeV -28 Γ = 226 ± 44 ±87 MeV??? C.Z Yuan et al (Belle) PRL 99,
48 Not seen in e + e - hadrons J.Z.Bai et al (BES), PRL 88, (2006) σ(e+e- hadrons) σ(e+e- μ+μ-) 4260 No sign of Y(4260) D ( * ) D ( * ) σ peak (Y(4260) π + π J/ψ) 50 pb ~3nb BES data Huge by charmonium standards Γ(Y 4260 π + π J/ψ) > 90% CL X.H. Mo et al, PL B640, 182 (2006)
49 cc assignment for the Y(4260)?? only unfilled state left 3 3 D MeV Y(4260) = 3 3 D 1? mass too low & Γ(π + π J/ψ) too large
50 another peak in e + e - γ ISR π + π - ψ e + e - γ ISR π + π - ψ 2 Events / 50MeV/c 10 BaBar Data Y(4260) + BKG New resonance + BKG BKG (non-ψ(2s)) M=4324 ± 24 MeV Γ = 172 ± 33 MeV m(2(π + π )J/ψ) (GeV/c ) Peak is 4324 MeV, distinct from 4260 MeV
51 4325 MeV π + π ψ peak in Belle Two peaks! (both relatively narrow) (& neither consistent with 4260) M=4361 ± 9 ±9 MeV Γ = 74 ± 15 ±10 MeV 4260 M=4664 ± 11 ±5 MeV Γ = 48 ± 15 ±3 MeV BaBar values M=4324 ± 24 MeV Γ = 172 ± 33 MeV X.L. Wang et al (Belle) PRL 99, (2007) 548 fb -1
52 At least three peaks for only one empty level 4664MeV 4260MeV 3 3 D MeV
53 exclusive e + e - γ ISR D ( * ) D ( * ) channels
54 DD DD * D * D * DD π Sum of all exclusive contributions DD * π Λ + c Λ c Phi to Psi 2009 Only small room for unaccounted contributions Charm strange final states Limited inclusive data above 4.5 GeV Galina Pakhlova Charm baryons final states
55 Experiment for BES III?: Search for other Y(4260) modes Scan the 4260 ± 100 MeV region & measure dominant channels to ± 1% DD * D * D * σ 2nb 4 Nevts 10 1 dtlum = = 50 pb / 3 s effic 2 10 pb points ~1 year of BES III data taking pt
56 The Z(4430) + π + ψ smoking gun for a four quark meson? ψ B 0 Z +? Ḵ B 0
57 B K ± π m ψ (in Belle)?? M 2 (π + ψ ) K*(1430) K + π -? K*(890) K + π - M 2 (K + π - )
58 The Z(4430) ± π ± ψ peak B K π + ψ M(Κπ ) GeV Z(4430) M(π ± ψ ) GeV M 2 (π ± ψ ) GeV 2 M 2 (Κπ ) GeV 2 K* Veto
59 Shows up in all data subsamples
60 Could the Z + (4430) be due to a reflection from the Kπ channel?
61 Cos θ π vs M 2 (πψ ) θ π π ψ K 22 GeV (4.43) 2 GeV cosθ π M 2 (πψ ) 16 GeV M (πψ ) & cosθ π are tightly correlated; a peak in cosθ π peak in M(πψ )
62 S- P- & D-waves cannot make a peak (+ nothing else) at cosθ π 0.25 not without introducing other, even more dramatic features at other cosθ π (i.e., other M πψ ) values.
63 HW θ π π ψ K Compute the relation between cosθ π and M 2 (πψ )
64 But
65 BaBar doesn t see a significant Z(4430) + For the fit equivalent to the Belle analysis we obtain mass & width values that are consistent with theirs, but only ~1.9σ from zero; fixing mass and width increases this to only ~3.1σ. Belle PRL: (4.1±1.0±1.4)x10-5
66 Reanalysis of Belle s B Kπψ data using Dalitz Plot techniques
67 2-body isobar model for Kπψ Our default model K*ψ κψ Β K 2 *ψ Kπψ K*(890)ψ K*(1410)ψ K 0 *(1430)ψ KZ + K 2 *(1430)ψ K*(1680)ψ KZ +
68 Results with no KZ + term C B 3 4 A A B 5 fit CL=0.1% C 51
69 Results with a KZ + term C A B B C 5 A fit CL=36%
70 Compare with PRL results K* veto applied With Z(4430) Signif: 6.4σ Published results Without Z(4430) Mass & significance similar, width & errors are larger BaBar: Belle: = ( )x No big contradiction
71 Variations of the model Z(4430) + significance Others: Blatt f-f term 0 r=1.6fm 4fm; Z + spin J=0 J=1; incl K* in the bkg fcn
72 HW Devise strategies to determine J P of the Z(4430) + π J P =0 - J P =?? Z + B Spin=0 J P =0 - Κ ψ J P =1 - Are any J P values immediately ruled out? Can we use parity conservation? For which decays?
73 The Z 1 (4050) + & Z 2 (4250) + π + χ c1 peaks R. Mizuk et al (Belle), PRD 78, (2008)
74 Dalitz analysis of B 0 K - π + χ c1 ΔE GeV Γ K*(890) K*(1400) s K*(1680) K3 *(1780) M(J/ψγ) GeV???
75 B Kπχ c1 Dalitz-plot analyses Default Model Β K*χ c1 K 2 *χ c1 Kπχ c1 κχ c1 K*(890)χ c1 K*(1410)χ c1 KZ + K 0 *(1430)χ c1 K 2 *(1430)χ c1 K*(1680)χ c1 K 3 *(1780)χ c1 KZ +
76 Fit model: all low-lying K* s (no Z + state) a b c d g f e a b e f c d g C.L.=
77 Fit model: all K* s + one Z + state a b c d g f e a b e f c d g C.L.=0.1%
78 Are there two????? a b c d
79 Fit model: all K* s + two Z + states a b c d g f e a b e f c d g C.L.=42%
80 Two Z-states give best fit Projection with K* veto
81 Systematics of B 0 K - π + χ c1 fit M=1.04 GeV; G=0.26 GeV Significance of Z 1 (4050) + and Z 2 (4250) + is high. Fit assumes J Z1 =0, J Z2 =0; no signif. improvement for J Z1 =1 &/or J Z2 =1.
82 Z states cannot be charmonium u c c ud Need confirmation from other experiments (CDF? D0?)
83 Are there XYZ counterparts in the b- and s-quark sectors? What about here? 233 fb -1 Y(4260)
84 b-quark threshold region
85 Belle: Γ(ϒ(4S) π + π - ϒ(1S)) 477 fb -1 ϒ(4S) ϒ(1S) π + π 2S 3S 52±10 4S N(ϒ 4S ) N(π + π - ϒ 1S ) B(Y 4S ππϒ 1S ) Γ(Y 4S ππϒ 1S ) Γ theory 535x ±10 9 ± 2 x ± 0.35 kev 1.47±0.03 kev
86 Belle: Γ(ϒ 5S π + π ϒ 1S ) 2 Entries / GeV/c fb (a) μμππ candidates in Υ(1S) μ μ region 325±20 evts! ΔM = M(μμππ)-M(μμ) (GeV/c ) 1/20 th the data & 1/10 th the cross-section >6 times as many events!! K.F. Chen et al (Belle) PRL 100, (2008)
87 Partial Widths Assuming the source is the ϒ(5S) PDG value taken for ϒ(nS) properties N.B. Resonance cross section ± nb at GeV PRD 98, (2007) [Belle] >300 times bigger than that for the ϒ 4S!! c.f. ϒ(2S) ϒ(1S)π + π ϒ(3S) ϒ(4S) ~ 6 kev 0.9 kev 1.8 kev
88 Are these events from the ϒ 5S? σ(e+e- π + π ϒ ns ) from a cm energy scan ϒ 5S peak position K.F. Chen et al (Belle) arxiv: PDG(ϒ 5S ): Fitted parameters
89 Peak & width in π + π - ϒ(nS) different from ϒ(5S) &ϒ(6S) Simplest interpretation: b-quark-sector equivalent to the c-quark-sector s Y(4260) e + e - π + π Y(nS) e + e - hadrons
90 Y(4260) equivalent with s-quarks? e+e- γ f 0 (980)φ σ(e + e - π + π φ(1020)) Y(2175) f 0 (980)φ BaBar f 0 (980) π + π - M(f 0 (980)φ) BaBar, PRD 74,
91 Confirmed by BES & Belle confirmed by BESII in J/ψ η φ f 0 (980) σ(e + e - f 0 (980)φ(1020)) BES Belle M(f 0 (980)φ GeV C.P.Shen et al (Belle) arxiv: M.Ablikim et al (BES) PRL 100, (2008)
92 The XYZ mesons
93 Concluding remarks Charmonium mesons are strong evidence for quarks All the lowest-lying charmonium states have been found Good agreement between their measured properties & theory Charmonium is the best understood hadronic system Higher-mass charmonium meson searches have produced surprizes A number of non-charmonium meson candidates have been found. They have strong transitions to ordinary charmonium states Corresponding states sem to exist in the b-qyark & s-quark sectors Most of the new states are in the BEPC-II E cm range We have to figure out how to access them (& find new ones) So far only final states with a J/ψ or ψ have been studied e.g., final states with an η c or a h c may be interesting Lots of opportunities for BES III Need creativity and new ideas
94 Thank You 감사합니다
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
LIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
Light Hadrons and New Enhancements in J/ψ Decays at BESII
Light Hadrons and New Enhancements in J/ψ Decays at BESII Guofa XU Representing BES Collaboration Institute of High Energy Physics Chinese Academy of Sciences Beijing, China xugf@ihep.ac.cn Outline Introduction
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Belle Hawaii activities in Belle New particles in BES & Belle
Belle Hawaii activities in Belle New particles in BES & Belle S. L. Olsen Belle highlights 2002-03 1 st measurement of φ 2 from B!π + π 1 st observation of B!K*l + l Discovery of a new charmonium state
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014
LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο
Nuclear Physics 5. Name: Date: 8 (1)
Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h
PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration
Λ b Baryon Studies Dongliang Zhang (University of Michigan) on behalf of Collaboration Hadron215, Jefferson Lab September 13-18, 215 Introduction Λ b reconstruction Lifetime measurement Helicity study
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005
e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005 OUTLINE Introduction Oldies but goodies τ mass measurement and R scan ψ(2s) scan and radiative
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
EE 570: Location and Navigation
EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική