Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection"

Transcript

1 Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 1 / 46

2 Introduction (BF) Double-difusive convection flow based upon Brinkman-Forchheimer equations u t = ν u u u au p + gt + hc + f 1 in {t > }, T t + u T = T + f 2 in {t > }, C t + u C = C + ρ T + f 3 in {t > }, (BF) (π) u = in {t > }, u = ; T = ; C =, u t= = u (x) ; T t= = T (x) ; C t= = C (x), (u() = u(s ) ; T() = T(S ) ; C() = C(S ), ) u(x, t) : solenoidal velocity of the fluid, T(x, t) : temperature, u t = u t, T t = T t, C t = C t, C(x, t) : concentration of solute (salt for oceanography( ) ), p(x, t) : pressure, g, h, ρ, a : constant vector term derived from gravity, Soret coefficient, and Darcy coefficient R N : bounded domain, f 1, f 2, f 3 : external forces Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 2 / 46

3 Introduction Navier-Stokes Equations (NS) (π) u t = ν u u u p + f( t ) in {t > }, u = in {t > }, u = u t= = u (x), (u() = u(s )) u(x, t) : solenoidal velocity of the fluid, p(x, t) : pressure. u t = u t, Known Results (NS) N = 2 : unique global solution (NS) N = 3 : unique local solution, unique global small solution (NS) π N = 2 : S periodic solution for any f L 2 (, S ; L 2 ()) (NS) π N = 3 : S periodic solution for small f L 2 (, S ; L 2 ()) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 3 / 46

4 Main Results Theorem 1 Main Results For all N 3 and for any u H 1 σ(), T, C H 1(), f 1 Lloc 2 ([, ); L2 ()), f 2, f 3 Lloc 2 ([, ); L2 ()), (BF) has a unique (global) solution U = (u, T, C) t satisfying u t, Au L 2 (, S ; L 2 σ()), where A : Stokes Operator T t, C t, T, C L 2 (, S ; L 2 ()), u C([, S ]; H 1 σ()), T, C C([, S ]; H 1 ()) S (, ). Theorem 2 For all N 3 and for any f 1 L 2 (, S ; L 2 ()), f 2, f 3 L 2 (, S ; L 2 ()), (BF) π has a S -periodic solution U = (u, T, C) t satisfying u t, Au L 2 (, S ; L 2 σ()), where A : Stokes Operator T t, C t, T, C L 2 (, S ; L 2 ()), u C([, S ]; H 1 σ()), T, C C([, S ]; H 1()). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 4 / 46

5 Proof of Teorem 1 Preliminaries Proof of Theorem 1 Local Existence Reduce our problem to an abstract Cauchy Problem. Apply an abstract Theorem ( Ô, JDE 1982) to the problem. Existence of Global Solution in time Establish some a priori estimates. Uniquness of the Solution Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 5 / 46

6 Proof of Teorem 1 Preliminaries Function Spaces C σ () = { u = (u 1, u 2,..., u N ); u j C (), j = 1, 2,..., N, u = }, L 2 σ() = the completion of C σ () under the L 2 ()-norm, L 2 () = (L 2 ()) N, H j () = (H j ()) N, ( j = 1, 2) P = the orthogonal projection from L 2 () onto L 2 σ(), H 1 () = the completion of C () under the H1 ()-norm, H 1 σ() = H 1 () L 2 σ(), The Stokes operator A() is defined as follows: A() = P with domain D(A()) = H 2 () H 1 σ(). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 6 / 46

7 Proof of Teorem 1 Abstract Formulation Reduction to an abstract Cauchy Problem (BF) u t = ν u au p + gt + hc in {t > }, T t + u T = T in {t > }, C t + u C = C + ρ T in {t > }. Operate P to u t = ν u au p + gt + hc, then we have u t = ν P u au + PgT + PhC and take u ν P u au PgT PhC U = T, φ(u) = T, B(U) = u T C C u C ρ T Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 7 / 46

8 Proof of Teorem 1 Abstract Formulation Reduction (CP) du + φ(u(t)) + B(U(t)) = t (, T) dt U() = U = (u, T, C ) t inner product H() = L 2 σ() L 2 () L 2 () (U 1, U 2 ) H = (u 1, u 2 ) L 2 σ + (T 1, T 2 ) L ρ 2 (C 1, C 2 ) L 2 φ(u) = ν 2 u L 2 σ 2 T 2 L ρ 2 C 2 L if U D(φ) 2 + if U H \ D(φ) D(φ) = H 1 σ() H 1 () H1 () Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 8 / 46

9 Proof of Teorem 1 Abstract Result Local Solvability Theorem (M.Ô, 1982(JDE)) Assume (A.1) For each L (, + ), the set {U H; φ(u) + U 2 H L} is compact in H, (A.2) B( ) is φ demiclosed: If U k U in C([, S ]; H) and φ(u k ) φ(u), B(U k ) b weakly in L 2 (, S ; H), then b = B(U) holds. (A.3) monotone increasing function l( ), a( ) L 2 (, S ), k (, 1) s.t. B(U) 2 H k φ(u) 2 H + l(φ(u) + U 2 H ) c(t), t [, S ], U D( φ), Let U D(φ) and f (t) L 2 (, S ; H), then there exists S (, S ) such that du (CP) + φ(u(t)) + B(U(t)) = f (t), U() = U has a local solution U(t) dt on [, S ] satisfying U C([, S ]; H), U t, φ(u) L 2 (, S ; H) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 9 / 46

10 Proof of Teorem 1 Local Existence Check of (A.1) {U H; φ(u) + U 2 H L} = {u H; ν 2 u 2 L T 2 L ρ 2 C 2 L 2 + u 2 L 2 + T 2 L ρ 2 C 2 L 2 L} From Rellich-Kondrachev s theorem, the level set is compact in H() = L 2 σ() L 2 () L 2 (). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 1 / 46

11 Proof of Teorem 1 Local Existence Assume Check of (A.2) 1/3 u k u in C([, S ]; L 2 σ()), T k T in C([, S ]; L 2 ()), C k C in C([, S ]; L 2 ()), ν P u k ν P u in L 2 (, S ; L 2 σ()), T k T in L 2 (, S ; L 2 ()), C k C in L 2 (, S ; L 2 ()). Let h 1, h 2, h 3 be weak limit as au k PgT k PhC k h 1 in L 2 (, S ; L 2 σ()), u k T k h 2 in L 2 (, S ; L 2 ()), u k C k ρ T k h 3 in L 2 (, S ; L 2 ()). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 11 / 46

12 Proof of Teorem 1 Local Existence Check of (A.2) 2/3 then we have to show h 1 = au PgT PhC for a.e. t [, S ], h 2 = u T for a.e. t [, S ], h 3 = u C ρ T for a.e. t [, S ]. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 12 / 46

13 Proof of Teorem 1 Local Existence Check of (A.2) 3/3 Take ϕ C ( (, S )) u k T k, ϕ = u k T k, ϕ u k T k, ϕ = u k T k, ϕ ut, ϕ = u T, ϕ Let us recall the assumption we imposed: u k T k h 2 in L 2 (, S ; L 2 ()). So we obtain h 2 = u T f or a.e. t [, S ] Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 13 / 46

14 Proof of Teorem 1 Local Existence Check of (A.3) 1/2 B(U) = (au PgT PhC, u T, u C ρ T) t, U = (u, T, C) t B(U) 2 H 3(a2 u 2 + g 2 T 2 L 2 σ L + h 2 C 2 2 L ) + u 2 T ( u 2 C 2 + ρ 2 T 2 ) 2 3ρ 2 C U 2 H + (ε ) φ(u) 2 H + γφ(u)3 since = 1 u 2 T 2 dx C u 2 L 6 T L 6 T L 2 ε T 2 L 2 + C ε u 4 L 2 T 2 L 2, u 2 C 2 dx C u 2 L 6 C L 6 C L 2 ε C 2 L 2 + C ε u 4 L 2 C 2 L 2, hold and by Young s inequality we get C ε u 4 L 2 T 2 L 2 + C ε u 4 L 2 C 2 L 2 C( u 6 L 2 + T 6 L 2 + C 6 L 2 ) γφ(u) 3 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 14 / 46

15 Proof of Teorem 1 Local Existence Check of (A.3) 2/2 And So we obtain 2 3ρ ( u 2 C 2 + ρ 2 T 2 ) 2 T 2 dx + 2 u 2 C 2 dx ρ 2 Estimates for the Nonlinear Term B(U) 2 H C U 2 H + (ε ) φ(u) 2 H + γφ(u)3 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 15 / 46

16 Proof of Teorem 1 Global Existence A priori estimate 1 (BF) u t = νp u au + PgT + PhC T t + u T = T in {t > }, C t + u C = C + ρ T in {t > }, First of all, multiplying T t + u T = T by T and integrating over, we have (L) = T t T + T)T = (u 1 d T 2 + u ( 1 2 dt 2 T 2 ) (R) = T T = T 2 1 d 2 dt T 2 L + T 2 2 L = 2 Awhence priori estimate follows 1 S sup T 2 L + 2 t S T 2 L dt T 2 2 L, 2 S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 16 / 46

17 Proof of Teorem 1 Global Existence A priori estimate 2 Multiplying C t + u C = C + ρ T by C and integrating over, we get 1 d C 2 + C 2 = u C C + ρ T C 2 dt = u ( 1 2 C2 ) + ρ T C ρ T L 2 C L C 2 L + ρ2 2 2 T 2 L, 2 S S C(t) 2 L + C 2 2 L dt C 2 2 L + ρ 2 T 2 2 L dt 2 Hence A priori estimate 2 sup C 2 L + 2 t S S C 2 L 2 dt C 2 L 2 + ρ 2 T 2 L 2, S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 17 / 46

18 Proof of Teorem 1 Global Existence A priori estimate 3 Multiplying u t = νp u au + PgT + PhC by u t and integrating over, we have u t 2 L + νau u 2 t + au u t = (PgT + PhC)u t, u t 2 L + ν d 2 2 dt u 2 L + a d 2 2 dt u 2 L γ u 2 t L 2 ( T L 2 + C L 2) 1 2 u t 2 L + γ ( T 2 2 L + C 2 2 L ). 2 Hence u t 2 L 2 + ν d dt u 2 L 2 + a d dt u 2 L 2 γ ( T L 2, C L 2) which implies A priori estimate 3 sup u 2 L + 2 t S S S u t 2 L dt + Au 2 2 L dt γ ( u 2 L 2, T L 2, C L 2), S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 18 / 46

19 Proof of Teorem 1 Global Existence A priori estimate 4 Multiplying T t + u T = T by T and integrating over, we get T 2 L + T T 2 t = T u T, Hence A priori estimate 4 sup T 2 L + 2 t S T 2 L + 1 d 2 2 dt T 2 L T 2 L + u 2 T 2. 2 ( u 2 T 2 dx ε T 2 L + C 2 ε u 4 L T 2 2 L ) 2 S 1 2 T 2 L 2 + γ u 4 L 2 T 2 L 2. T 2 L 2 dt γ ( T L 2, u L 2, T L 2, C L 2), S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 19 / 46

20 Proof of Teorem 1 Global Existence A priori estimate 5 Multiplying C t + u C = C + ρ T by C and integrating over, we get C 2 L + C C 2 t = C u C + ρ C T, C 2 L + 1 d 2 2 dt C 2 L C 2 L + u 2 C 2 + ρ 2 T 2 2 L 2 ( u 2 C 2 dx ε C 2 L + C 2 ε u 4 L C 2 2 L ) 2 A priori estimate 5 sup C 2 L + 2 t S S 3 4 C 2 L 2 + γ u 4 L 2 C 2 L 2 + ρ 2 T 2 L 2. C 2 L 2 dt γ ( C L 2, T L 2, u L 2), S >. Global Existence So, the every local solution can be continued globally in time. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 2 / 46

21 Proof of Teorem 1 Uniqueness Uniquness(1/4) Let V 1 and V 2 are the two solutions of (BF) with same initial data: and put Then (w, τ, θ) t satisfy V 1 = (u 1, T 1, C 1 ) t, V 2 = (u 2, T 2, C 2 ) t V = V 1 V 2 = (w, τ, θ) t, V() = V =. (W) w,t = ν P w aw + P gτ + P hθ, τ t = τ u 1 T 1 + u 2 T 2, θ t = θ + ρ τ u 1 C 1 + u 2 C 2. Multiplying (W) by w, τ, θ, respectively, and integrating over, we have w t wdx = ν w w aw 2 + τg w + θh w dx, (1) τ t τdx = τ τ (u 1 T 1 u 2 T 2 )τdx, (2) θ t θdx = θ θ (u 1 C 1 u 2 C 2 )θ + ρθ τdx. (3) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 21 / 46

22 Proof of Teorem 1 Uniqueness Uniquness(2/4) From (1), we obtain 1 d 2 dt w 2 + ν w 2 + a w 2 g τ L 2 σ L 2 σ L 2 σ L 2 w L 2 σ + h θ L 2 w L 2 σ 1 2 ( g + h ) w L 2 σ 2 g τ 2 L h θ 2 L. (4) 2 From (2) and v 2 v L 3 L 2 v L 6, we have 1 d 2 dt τ 2 L + τ 2 2 L = {u 1 τ τ w T 2 τ}dx 2 = u τ2 dx + T 2 wτdx τ L 6 T 2 L 2 w L τ 2 L 2 + γ T 2 2 L 2 w L 2 σ w L τ 2 L 2 + ν 4 w 2 L 2 + γ ν T 2 4 L 2 w 2 L 2 σ. (5) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 22 / 46

23 Proof of Teorem 1 Uniqueness Uniquness(3/4) By the argument similar to that for (5), from (3) we obtain 1 d 2 dt θ 2 L + θ 2 2 L = u 1 θ θdx + w C 2 θdx ρ τ θdx 2 = u θ2 dx + C 2 wθdx ρ τ θdx C 2 L 2 w L 6 θ 1 2 L 2 θ 1 2 L 2 + ρ τ L 2 θ L 2 ρ2 ν 4 w 2 L 2 + γ ρ 2 ν C2 2 L 2 θ L 2 θ L θ 2 L 2 + ρ 2 τ 2 L 2 ρ2 ν 4 w 2 L 2 + ρ 2 τ 2 L θ 2 L 2 + γ2 ρ 4 ν 2 C2 4 L 2 θ 2 L 2. (6) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 23 / 46

24 Proof of Teorem 1 Uniqueness Put y(t) = w(t) 2 L 2 σ Uniquness(4/4) and sum up (4), (5) and (6) 1 2ρ 2, then we get Since + τ(t) 2 L ρ 2 θ(t) 2 L 2 1 d 2 dt y(t) γy(t) + γ ν T 2 4 L w 2 2 L + γ2 2 2ρ 6 ν 2 C2 4 L θ 2 2 L 2 by Gronwall s inequality, we have whence follows the uniqueness. γ( T 2 4 L 2 + C 2 4 L 2 + 1)y(t). ξ(t) = γ( T 2 4 L 2 + C 2 4 L 2 + 1) L 1 (, T) V(t) 2 H V H exp( t ξ(s)ds) =, Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 24 / 46

25 Conclusion Conclusion Theorem 1 For all N 3 and for any u H 1 σ(), T, C H 1(), f 1 Lloc 2 ([, ); L2 ()), f 2, f 3 Lloc 2 ([, ); L2 ()), (BF) has a unique (global) solution U = (u, T, C) t satisfying u t, Au L 2 (, S ; L 2 σ()), where A : Stokes Operator T t, C t, T, C L 2 (, S ; L 2 ()), u C([, S ]; H 1 σ()), T, C C([, S ]; H 1 ()) S (, ). Generally speaking, it is difficult to show the existence of global solution of Navier-Stokes equations in 3 dimensional space. The absence of nonlinear convective term of the 1st equation in our problem enables us to prove the global existence in 3D space, even if similar nonlinear convective terms apear in 2nd and 3rd equations. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 25 / 46

26 Periodic Problem Proof of Theorem 2 Reduce our problem to an Abstract Periodic Problem Introduce Approximation Problems Apply an abstract Theorem ( Ô, JDE 1984) to approximation problems Establish some a priori estimates Convergence of solutions of approximation problems Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 26 / 46

27 Periodic Problem Reduction to an Abstract Problem Reduction (PP) du(t) + φ(u(t)) + B(U(t)) = F(t) t (, S ) dt U() = U(S ) H() = L 2 σ() L 2 () L 2 () (U 1, U 2 ) H = (u 1, u 2 ) L 2 σ + (T 1, T 2 ) L ρ (C 1, C 2 2 ) L 2 ν φ(u) = 2 u L 2 σ 2 T 2 L ρ L 2 + if U H \ D(φ) if U D(φ) D(φ) = H 1 σ() H 1 () H1 () φ(u) = ( ν P u, T, C ) t B(U) = (au PgT PhC, u T, u C ρ T ) t F(t) = ( f 1 (t), f 2 (t), f 3 (t)) t Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 27 / 46

28 Proof of Theorem 2 Abstract Result Abstract Result for Periodic Problem Theorem (M.Ô, 1984(JDE)) Assume (A.1) For each L (, + ), the set {U H; φ(u) + U 2 H L} is compact in H, (A.2) B( ) is φ demiclosed: If U k U in C([, S ]; H) and φ(u k ) φ(u), B(U k ) b weakly in L 2 (, S ; H), then b = B(U) holds. (A.3) monotone increasing function l( ), k (, 1) s.t. B(U) 2 H k φ(u) 2 H + l( U H)(φ(U) + 1) 2, U D( φ), (A.4) α, K > s.t. ( φ(u) B(U), U) H + αφ(u) K, U D( φ) Let f (t) L 2 (, S ; H), then there exists a solution of (PP) satisfying U C π ([, S ]; H), U t, φ(u) L 2 (, S ; H) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 28 / 46

29 Proof of Theorem 2 Approximation Approximation Problems We can not apply our abstract result directly, since B(U) 2 H C U 2 H + (ε ) φ(u) 2 H + γφ(u)3 We introduce the following Approximation Problems u t = ν P u au + P g[t] ε + P h[c] ε + P f 1, T t + u T = T ε T p 2 T + f 2, (BF) ε C t + u C = C + ρ T ε C p 2 C + f 3, u() = u(s ), T() = T(S ), C() = C(S ), [T] ε = T if T 1/ε, = sign T 1/ε if T > 1/ε. ν φ ε (U) = 2 u L 2 σ 2 T 2 L ρ 2 C 2 L + ε 2 p T p L + ε p 3ρ 2 p C p L if U D(φ p ε ) + if U H \ D(φ ε ) B ε (U) = (au Pg[T] ε Ph[C] ε, u T, u C ρ T ) t Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 29 / 46

30 Proof of Theorem 2 Solvability of Approximation Problems Check of (A3) 1/2 B ε (U) 2 H u T 2 L 2 + u C 2 L 2 u T 2 L = (u i D 2 i T)(u j D j T)dx = u i T D i (u j D j T)dx = u i T u j D i D j T dx + u i T D i (u j )D j T dx C u L 6 T L 12 u L 4 T L 2 + C u L 4 T L 12 u L 6 T L 2 u L 6 T L 12 u L 4 T L 2 ε T 2 L 2 + C ε u 2 L 2 T 2 L 12 u 2 L 4 ε T 2 L 2 + u 4 L 2 + C ε T 4 L 12 u 4 L 4 ε T 2 L u 4 L 2 + C ε u 4 L 2 T 16 L 12 ( u 4 L 4 C u L 2 u 3 L 2 ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 3 / 46

31 Proof of Theorem 2 Solvability of Approximation Problems Check of (A3) 2/2 u L 4 T L 12 u L 6 T L 2 ε u 2 L 2 + C ε u 2 L 4 T 2 L 12 T 2 L 2 Let p 12, then we have ε u 2 L 2 + T 4 L 2 + C ε T 4 L 12 u 4 L 4 ε u 2 L 2 + T 4 L 2 + u 4 L 2 + C ε u 4 L 2 T 16 L 12 B ε (U) 2 H C(ε ) φ ε(u) 2 H + C ε U 4 H φ ε(u) 2 ε (, ε ). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 31 / 46

32 Proof of Theorem 2 Solvability of Approximation Problems Check of (A4) (A4) α, K > s.t. ( φ(u) + B(U), U ) H αφ(u) K, U D( φ) φ ε (U) = ( ν P u, T + ε T p 2 T, C + ε C p 2 C ) t ( φ ε (U), U ) H = ν u 2 L 2 σ 2φ ε (U) + T 2 L ρ 2 C 2 L + ε T p 2 L + ε p 3ρ 2 C p L p B ε (U) = (au Pg[T] ε Ph[C] ε, u T, u C ρ T ) t ( B ε (U), U ) H a u 2 g u L 2 σ L 2 σ [T] ε L 2 h u L 2 σ [C] ε L 2 1 ρ T L 2 C L 2 a 2 u 2 L 2 σ C ε T 2 L ρ 2 C 2 L 2 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 32 / 46

33 Proof of Theorem 2 A priori estimates A proori estimates 1 T t + u T = T ε T p 2 T + f 2, T dx S dt S S T 2 L dt + ε T p 2 L dt C p ( f 2 L 2 (,S ;L 2 ())) t [, S ] s.t. K T(t ) L 2 T(t ) L 2 C ( f 2 L 2 (,S ;L 2 ()))/S t t dt max t S T(t) L 2 C ( f 2 L 2 (,S ;L 2 ()), S ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 33 / 46

34 Proof of Theorem 2 A priori estimates A proori estimates 2 C t + u C = C + ρ T ε C p 2 C + f 3, C dx 1 ρ 2 S dt 1 S C 2 ρ 2 L dt + ε S C p 2 ρ 2 L dt C p ( f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ())) t [, S ] s.t. K C(t ) L 2 C(t ) L 2 C /S t t dt max t S C(t) L 2 C ( f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ()), S, ρ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 34 / 46

35 Proof of Theorem 2 A priori estimates A proori estimates 3 u t = ν P u au + P g[t] ε + P h[c] ε + P f 1, u dx S dt S (a uν 2 L 2 σ + u 2 )dt L 2 σ S ( g [T] ε L 2 + h [C] ε L 2 + f 1 L 2 ) u L 2 σ dt C ( f 1 L 2, f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ())) t [, S ] s.t. K u(t ) L 2 σ u(t ) 2 C L 2 /S σ t t dt max t S u(t) L 2 σ C ( f 1 L 2, f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ()), S, ρ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 35 / 46

36 Proof of Theorem 2 A priori estimates A proori estimates 4 u t = ν P u au + P g[t] ε + P h[c] ε + P f 1, u t dx S dt Eq. S S u t 2 L 2 σ dt C ( f 1 L 2, f 2 L 2, f 3 L 2) P u 2 L 2 σ dt C t [, S ] s.t. u(t ) 2 C L 2 /S σ t t dt max t S u(t) L 2 σ C ( f 1 L 2, f 2 L 2, f 3 L 2, S, ρ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 36 / 46

37 Proof of Theorem 2 A priori estimates A proori estimates 5-i T t + u T = T ε T p 2 T + f 2, T dx 1 d 2 dt T(t) 2 L + T(t) 2 2 L + ε(p 1) T p 2 T(t) 2 2 L dx 2 ( u T L 2 + f 1 L 2 ) T(t) L 2 u T 2 L 2 T 2 L 4 u 2 L 4 K T 1/2 L 2 T 3/2 ε T 2 L + C 2 ε T 2 L u 2 u 6 2 L 2 σ L 2 σ t [, S ] s.t. T(t ) L 2 C /S t t dt max t S T(t) L 2 + S u 1/2 L 2 L 2 σ u 3/2 L 2 σ T(t) 2 L 2 dt C. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 37 / 46

38 Proof of Theorem 2 A priori estimates A proori estimates 5-ii T t + u T = T ε T p 2 T + f 2, T t dx 1 2 d dt T(t) 2 L 2 + T t (t) 2 L 2 + ε p d dt T(t) p L p ( u T L 2 + f 1 L 2 ) T t (t) L 2 u T 2 L ε T 2 2 L + C 2 ε T 2 L u 2 u 6 2 L 2 σ L 2 σ S dt Eq. S T t (t) 2 L 2 dt C S ε 2 T p 2 T(t) 2 L dt C 2 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 38 / 46

39 Proof of Theorem 2 A priori estimates A proori estimates 6-i C t + u C = C + ρ T ε C p 2 C + f 3, T dx 1 d 2 dt C(t) 2 L + C(t) 2 2 L + ε(p 1) C p 2 C(t) 2 2 L dx 2 ( u C L 2 + f 1 L 2 + ρ T L 2 ) C(t) L 2 u C 2 L 2 C 2 L 4 u 2 L 4 K C 1/2 L 2 C 3/2 ε C 2 L + C 2 ε C 2 L u 2 u 6 2 L 2 σ L 2 σ t [, S ] s.t. C(t ) L 2 C /S t t dt max t S C(t) L 2 + S u 1/2 L 2 L 2 σ u 3/2 L 2 σ C(t) 2 L 2 dt C. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 39 / 46

40 Proof of Theorem 2 A priori estimates A proori estimates 6-ii C t + u C = C + ρ T ε C p 2 C + f 2, C t dx 1 2 d dt C(t) 2 L 2 + C t (t) 2 L 2 + ε p d dt C(t) p L p ( u C L 2 + f 1 L 2 + ρ T L 2 ) C t (t) L 2 u C 2 L ε C 2 2 L + C 2 ε C 2 L u 2 u 6 2 L 2 σ L 2 σ S dt Eq. S C t (t) 2 L 2 dt C S ε 2 C p 2 C(t) 2 L dt C 2 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 4 / 46

41 Proof of Theorem 2 Convergence Convergence 1 A priori estimates 1 max U ε (t) H + max φ ε(u ε (t)) + t S t S S ( U ε t (t) 2 H + φ ε(u ε (t)) 2 H )dt C, U ε = (u ε, T ε, C ε ) t max φ ε(u ε (t)) C {U ε (t)} ε (,1) forms a precompact set in H t [, S ] t S S U ε t (t) 2 H dt C {U ε (t)} ε (,1) is equi-continuous in C π ([, S ]; H) Ascoli stheorem U n (t) = U ε n (t) (ε n as n ) s.t. U n U = (u, T, C ) t strongly in C π ([, S ]; H) as n U n t U t = U = (u t, T t, C t ) t weakly in L 2 (, S ; H) as n. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 41 / 46

42 Proof of Theorem 2 Convergence Convergence 2 A priori estimates 2 ε T ε p L p (,S ;L p ()) + ε T ε p 2 T ε L 2 (,S ;L 2 ()) C, ε T ε p 2 T ε L p ε n T ε n p 2 T ε n g weakly in L 2 (, S ; L 2 ()) p p 1 (,S ;L p 1 ()) = ε 1 p g = ( ε T ε p L p (,S ;L p ())) p 1 p Similarly ε n C ε n p 2 C ε n weakly in L 2 (, S ; L 2 ()) φ εn (U ε n ) φ(u) weakly in L 2 (, S ; H) [T] εn T, [C] εn C strongly in C π ([, S ]; L 2 ()) as ε B εn (U ε n ) B(U) weakly in L 2 (, S ; L 2 ()) U gives a solution of (PP). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 42 / 46

43 Concluding Remarks Related Results Concluding Remarks(1/4) Our main theorem holds true also for unbounded domains. For bounded domain case, U(t) = (u(t), T(t), C(t)) t zero. decays exponentially to Existence of global attractors and exponential attractors Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 43 / 46

44 Concluding Remarks More general initial data Concluding Remarks(2/4) B α,p = {u D( φ); t α u (I + t φ) 1 u H L p (, 1)}, where f L p (,1) = ( 1 f (t) p 1 t dt)1/p 1 < p <, L (, 1) = L (, 1). Theorem (M.Ô, 1982(JDE)) Assume (A.1), (A.2) and (A.3) α monotone increasing function l( ), l ( ) s.t. B(U) 2 H l( U H){ε φ(u) 2 H + l (1/ε) φ(u) 2(1 α) 1 2α + 1}, ε >, U D( φ). Let U B α,2 and f (t) L 2 (, S ; H), then there exists S (, S ) such that (CP) has a local solution U(t) C([, S ]; H) on [, S ] satisfying t 1/2 α U t, t 1/2 α φ(u) L 2 (, S ; H); t 1/2 α φ(u) 1/2 L q (, S ) q [2, ] Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 44 / 46

45 Concluding Remarks More general initial data Concluding Remarks(3/4) Estimates for the Nonlinear Term B(U) 2 H C U 2 H + (ε ) φ(u) 2 H + γφ(u)3 (U 1, U 2 ) H = (u 1, u 2 ) L 2 σ + (T 1, T 2 ) L ρ (C 1, C 2 2 ) L is replaced by (ε + 2 3ρ2 kρ 2 3 ) is replaced by (ε + 2 3k ) k Then (A.3) α is satisfied with 3 = 2(1 α) 1 2α α = 1/4 U = (u, T, c ) B α,2 u D(A 1/4 ), T, C D(( ) 1/4 ) (u, T, c ) D(A 1/4 ) D(( ) 1/4 ) D(( ) 1/4 ),!sol.u C(, S ; H) s, t. t 1/2 α φ(u) 1/2 L q (, S ) q [2, ] Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 45 / 46

46 Concluding Remarks More general initial data Concluding Remarks(4/4) q = 4, α = 1/4 t (1/2 1/4)4 1 φ(u) 4/2 L 1 (, S ) φ(u) 2 L 1 (, S ) Uniquness q =, α = 1/4 t 1/4 φ(u) L (, S ) U(S ) D(φ) u(s ) H 1 σ(); T(S ), C(S ) H 1 ()!Global solution Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 46 / 46

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song.

PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song. DISCRETE AND CONTINUOUS doi:10.3934/dcds.2012.32.991 DYNAMICAL SYSTEMS Volume 32, Number 3, March 2012 pp. 991 1009 PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα