ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης
|
|
- Πάνος Κομνηνός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ
2 Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που βρίσκεται απέναντι από την ορθή γωνία ονομάζεται υποτείνουσα, ενώ οι άλλες δύο ονομάζονται κάθετες πλευρές. Ένα τρίγωνο ανάλογα με τις σχέσεις που συνδέονται οι πλευρές του ονομάζεται: Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ η πλευρά ΒΓ ονομάζεται βάση του και το σημείο Α κορυφή του. Σ ένα τρίγωνο, εκτός από τα κύρια στοιχεία, υπάρχουν και τα δευτερεύοντα στοιχεία, που είναι οι διάμεσοι, οι διχοτόμοι και τα ύψη.
3 Πότε δυο τρίγωνα ονομάζονται ίσα; Αν δύο τρίγωνα έχουν τις πλευρές τους ίσες μία προς μία και τις αντίστοιχες γωνίες τους ίσες, τότε είναι ίσα. Ισχύει ακόμη και το αντίστροφο. Δηλαδή Αν δύο τρίγωνα είναι ίσα, τότε θα έχουν τις πλευρές τους και τις αντίστοιχες γωνίες τους ίσες μία προς μία. Σε ίσα τρίγωνα απέναντι από ίσες πλευρές βρίσκονται ίσες γωνίες. Σε ίσα τρίγωνα απέναντι από ίσες γωνίες βρίσκονται ίσες πλευρές. Κριτήρια ισότητας τριγώνων 1ο κριτήριο ισότητας (Π - Γ - Π) Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μία προς μία και την περιεχόμενη γωνία τους ίση, τότε είναι ίσα. Παράδειγμα Για παράδειγμα, τα τρίγωνα ΑΒΓ και ΔΕΖ του διπλανού σχήματος είναι ίσα, αφού έχουν δύο πλευρές ίσες (ΑΒ = ΔΕ = 4 cm, ΒΓ = ΕΖ = = 5 cm) και την περιεχόμενη γωνία τους ίση ( = = 70º). Επομένως, τα τρίγωνα θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα, δηλαδή ΑΓ = ΔΖ, = και =. Παρατηρούμε ότι οι ίσες γωνίες πλευρές ΑΒ, ΕΔ., βρίσκονται απέναντι από τις ίσες 2ο κριτήριο ισότητας (Γ - Π - Γ). Αν δύο τρίγωνα έχουν μία πλευρά ίση και τις προσκείμενες στην πλευρά αυτή γωνίες ίσες μία προς μία, τότε είναι ίσα. Παράδειγμα
4 Για παράδειγμα, τα τρίγωνα ΑΒΓ και ΔΕΖ του διπλανού σχήματος είναι ίσα, αφού έχουν μία πλευρά ίση (ΑΓ = ΔΕ = 8 cm) και τις προσκείμενες στην πλευρά αυτή γωνίες ίσες ( = = 60º, = = 40º). Επομένως τα τρίγωνα θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα, δηλαδή =, ΑΒ = ΔΖ, ΒΓ = ΕΖ. Παρατηρούμε ότι οι ίσες πλευρές ΑΒ, ΔΖ βρίσκονται απέναντι από τις ίσες γωνίες,. 3ο κριτήριο ισότητας (Π - Π - Π) Αν δύο τρίγωνα έχουν τις πλευρές τους ίσες μία προς μία, τότε είναι ίσα. Παράδειγμα Για παράδειγμα, τα τρίγωνα ΑΒΓ και ΔΕΖ του διπλανού σχήματος είναι ίσα, αφού έχουν και τις τρεις πλευρές τους ίσες, ΑΒ = ΔΕ = 3 cm, ΑΓ = ΔΖ = 6 cm και ΒΓ = ΕΖ = 5 cm. Άρα θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα, δηλαδή =, = και =. Κριτήρια ισότητας ορθογωνίων τριγώνων Δύο ορθογώνια τρίγωνα είναι ίσα, όταν έχουν δύο αντίστοιχες πλευρές ίσες μία προς μία ή μία αντίστοιχη πλευρά ίση και μία αντίστοιχη οξεία γωνία ίση.
5 Λυμένες Εφαρμογές S.O.S 1) Σε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) φέρνουμε τη διχοτόμο ΑΔ. α) Να συγκριθούν τα τρίγωνα ΑΒΔ και ΑΔΓ. β) Να αποδειχθεί ότι Β = Γ και ότι η διχοτόμος ΑΔ είναι διάμεσος και ύψος. Λύση α) Συγκρίνουμε τα τρίγωνα ΑΒΔ, ΑΔΓ και παρατηρούμε ότι έχουν: ΑΔ = ΑΔ, κοινή πλευρά ΑΒ = ΑΓ από την υπόθεση 1 = 2, αφού ΑΔ διχοτόμος της γωνίας. Άρα τα τρίγωνα είναι ίσα, γιατί έχουν δύο πλευρές ίσες μία προς μία και την περιεχόμενη γωνία τους ίση. β) Επειδή τα τρίγωνα ΑΒΔ και ΑΔΓ είναι ίσα, θα έχουν όλα τα αντίστοιχα στοιχεία τους ίσα, οπότε =, ΒΔ = ΔΓ και 1 = 2. Αφού είναι 1 = 2 και = 180º, θα έχουμε 1 = 2 = 90º, οπότε η διχοτόμος ΑΔ είναι και ύψος. Η διχοτόμος ΑΔ είναι και διάμεσος, αφού ΒΔ = ΔΓ. Αποδείξαμε λοιπόν ότι: Σε κάθε ισοσκελές τρίγωνο: α) Οι γωνίες της βάσης του είναι ίσες. β) Η διχοτόμος, το ύψος και η διάμεσος που φέρνουμε από την κορυφή προς τη βάση του συμπίπτουν. 2) Στο διπλανό σχήμα είναιa = Δ = ω και ΑΓ = ΓΔ. Να αποδειχθεί ότι ΑΒ = ΔΕ. Λύση Συγκρίνουμε τα τρίγωνα ΑΒΓ, ΓΔΕ και παρατηρούμε ότι έχουν:
6 ΑΓ = ΓΔ από την υπόθεση = από την υπόθεση 1 = 2 γιατί είναι κατακορυφήν γωνίες Άρα τα τρίγωνα ΑΒΓ και ΓΔΕ είναι ίσα, γιατί έχουν μια πλευρά ίση και τις προσκείμενες σε αυτή την πλευρά γωνίες ίσες μία προς μία. Αφού τα τρίγωνα είναι ίσα, θα έχουν και όλα τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα, οπότε ΑΒ = ΔΕ. 3) Να αποδειχθεί ότι κάθε σημείο της μεσοκαθέτου ενός ευθύγραμμου τμήματος ισαπέχει από τα άκρα του. Λύση Φέρουμε τη μεσοκάθετο ε ενός ευθύγραμμου τμήματος ΑΒ που το τέμνει στο σημείο Μ. Αν Σ είναι τυχαίο σημείο της μεσοκαθέτου, θα αποδείξουμε ότι ΣΑ = ΣΒ. Συγκρίνουμε τα ορθογώνια τρίγωνα ΑΜΣ, ΒΜΣ και παρατηρούμε ότι έχουν: ΣΜ = ΣΜ, κοινή πλευρά και ΑΜ = ΜΒ,αφού το Μ είναι μέσον του ΑΒ. Άρα τα ορθογώνια αυτά τρίγωνα είναι ίσα, γιατί έχουν δύο αντίστοιχες πλευρές τους ίσες μία προς μία. Αφού τα τρίγωνα είναι ίσα, θα έχουν και τα υπόλοιπα αντί-στοιχα στοιχεία τους ίσα, οπότε ΣΑ = ΣΒ. Χαρακτηριστική ιδιότητα των σημείων της μεσοκαθέτου ενός ευθύγραμμου τμήματος Κάθε σημείο της μεσοκαθέτου ενός ευθύγραμμου τμήματος ισαπέχει από τα άκρα του. Κάθε σημείο που ισαπέχει από τα άκρα ενός ευθύγραμμου τμήματος είναι σημείο της μεσοκαθέτου του ευθύγραμμου τμήματος. 4)Να αποδειχθεί ότι κάθε σημείο της διχοτόμου γωνίας ισαπέχει από τις πλευρές της. Λύση
7 Φέρνουμε τη διχοτόμο Οz της γωνίας xôy και πάνω σ αυτήν παίρνουμε ένα τυχαίο σημείο Α. Αν ΑΒ, ΑΓ είναι οι αποστάσεις του σημείου Α από τις πλευρές της γωνίας, θα αποδείξουμε ότι ΑΒ = ΑΓ. Συγκρίνουμε τα ορθογώνια τρίγωνα ΟΑΒ, ΟΑΓ και παρατηρούμε ότι έχουν: ΟΑ = ΟΑ κοινή πλευρά και Ô 1 = Ô 2, αφού η Oz είναι διχοτόμος της γωνίας xôy. Άρα τα ορθογώνια αυτά τρίγωνα είναι ίσα, γιατί έχουν αντίστοιχα μια πλευρά και μια οξεία γωνία ίση. Αφού τα τρίγωνα είναι ίσα, θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα, οπότε ΑΒ = ΑΓ. Χαρακτηριστική ιδιότητα των σημείων της διχοτόμου μιας γωνίας Κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει από τις πλευρές της γωνίας. Κάθε εσωτερικό σημείο μιας γωνίας που ισαπέχει από τις πλευρές είναι σημείο της διχοτόμου της. 1) Σε κάθε τρίγωνο οι.. και οι..του ονομάζονται κύρια στοιχεία του τριγώνου. 2) Η γωνία του τριγώνου που περιέχεται μεταξύ δύο πλευρών λέγεται γωνία των πλευρών αυτών π.χ. στο διπλανό τρίγωνο περιεχόμενη γωνία των πλευρών ΑΒ, ΑΓ είναι η γωνία... Οι γωνίες του τριγώνου που έχουν.τα άκρα μιας πλευράς λέγονται..γωνίες της πλευράς αυτής π.χ. στο διπλανό τρίγωνο προσκείμενες γωνίες της πλευράς ΒΓ είναι οι και...
8 3) Σε κάθε ορθογώνιο τρίγωνο η πλευρά που βρίσκεται απέναντι από την ορθή γωνία ονομάζεται., ενώ οι άλλες δύο ονομάζονται.. 4) Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ η πλευρά ΒΓ ονομάζεται.του και το σημείο Α.. του. 5) Σ ένα τρίγωνο, εκτός από τα κύρια στοιχεία, υπάρχουν και τα.., που είναι οι διάμεσοι, οι. και τα... 6) Αν δύο τρίγωνα έχουν τις. τους ίσες..και τις αντίστοιχες.. τους ίσες, τότε είναι ίσα. 7) Αν δύο τρίγωνα είναι ίσα, τότε θα έχουν τις..τους και τις ίσες μία προς μία. 8) Αν δύο τρίγωνα έχουν δύο ίσες μία προς μία και την... τους ίση, τότε είναι ίσα. 9) Σε τρίγωνα.από ίσες πλευρές βρίσκονται. 10) Αν δύο τρίγωνα έχουν. και τις προσκείμενες στην πλευρά αυτή γωνίες ίσες., τότε είναι ίσα. 11) Σε ίσα τρίγωνα απέναντι από.. γωνίες βρίσκονται ίσες... 12) Αν δύο τρίγωνα έχουν τις τους ίσες μία προς μία, τότε είναι ίσα. 13) Αν δύο ορθογώνια τρίγωνα έχουν αντίστοιχες. τους ίσες μία προς μία, τότε είναι ίσα. 14) Αν δύο τρίγωνα έχουν μία αντίστοιχη πλευρά ίση και μία γωνία ίση, τότε είναι ίσα. 15) Σε κάθε ισοσκελές τρίγωνο oι γωνίες της του είναι ίσες. 16) Σε κάθε ισοσκελές τρίγωνο η διχοτόμος, το.και η που φέρνουμε από την. προς τη βάση του συμπίπτουν. 17) Κάθε σημείο της ενός ευθύγραμμου τμήματος από τα άκρα του.
9 18) Κάθε σημείο που.. από τα άκρα ενός ευθύγραμμου τμήματος είναι σημείο της του ευθύγραμμου τμήματος. 19) Κάθε σημείο της μιας γωνίας...από τις της γωνίας. 20) Κάθε... μιας γωνίας που ισαπέχει από τις πλευρές είναι σημείο της της. Ερωτήσεις Κατανόησης Σχολικού Βιβλίου 1) Να εξηγήσετε γιατί είναι ίσα τα τρίγωνα ΑΒΓ και ΑΕΔ του παρακάτω σχήματος και να συμπληρώσετε τις ισότητες. =..., =... και ΒΓ =... 2) Να εξηγήσετε γιατί δεν είναι ίσα τα τρίγωνα του διπλανού σχήματος, αν και έχουν δύο πλευρές ίσες και μια γωνία ίση.
10 3) Να εξηγήσετε γιατί είναι ίσα τα τρίγωνα του διπλανού σχήματος και να συμπληρώσετε τις ισότητες ΑΒ =... και ΑΓ =... 4) Να βρείτε το ζεύγος των ίσων τριγώνων του παρακάτω σχήματος. Να αιτιολογήσετε την απάντησή σας.
11 5) Είναι ίσα τα τρίγωνα του παρακάτω σχήματος; Να αιτιολογήσετε την απάντησή σας. 6) Να εξηγήσετε γιατί είναι ίσα τα τρίγωνα του διπλανού σχήματος και να συμπληρώσετε τις ισότητες =..., =... και =... 7) Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες: α) Αν δύο τρίγωνα έχουν τις γωνίες τους ίσες μία προς μία, τότε είναι ίσα. β) Αν δύο τρίγωνα έχουν τις πλευρές τους ίσες μία προς μία, τότε είναι ίσα. γ) Σε δύο τρίγωνα απέναντι από ίσες πλευρές βρίσκονται ίσες γωνίες.
12 δ) Σε δύο ίσα τρίγωνα απέναντι από ίσες γωνίες βρίσκονται ίσες πλευρές. ε) Αν δύο τρίγωνα έχουν δύο γωνίες ίσες μία προς μία, τότε θα έχουν και την τρίτη τους γωνία ίση. στ) Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μία προς μία, τότε θα έχουν και την τρίτη τους πλευρά ίση 8) Είναι ίσα τα ορθογώνια τρίγωνα του διπλανού σχήματος; Να αιτιολογήσετε την απάντησή σας. 9) Να βρείτε το ζεύγος των ίσων τριγώνων. Να αιτιολογήσετε την απάντησή σας.
13 10) Τα ορθογώνια τρίγωνα του διπλανού σχήματος έχουν δύο πλευρές ίσες. Να εξηγήσετε γιατί δεν είναι ίσα. 11) Να αιτιολογήσετε γιατί είναι ίσα τα ορθογώνια τρίγωνα ΑΒΓ και ΑΓΔ.
14 Ασκήσεις Σχολικού Βιβλίου 1) Στο διπλανό σχήμα είναι ΑΒ = ΑΓ και ΑΔ = ΑΕ. Να αποδείξετε ότι ΒΔ = ΓΕ. 2) Στο διπλανό σχήμα η Οδ είναι διχοτόμος της γωνίας xôy. Αν ΟΑ = ΟΒ και Σ τυχαίο σημείο της διχοτόμου, να αποδείξετε ότι ΣΑ = ΣΒ. 3) Στη βάση ΒΓ ενός ισοσκελούς τριγώνου ΑΒΓ να πάρετε σημεία Δ, Ε, ώστε ΒΔ = ΓΕ. Να αποδείξετε ότι ΑΔ = ΑΕ.
15 4) Στο διπλανό σχήμα είναι ΟΑ = ΟΓ και ΟΒ = ΟΔ. Να αποδείξετε ότι ΒΓ = ΑΔ. 5) Κάθε πλευρά του ισοπλεύρου τριγώνου ΑΒΓ είναι 8 cm. Αν είναι ΑΣ = ΒΔ = ΓΕ = 3 cm, να αποδείξετε ότι το τρίγωνο ΔΕΖ είναι ισόπλευρο.
16 6) Στις προεκτάσεις των ίσων πλευρών ΑΒ, ΑΓ ενός ισοσκελούς τριγώνου ΑΒΓ να πάρετε αντιστοίχως τμήματα ΒΔ = ΓΕ. Να αποδείξετε ότι 7) Σ ένα τετράπλευρο ΑΒΓΔ η διαγώνιος ΑΓ διχοτομεί τις γωνίες. Να αποδείξετε ότι ΑΒ = ΑΔ και ΒΓ = ΓΔ.
17 8) Να αποδείξετε ότι οι απέναντι πλευρές ενός παραλληλογράμμου είναι ίσες. 9) Τα τρίγωνα ΑΒΓ και Α Β Γ του διπλανού σχήματος έχουν τις διχοτόμους ΑΔ και Α Δ ίσες. Να αποδείξετε ότι: α) ΑΒ = Α Β β) τα τρίγωνα ΑΒΓ και Α Β Γ είναι ίσα..
18 10) Στο διπλανό σχήμα το σημείο Α ισαπέχει από τα σημεία Β και Γ ενός κύκλου που έχει κέντρο το σημείο Ο. Να αποδείξετε ότι τα τρίγωνα ΟΑΒ και ΟΑΓ είναι ίσα.. 11) Αν Ο, Α είναι τα κέντρα των κύκλων του διπλανού σχήματος, να αποδείξετε ότι η ΑΟ διχοτομεί τη γωνία ΒΑΓ.
19 12) Τα ισοσκελή τρίγωνα ΑΒΓ και ΔΒΓ του διπλανού σχήματος έχουν κοινή βάση ΒΓ. Να αποδείξετε ότι η ΑΔ διχοτομεί τις γωνίες. 13) Στα τρίγωνα ΑΒΓ και Α Β Γ του διπλανού σχήματος οι διάμεσοι ΑΜ και Α Μ είναι ίσες. Αν ΑΒ = Α Β και ΒΜ = Β Μ, τότε να αποδείξετε ότι:
20 14) Στο ισοσκελές τρίγωνο ΑΒΓ το σημείο Μ είναι μέσο της βάσης ΒΓ. Αν είναι ΒΔ = ΓΕ, να αποδείξετε ότι: α) το τρίγωνο ΜΔΕ είναι ισοσκελές β) τα τρίγωνα ΑΔΜ και ΑΕΜ είναι ίσα. 15) Σε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) να φέρετε ΑΔ ΑΒ και ΑΕ ΑΓ. Αν είναι ΑΔ = ΑΕ, να αποδείξετε ότι ΒΔ = ΓΕ.
21 16) Σε τετράπλευρο ΑΒΓΔ είναι και ΑΒ = ΑΔ. Να αποδείξετε ότι ΒΓ = ΓΔ και ότι η ΑΓ είναι μεσοκάθετος του ΒΔ. 17) Σε ορθογώνιο τρίγωνο ΑΒΓ (Â = 90º) να φέρετε τη διχοτόμο ΒΔ. Αν ΔΕ ΒΓ, να αποδείξετε ότι ΑΒ = ΒΕ. 18) Μια ευθεία (ε) διέρχεται από το μέσον Μ ενός τμήματος ΑΒ. Να αποδείξετε ότι τα σημεία Α, Β ισαπέχουν από την ευθεία (ε).
22 19) Τα τρίγωνα ΑΒΓ και Α Β Γ έχουν Â = Â και ΑΒ = Α Β. Αν τα ύψη τους ΑΔ και Α Δ είναι ίσα, να αποδείξετε ότι.
23 20) Αν οι χορδές ΑΒ, ΓΔ ενός κύκλου είναι ίσες, να αποδείξετε ότι και τα αποστήματά τους ΟΜ, ΟΝ είναι ίσα και αντιστρόφως. 21) Στο διπλανό σχήμα η ΑΒ είναι διάμετρος του κύκλου. Αν οι χορδές ΑΓ και ΑΔ είναι ίσες, να αποδείξετε ότι και οι χορδές ΒΓ και ΒΔ είναι ίσες.
24 1) Δίνεται τρίγωνο ABΓ ισοσκελές (ΑΒ = ΑΓ). Αν ΒΚ και ΓΛ είναι αντίστοιχα οι διχοτόμοι των γωνιών B και Γ, να δείξετε ότι ΒΚ = ΓΛ. Λύση
25 2) Δίνεται τρίγωνο ΑΒΓ ισοσκελές (ΑΒ = ΑΓ) και η διχοτόμος ΑΔ. Να δείξετε ότι κάθε σημείο της διχοτόμου ΑΔ, ισαπέχει από τα άκρα της βάσης ΒΓ. Λύση
26 3) Να δείξετε ότι τα μέσα των πλευρών ισοσκελούς τριγώνου, σχηματίζουν ισοσκελές τρίγωνο. Λύση
27 4) Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Προεκτείνουμε την πλευρά ΒΓ κατά ΓΔ, την ΓΑ κατά ΑΕ και την ΑΒ κατά ΒΖ, ώστε ΓΔ = ΑΕ = ΒΖ.Να δείξετε ότι το ΕΖΔ είναι ισόπλευρο. Λύση
28 5) Στις πλευρές ΑΒ και ΑΓ τριγώνου ΑΒΓ φέρνουμε ημιευθείες Αχ και Αψ κάθετες, αντίστοιχα στις πλευρές ΑΒ και ΑΓ έτσι ώστε οι γωνίες Βαχ και ΓΑψ να μην περιέχουν το τρίγωνο. Στις Αχ και Αψ παίρνουμε αντίστοιχα, τμήματα ΑΒ = ΑΒ και ΑΓ = ΑΓ.Να δείξετε ότι ΒΓ = Β Γ. Λύση
29 6) Δυο ευθείες ε1 και ε2 τέμνονται στο σημείο Ρ. Στην ε1 παίρνουμε τα σημεία Κ και Λ έτσι ώστε ΡΚ = ΡΛ και στην ε2 τα σημεία Μ και Ν έτσι ώστε ΡΜ = ΡΝ.Να δείξετε ότι ΚΝ = ΜΛ και ΚΜ = ΝΛ. Λύση
30 7) Θεωρούμε γωνία χοψ και δυο σημεία Α και Β των πλευρών Οχ και Οψ αντίστοιχα, τέτοια ώστε ΟΑ = ΟΒ. Έστω Μ ένα οποιοδήποτε σημείο της διχοτόμου Οδ της γωνίας χοψ. Να δείξετε ότι: α) ΜΑ=ΜΒ β) Επίσης προεκτεινόμενες οι ΑΜ και ΜΒ τέμνουν τις πλευρές Οψ και Οχ στα Α και Β αντίστοιχα. Να δείξετε ότι ΑΑ =ΒΒ Λύση
31 8) Δίδεται τρίγωνο ABΓ και η διάμεσός του ΑΜ. Προεκτείνουμε την ΑΜ κατά ΜΔ=ΑΜ. Να δείξετε ότι ΓΔ=ΑΒ. Λύση
32 9) Δίδεται τετράγωνο ΑΒΓΔ. Από το μέσο Μ της ΑΒ φέρνω ΜΔ και ΜΓ. Να αποδείξετε ότι τα ευθύγραμμα τμήματα ΜΓ και ΜΔ είναι ίσα. Λύση
33 10) Δίδεται γωνία χοψ. Να δείξετε ότι κάθε σημείο της διχοτόμου Οδ της γωνίας, ισαπέχει από τις πλευρές της. Λύση
34 11) Δίδεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και Δ,Ε τα μέσα των πλευρών ΑΒ και ΑΓ αντίστοιχα α) από τα Δ,Ε να φέρετε τις αποστάσεις ΔΖ και ΕΗ από την βάση ΒΓ. Να δείξετε ότι ΔΖ=ΕΗ. β) στη συνέχεια να φέρετε τις αποστάσεις ΔΛ και ΕΚ από τις πλευρές ΑΓ και ΑΒ αντίστοιχα. Να δείξετε ότι ΔΛ=ΚΕ. Λύση
35 12) Να αποδείξετε ότι οι κορυφές Β,Γ τριγώνου ισαπέχουν από τη διάμεσο ΑΜ. Λύση
36 13) Δίδεται κύκλος (Κ,ρ). Να φέρετε δύο διαμέτρους του ΑΑ και ΒΒ. Να δείξετε ότι ΑΒ=Α Β. Λύση
37 14) Δίδεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και το ύψος του ΑΔ. Αν Μ τυχαίο σημείο του ΑΔ, να αποδείξετε ότι α) ΜΒΑ = ΜΓΑ Β) Το τρίγωνο ΒΜΓ είναι ισοσκελές. Λύση
Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα
Διαβάστε περισσότεραA λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότερα5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)
Διαβάστε περισσότεραΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ
ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και
Διαβάστε περισσότεραΚεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο
Διαβάστε περισσότεραΓεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
Διαβάστε περισσότερα4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ
ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
Διαβάστε περισσότεραΓεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα
Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι
Διαβάστε περισσότερα3o ΚΕΦΑΛΑΙΟ : Τρίγωνα
3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 4 η διδακτική ενότητα : Ισότητα τριγώνων Ερωτήσεις κατανόησης 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις : α) Υπάρχουν σημεία του επιπέδου που
Διαβάστε περισσότεραΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ 1 Σε δύο ίσα τρίγωνα ΑΒΓ ΔΕΖ να δείξετε ότι: α) Οι διχοτόμοι ΑΚ ΔΛ είναι ίσες β) Οι διάμεσοι ΒΜ ΕΘ είναι ίσες 2 Δίνεται ισοσκελές τρίγωνο ΑΒΓ AB A τα ύψη του ΒΔ ΓΕ Να αποδείξετε
Διαβάστε περισσότεραΘΕΜΑ Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σ (σωστή) ή Λ (λανθασμένη)
Διαγώνισμα Γεωμετρίας Α Λυκείου Ισότητα Τριγώνων Κυριακή 8 Νοεμβρίου 2015 Τα θέματα και οι απαντήσεις τους ΘΕΜΑ Α Α 1. Α 2. Α 3. Πως ορίζεται η μεσοκάθετος ευθύγραμμου σχήματος; Να αναφέρετε την ιδιότητα
Διαβάστε περισσότεραΑπαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο 1.1 Γ ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο 1.1 Γ ΓΥΜΝΑΣΙΟΥ 1. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και ΒΕ, ΓΖ οι διχοτόμοι των γωνιών Β και Γ αντίστοιχα. Αν Μ είναι το μέσο της ΒΓ, να αποδείξετε ότι: α) Τα τμήματα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ
ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραβ. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.
1 Τρίγωνα 11 Στοιχεία και είδη τριγώνων 111 Κύρια στοιχεία τριγώνου Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου Συγκρίνοντας τις πλευρές του τριγώνου μεταξύ τους προκύπτουν
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
Διαβάστε περισσότεραΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν
Διαβάστε περισσότερα3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ
ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί
Διαβάστε περισσότερα2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB
2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι
Διαβάστε περισσότεραΘεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:
7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
Διαβάστε περισσότεραΚόλλιας Σταύρος 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Κόλλιας Σταύρος http://users.sch.gr/stkollias 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Θέμα 1 Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας, τη λέξη Σωστό ή Λάθος,
Διαβάστε περισσότεραΓεωμετρία. Κεφ 1 ο : Γεωμετρια.
Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε
Διαβάστε περισσότεραΕρωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότεραΤράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29
Διαβάστε περισσότεραΟµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41. Ύλη: Τρίγωνα
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41 Ον/μο:.. Α Λυκείου Ύλη: Τρίγωνα 01-11-15 Θέμα 1 ο : Α. Τι ονομάζουμε γεωμετρικό τόπο; Να αναφέρετε τρεις βασικούς γεωμετρικούς τόπους τους οποίους γνωρίζετε. (7 μον.) Β. Να
Διαβάστε περισσότεραΤρίγωνα. Απέναντι από την Α γωνία είναι η α πλευρά, απέναντι από τη Β γωνία είναι η β πλευρά, και απέναντι από τη Γ γωνία είναι η γ πλευρά.
Τρίγωνα Κύρια στοιχεία ενός τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι 3 πλευρές του και οι 3 γωνίες του. Απέναντι από την Α γωνία είναι η α πλευρά, απέναντι από τη Β γωνία είναι η β πλευρά, και
Διαβάστε περισσότεραΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )
ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ
ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα Πλευρές ΑΒ ή ΒΑ ή γ ΑΓ ή ΓΑ ή β ΒΓ ή ΓΒ ή α Γωνίες ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ μ α δ α υ α Διάμεσος ΑΜ ή μ α Διχοτόμος ΑΔ ή δ α Ύψος
Διαβάστε περισσότεραΔ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ. Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο,
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο, τότε η απέναντι πλευρά του είναι το μισό της υποτείνουσας και αντίστροφα.
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις στην Γεωμετρία Α Λυκείου
Έστω ένα τρίγωνο ΑΒΓ. Οι διχοτόμοι των 1. γωνιών του Β και Γ τέμνονται στο Ο. Η παράλληλη από το Ο προς την ΑΒ τέμνει την ΒΓ στο Δ και η παράλληλη από το Ο προς την ΑΓ τέμνει την ΒΓ στο Ε. α. Να δείξετε
Διαβάστε περισσότερα2ηέκδοση 20Ιανουαρίου2015
ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότεραΤηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2]
ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΠΕΜΠΤΗ 5 ΙΑΝΟΥΑΡΙΟΥ 2017 ΚΑΘ/ΤΗΣ ΣΠΑΝΟΣ Σ. ΒΑΘΜΟΣ: /100, /20 (1) (α) Να αποδείξετε ότι: Δυο χορδές ενός κύκλου είναι ίσες αν και μόνο αν
Διαβάστε περισσότεραΑΕ = ΑΓ από τα δεδομένα ΒΑΕ=Α+ΓΑΕ=Α+ΒΑ = ο φυλλάδιο ΛΥΣΕΙΣ (Version )
3.-3. ο φυλλάδιο ΛΥΣΕΙΣ (Version -0-06) Ε.Στο εξωτερικό ενός τριγώνου ΑΒΓ θεωρούμε τμήματα ΑΔ = ΑΒ και ΑΕ = ΑΓ, ώστε ΒΑ = ΓΑΕ. Να αποδείξετε ότι ΒΕ = ΓΔ. Λύση Τα τρίγωνα ΑΒΕ και ΑΔΓ έχουν: ΑΒ = Α από τα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ
1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην
Διαβάστε περισσότερα2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.
1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα
Διαβάστε περισσότεραΆλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0
ΤΑΞΗ Γ ΓΥΜΝΑΣΙΟΥ MAΘΗΜΑΤΙΚΑ 016 ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Άλγεβρα 1) Δίνεται το πολυώνυμο ( ) = ( + 1)( 1) ( + 1)( 5 + 7) P x x x x x i) Να αποδείξετε ότι ( ) P x = 7x x 8 Να υπολογίσετε την αριθμητική τιμή
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Διαβάστε περισσότεραΠαράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά».
Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Οι γωνίες που βρίσκονται ανάμεσα στις ευθείες ε 1 και ε ονομάζονται «εντός» (των ευθειών)και όλες οι άλλες «εκτός». Οι γωνίες B 4, B 3, 1, είναι εντός
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
Διαβάστε περισσότερα14ο Λύκειο Περιστερίου Κριτήριο αξιολόγησης στα κριτήρια ισότητας τριγώνων Ομάδα:Α. Όνομα:..Επώνυμο:.ημ/νία:
Κριτήριο αξιολόγησης στα κριτήρια ισότητας τριγώνων Ομάδα:Α Όνομα:..Επώνυμο:.ημ/νία: ΘΕΜΑ Α μ 4χ3 Να χαρακτηρίσετε τις παρακάτω προτάσεις με το γράμμα Σ αν είναι σωστές ή με το Λ αν τις θεωρείται λανθασμένες.
Διαβάστε περισσότεραΑσκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ
ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ
ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραAν οι ευθείες ΚΒ και ΓΛ τέμνονται στο σημείο Μ, τότε η ΑΜ είναι μεσοκάθετος του ευθυγράμμου τμήματος ΚΛ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 2017 ΓΕΩΜΕΤΡΙΑ A ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 26/5/2017 ΘΕΜΑ 1 ο Α 1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη
Διαβάστε περισσότεραΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130
ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα
Διαβάστε περισσότεραΔιαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ 1 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ.
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΘέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου
Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου Συλλογή-Επιμέλεια: Γ. Κοντογιάννης, Μαθηματικός ΜPhil Α Λυκείου Άλγεβρα Θέματα Εξετάσεων
Διαβάστε περισσότεραΕισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ. Να αποδείξετε ότι: 4 4. Αν x, να υπολογίσετε την τιμή της παράστασης: x x. Να απλοποιήσετε τις παρακάτω παραστάσεις: 8 8 8, 7 48 4. 4. Να υπολογίσετε τα αναπτύγματα: i. x ii. α β
Διαβάστε περισσότερα1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών
Διαβάστε περισσότεραΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)
1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) α) Για την εξίσωση 6x 3x 1 0 ισχύει α = 3, β = -6, γ = 1 β) Η εξίσωση 3 0 δέχεται σαν λύση τον αριθμό. x 3x 3 ιι) Να συμπληρώσετε
Διαβάστε περισσότεραΑν η διάμεσος ενός τριγώνου ισούται με το μισό της πλευράς στην οποία αντιστοιχεί, τότε το τρίγωνο είναι ορθογώνιο με υποτείνουσα την πλευρά αυτή.
Τα παρακάτω θέματα δόθηκαν στις εξετάσεις Ιουνίου του σχολικού έτους 013-14 στο 17 ο ΓΕ.Λ Αθηνών με εισηγητές τους καθηγητές Νίκο Καρακάση και Δημήτρη Αθανασίου. ΘΕΜΑ 1 ο Α. Να αποδείξετε ότι : Αν η διάμεσος
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος
Διαβάστε περισσότεραΤρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)
Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες.
ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. Στο ισοσκελές τρίγωνο ΑΒΓ φέρνουµε διχοτόµο ΑΔ Σύγκριση Τριγώνων ΑΒΔ και ΑΓΔ: -ΑΒ=ΑΓ (δεδοµένο) -ΒΑΔ=ΓΑΔ (αφού ΑΔ διχοτόµος) -ΑΔ
Διαβάστε περισσότερα