24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
|
|
- Βαραββᾶς Μάγκας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ) η ΕΖ είναι διχοτόμος της ΗΕΓ ˆ ( 8 μον.) ΔΙΑΓΩΝΙΣΜΑ 15 Ο ΘΕΜΑ 1 ο Α. Ν.δ.ο. η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας (13 μον.) Β. α) Δώστε τον ορισμό του ρόμβου (4 μον.) β) Ν.δ.ο. οι διαγώνιοι του ρόμβου τέμνονται κάθετα ( 8 μον.) ΘΕΜΑ ο Δίνεται γωνία ΧΟΨ, η διχοτόμος της Οδ και Μ,Ν σημεία της Οδ ώστε ΟΜ<ΟΝ. Πάνω στις πλευρές Οχ και Οψ θεωρούμε αντίστοιχα τα σημεία Α,Β ώστε ΟΑ=ΟΒ. Ν.δ.ο. α) ΑΜ=ΒΜ ( 10 μον.) β) τρίγ.αμν=τρίγ.βμν ( 15 μον.) ΘΕΜΑ 3 ο Δίνεται τρίγωνο ΑΒΓ και Δ,Ε τα μέσα των ΑΓ,ΑΒ αντίστοιχα. Προεκτείνουμε το ΒΔ κατά ΔΖ=ΒΔ και το ΓΕ κατά ΕΗ=ΓΕ. Ν.δ.ο. α) το ΗΑΓΒ είναι παραλληλόγραμμο ( 1 μον.) β) ΑΗ=ΑΖ (13 μον.) ΘΕΜΑ 4 ο Δίνεται παραλληλόγραμμο ΑΒΓΔ και Μ το μέσο της ΓΔ. Στην προέκταση του ΟΜ παίρνουμε το ΜΝ=ΟΜ, όπου Ο το σημείο τομής των διαγωνίων. Ν.δ.ο. α) ΟΜ=ΑΔ/ ( 8 μον.) β) το ΔΟΓΝ είναι παραλληλόγραμμο (8 μον.) γ) ΚΜ=ΑΚ. όπου Κ το σημείο τομής της ΑΜ με τη ΒΔ ( 9 μον.) ΔΙΑΓΩΝΙΣΜΑ 16 Ο
2 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Θ Ε Μ Α 1 ο Α. Να αποδείξετε ότι σε κάθε ισοσκελές τρίγωνο η διχοτόμος της γωνίας της κορυφής είναι διάμεσος και ύψος. (Μονάδες 10) Β. Ποια η χαρακτηριστική ιδιότητα των σημείων της διχοτόμου μιας γωνίας ; (Μονάδες 6) Γ. Τι ονομάζεται διάμεσος τραπεζίου και να αναφέρετε δύο ιδιότητές της. (Μονάδες 9) Θ Ε Μ Α ο Δίνεται τρίγωνο ΑΒΓ με πλευρές ΑΒ=6, ΑΓ=8 και = 60 o B. Έστω ΑΗ ύψος του και Μ, Ρ τα μέσα των πλευρών ΒΓ και ΑΓ αντίστοιχα. Να υπολογίσετε: α) Τα μήκη των τμημάτων ΗΡ και ΜΡ. (Μονάδες 10) β) Το μήκος του τμήματος ΒΗ. (Μονάδες 8) γ) Την γωνία ΡΜΓ. (Μονάδες 7) Θ Ε Μ Α 3 ο Α Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και Κ,Λ τα μέσα των πλευρών του ΑΒ και ΑΓ αντίστοιχα. Στο Κ φέρνουμε κάθετη στην ΑΒ που τέμνει την ευθεία ΒΓ στο Δ και στο Λ φέρνουμε κάθετη στην ΑΓ που τέμνει την ευθεία ΒΓ στο Ε. Να δείξετε ότι: Κ Λ Β Γ α) ΚΔ=ΕΛ. (Μονάδες 8) β) ΕΒ=ΔΓ. (Μονάδες 9) γ) Δείξτε ότι το τρίγωνο ΑΕΔ είναι ισοσκελές. (Μονάδες 8) Ε Δ Θ Ε Μ Α 4 ο
3 Α. Να αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου ισούται με (Μονάδες 15) 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Προεκτείνουμε τις πλευρές ΒΑ και ΓΑ ενός τριγώνου ΑΒΓ κατά τμήματα ΑΔ = ΑΒ και ΑΕ = ΑΓ α) Να αποδείξετε ότι τα τρίγωνα ΑΔΕ και ΑΒΓ είναι ίσα. (Μονάδες 8) β) Να αποδείξετε ότι ΔΕΒΓ παραλληλόγραμμο. (Μονάδες 7) γ) Βρείτε μια συνθήκη για το τρίγωνο ΑΒΓ έτσι ώστε το ΔΕΒΓ να είναι ορθογώνιο. (εξηγείστε) (Μονάδες 5) δ) Βρείτε μια συνθήκη για το τρίγωνο ΑΒΓ έτσι ώστε το ΔΕΒΓ να είναι ρόμβος. (εξηγείστε) (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ 17 Ο ΘΕΜΑ 1 Ο Β. Τι ονομάζουμε τραπέζιο και πότε αυτό λέγεται ισοσκελές (Μονάδες 5) Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. 1) Αν σε ένα ορθογώνιο τρίγωνο ΑΒΓ με Α = 90 η διάμεσος ΑΜ είναι ίση με την ΑΒ τότε Β = 30 ) Δύο ευθείες κάθετες στην ίδια ευθεία είναι και μεταξύ τους κάθετες 3) Η διχοτόμος μιας γωνίας της βάσης ισοσκελούς τριγώνου είναι πάντοτε ύψος και διάμεσος. 4) Αν δύο κύκλοι με ακτίνες R και ρ εφάπτονται εξωτερικά τότε η διάκεντρος ισούται με το άθροισμα των ακτίνων τους R + ρ 5) Κάθε εγγεγραμμένη γωνία είναι διπλάσια της επίκεντρης γωνίας που βαίνει στο ίδιο τόξο με την εγγεγραμμένη. (Μονάδες 5) ΘΕΜΑ Ο
4 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Έστω ΑΒΓΔ παραλληλόγραμμο με 0 ΒΑ = 10. Η διχοτόμος της στο μέσο της Ε. Φέρνουμε ΕΖ κάθετη στην ΓΔ με Ζ πάνω στην ΓΔ. Α) Να υπολογιστεί η Α Γ τέμνει την ΑΒ Α Γ (Μονάδες 5) Β) Να αποδείξετε ότι το τρίγωνο ΑΔΕ είναι ισοσκελές (Μονάδες 5) Γ) Να αποδείξετε ότι ΑΒ = ΒΓ (Μονάδες 8) Δ) Να αποδείξετε ότι ΔΕ = ΕΖ (Μονάδες 7) ΘΕΜΑ 3 Ο Α. Στο παρακάτω σχήμα δίνεται ένας κύκλος (Ο, R), xy είναι μία εφαπτομένη του στο σημείο Γ, ΑΒ μια διάμετρός του και η γωνία ΒΟ Γ ισούται με α) Να υπολογίσετε το μέτρο των γωνιών ΒΓ x, ΑΓy και ΑΓ Β. (Μονάδες 8) β) Να υπολογίσετε το μέτρο των τόξων ΑΓ και ΒΓ (Μονάδες 8) γ) Να αποδείξετε ότι ΑΓ=R. (Μονάδες 9) ΘΕΜΑ 4 Ο
5 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Στο διπλανό τραπέζιο ΑΒΓΔ ( ΑΒ ΓΔ), η διχοτόμος ΒΛ της γωνίας Β =10 ο, τέμνει τη διάμεσο ΕΖ στο Κ. α. το Κ είναι μέσον του ΒΛ. (Μονάδες 5) β. ΚΕ = ΓΛ (Μονάδες 5) γ. ΖΚ = Λ + ΑΒ. (Μονάδες 5) δ. ΒΚΓ = 900. (Μονάδες 5) ε. το τρίγωνο ΒΛΓ είναι ισόπλευρο. (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ 18 Ο ΘΕΜΑ 1 Ο Α. Να αποδείξετε ότι, η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας, είναι ίση με το μισό της υποτείνουσας. (Μονάδες 1) Β. Να δώσετε τον ορισμό του ισοσκελούς τραπεζίου και να αναφέρετε δύο ιδιότητές του. (Μονάδες 5) Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. Όλες οι πλευρές ενός ρόμβου είναι ίσες μεταξύ τους (Μονάδες ) β. Μια ευθεία λέγεται μεσοκάθετος ενός τμήματος ΑΒ, όταν διέρχεται από το μέσον του τμήματος ΑΒ. (Μονάδες ) γ. Κάθε εξωτερική γωνία τριγώνου, είναι ίση με το άθροισμα των δύο απέναντι εσωτερικών γωνιών του τριγώνου. (Μονάδες ) δ. Αν σε ορθογώνιο τρίγωνο, μια γωνία του ισούται με 60 ο, τότε η απέναντι πλευρά της είναι ίση με το μισό της υποτείνουσας. (Μονάδες ) ΘΕΜΑ Ο
6 Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Προεκτείνουμε τη ΓΒ κατά τμήμα ΒΔ = ΒΓ και τη ΔΑ κατά τμήμα ΑΕ = ΔΑ. α. Το τρίγωνο ΑΔΓ είναι ορθογώνιο. (Μονάδες 8) β. ΑΒ // ΓΕ (Μονάδες 8) γ. Το τρίγωνο ΕΔΓ είναι ισοσκελές ΘΕΜΑ 3 Ο 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ (Μονάδες 9) Έστω τέσσερα διαδοχικά συνευθειακά σημεία έτσι ώστε ΑΒ=ΒΓ=ΓΔ. Από τα Β και Γ φέρνουμε στο ίδιο ημιεπίπεδο τα παράλληλα τμήματα ΒΖ // ΓΕ ώστε ΒΖ=ΓΕ=ΒΓ (όχι κάθετα στην ΒΓ) και ονομάζουμε Κ και Λ τα σημεία τομής των ΒΖ και ΓΕ με τα τμήματα ΑΕ και ΔΖ αντίστοιχα. Να αποδείξετε ότι: α. Το τετράπλευρο ΒΓΕΖ είναι παραλληλόγραμμο ( Μονάδες 8) β. Τα Κ και Λ είναι μέσα των τμημάτων ΑΕ και ΔΖ ( Μονάδες 8) γ. Τα τμήματα ΑΕ και ΔΖ είναι κάθετα μεταξύ τους ΘΕΜΑ 4 Ο ( Μονάδες 9) Το τρίγωνο ΑΒΓ του διπλανού σχήματος, είναι ορθογώνιο ( Α= 90 ο ). Δίνονται ακόμη :1) ΓΔ ΑΓ ) ΓΔ = ΒΓ 3) Κ μέσο του ΒΔ 4) Λ μέσο του ΑΓ. α. Το τετράπλευρο ΑΒΓΔ είναι τραπέζιο β. ΒΓ ΑΒ ΚΛ = γ. ΚΛ ΑΓ δ. Το τρίγωνο ΚΑΓ είναι ισοσκελές A Β Κ Ζ Γ Λ Ε Δ ε. Οι γωνίες ΚΑΒ και (Μονάδες 5x5=5) ΚΓ είναι παραπληρωματικές
7 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 19 Ο (προτεινόμενα) ΘΕΜΑ 1 Ο Α. Να αποδείξετε ότι, η διάμεσος τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας, είναι ίση με το μισό της υποτείνουσας. (Μονάδες 1) Β. Να δώσετε τον ορισμό του ισοσκελούς τραπεζίου και να αναφέρετε δύο ιδιότητές του. (Μονάδες 5) Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. Δύο γωνίες λέγονται συμπληρωματικές, όταν έχουν άθροισμα 90 ο. (Μονάδες 1) β. Μια ευθεία λέγεται μεσοκάθετος ενός τμήματος ΑΒ, όταν διέρχεται από το μέσον του τμήματος. (Μονάδες 1) γ. Κάθε εξωτερική γωνία τριγώνου, είναι ίση με το άθροισμα των δύο απέναντι εσωτερικών γωνιών του τριγώνου. (Μονάδες 1) δ. Αν σε ορθογώνιο τρίγωνο, μια γωνία του ισούται με 30 ο, τότε η προσκείμενη πλευρά του είναι ίση με το μισό της υποτείνουσας και αντίστροφα. (Μονάδες 1) Δ. Να συμπληρώσετε τα παρακάτω στο τετράδιό σας, ώστε να προκύψουν αληθείς προτάσεις. α. Δύο γωνίες λέγονται κατακορυφήν, όταν. (Μονάδες 1) β. Το τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι. (Μονάδες 1) γ. Η διάμεσος τραπεζίου είναι (Μονάδες 1) δ. Το ύψος ισοσκελούς τριγώνου που αντιστοιχεί στη βάση του, είναι... (Μονάδες 1) ΘΕΜΑ Ο
8 ΘΕΜΑ Ο Στο τρίγωνο ΑΒΓ του διπλανού σχήματος δίνονται : Στο διπλανό σχήμα, η ευθεία ε είναι μεσοκάθετος του τμήματος ΑΒ και η χ χ τυχαία ευθεία που διέρχεται από το Β,έτσι ώστε να μην είναι κάθετη στο τμήμα ΜΒ. Δίνονται ακόμη : 1) ΜΟ χ χ ) Ρ μέσο του ΜΒ. β. α. 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΒ ΟΡ =. (Μονάδες 1) ΜΑ ΟΡ =. (Μονάδες 13) 1) ΑΜ διάμεσος ) γ. Το τμήμα ΜΝ είναι κάθετο στην ΑΓ δ. ΒΓ ΑΒ = 3) Β= 60 ο 4)Ν μέσο της ΑΓ α. Το τρίγωνο ΑΒΜ είναι ισόπλευρο. β. Το τρίγωνο ΑΜΓ είναι ισοσκελές. ΒΓ ΜΝ = 4 ε. Το τρίγωνο ΑΒΓ είναι ορθογώνιο ( Α= 90 ο ) (Μονάδες 5) ΘΕΜΑ 3 Ο Το τρίγωνο ΑΒΓ του διπλανού σχήματος, είναι ορθογώνιο ( Α= 90 ο ). Δίνονται ακόμη : 1) ΓΔ ΑΓ ) ΓΔ = ΒΓ 3) Κ μέσο του ΒΔ 4) Λ μέσο του ΑΓ. α. Το τετράπλευρο ΑΒΓΔ είναι τραπέζιο. β. ΒΓ ΑΒ ΚΛ =. γ. ΚΛ ΑΓ. δ. Το τρίγωνο ΚΑΓ είναι ισοσκελές.
9 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ε. Οι γωνίες ΚΑΒ και ΚΓ είναι παραπληρωματικές. (Μονάδες 5) ΘΕΜΑ 4 Ο Στο διπλανό σχήμα το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο.δίνονται ακόμη : 1) ΑΗ προέκταση της πλευράς ΒΑ. ) Ε μέσο της πλευράς ΑΔ. 3) Η ευθεία ε είναι κάθετη στο τμήμα ΒΕ. α. Τα τρίγωνα ΔΕΖ και ΑΕΗ είναι ίσα. (Μονάδες 8) β. ΒΖ = ΒΗ. (Μονάδες 8) γ. ΒΖ = ΔΖ + ΔΓ (Μονάδες 8) ΘΕΜΑ 4 Ο Στο τρίγωνο ΑΒΓ του διπλανού σχήματος, θεωρούμε τις διχοτόμους ΒΔ και ΓΕ των γωνιών Β και Γ αντίστοιχα. Επιπλέον το τμήμα ΔΕ είναι παράλληλο προς την πλευρά ΒΓ. α. Τα τρίγωνα ΒΕΔ και ΓΔΕ είναι ισοσκελή. (Μονάδες 6) β. ΒΕ = ΓΔ. (Μονάδες 6) γ. Το τετράπλευρο ΒΓΔΕ, είναι ισοσκελές τραπέζιο. (Μονάδες 6) δ. Το τρίγωνο ΑΒΓ είναι ισοσκελές. (Μονάδες 7) ΔΙΑΓΩΝΙΣΜΑ 0 Ο
10 Θ Ε Μ Α 1 ο Α. α) Να αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου ΑΒΓ ισούται με 180 ο ( ΜΟΝΑΔΕΣ 10) β) Να δώσετε τον ορισμό του παραλληλογράμμου και να γράψετε τις ιδιότητές του. (ΜΟΝΑΔΕΣ 5) Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. τότε και α) Τα τμήματα με μήκη 6,3,9 σχηματίζουν τρίγωνο. (ΜΟΝΑΔΕΣ ) β) Αν σε ένα ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) η διάμεσος ΑΜ είναι ίση με την ΑΒ Β = 30 (ΜΟΝΑΔΕΣ ) γ) Αν δύο ισοσκελή τρίγωνα ΑΒΓ και ΚΛΜ έχουν τις βάσεις τους ΒΓ και ΛΜ ίσες 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Β = Λτότε είναι ίσα (ΜΟΝΑΔΕΣ ) δ) Σε ένα τραπέζιο οι βάσεις του έχουν μήκη 5 και 3 τότε η διάμεσος του ισούται με 4. (ΜΟΝΑΔΕΣ ) ε) Έστω (Κ,R) και (Λ,ρ) δυο κύκλοι που εφάπτονται εσωτερικά και δ η διάκεντρός τους τότε ισχύει δ=r-ρ (ΜΟΝΑΔΕΣ ) Θ Ε Μ Α ο Στο παρακάτω σχήμα δίνεται ένας κύκλος (Ο, R), xy είναι μία εφαπτομένη του στο σημείο Γ, ΑΒ μια διάμετρός του και η γωνία ΒΟ Γ ισούται με 10 ο : α) Να υπολογίσετε το μέτρο των γωνιών ΒΓ x, ΑΓy και ΑΓ Β. (ΜΟΝΑΔΕΣ 8) β) Να υπολογίσετε το μέτρο των τόξων ΑΓ και ΒΓ (ΜΟΝΑΔΕΣ 8) γ) Να αποδείξετε ότι ΑΓ=R. (ΜΟΝΑΔΕΣ 9)
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΩΝΙΣΜΑΤΑ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΕΩΜΕΤΡΙΑ ΔΙΑΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 Ο : Α) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
Διαβάστε περισσότερα5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
Διαβάστε περισσότερα4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
Διαβάστε περισσότεραΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότερα3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Διαβάστε περισσότεραA λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Διαβάστε περισσότεραΑσκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης
ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ
ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα
Διαβάστε περισσότεραΓεωμετρία. Κεφ 1 ο : Γεωμετρια.
Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο
Διαβάστε περισσότεραΑπαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΕρωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ
ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και
Διαβάστε περισσότεραΓεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων
Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας, τη λέξη Σωστό ή Λάθος,
Διαβάστε περισσότεραΚεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ. Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο,
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο, τότε η απέναντι πλευρά του είναι το μισό της υποτείνουσας και αντίστροφα.
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι
Διαβάστε περισσότερα2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB
2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι
Διαβάστε περισσότεραΓεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ
ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότεραΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )
ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ
1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΚόλλιας Σταύρος 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Κόλλιας Σταύρος http://users.sch.gr/stkollias 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Θέμα 1 Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012
ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012 ΘΕΜΑ
Διαβάστε περισσότεραΘεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε
Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε
Διαβάστε περισσότεραΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότεραΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ
Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΚεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.
Διαβάστε περισσότερα2ηέκδοση 20Ιανουαρίου2015
ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις στην Γεωμετρία Α Λυκείου
Έστω ένα τρίγωνο ΑΒΓ. Οι διχοτόμοι των 1. γωνιών του Β και Γ τέμνονται στο Ο. Η παράλληλη από το Ο προς την ΑΒ τέμνει την ΒΓ στο Δ και η παράλληλη από το Ο προς την ΑΓ τέμνει την ΒΓ στο Ε. α. Να δείξετε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ
Η ΓΕΩΜΕΤΡΙΑ της Α τάξης του ΕΠΑΛ με Φύλλα Μαθήματος & Εργασίας - ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ 014 ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΕΠΑΛ ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ Ονομασία Πλευρών ΑΒ ή ΒΑ ή γ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΔ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α
Διαβάστε περισσότεραΘέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου
Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου Συλλογή-Επιμέλεια: Γ. Κοντογιάννης, Μαθηματικός ΜPhil Α Λυκείου Άλγεβρα Θέματα Εξετάσεων
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
Διαβάστε περισσότεραΚύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΚαλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ
ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53
Διαβάστε περισσότεραΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ
ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ Α Α. Να αποδείξετε ότι ισχύει α + β α + β, για κάθε α, β R. Α. Τι ονομάζουμε νιοστή ρίζα ενός μη αρνητικού αριθμού α; Α. Να χαρακτηρίσεις
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται
Διαβάστε περισσότεραΔιαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του
Διαβάστε περισσότεραA λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.
1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότερα3o ΚΕΦΑΛΑΙΟ : Τρίγωνα
3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 4 η διδακτική ενότητα : Ισότητα τριγώνων Ερωτήσεις κατανόησης 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις : α) Υπάρχουν σημεία του επιπέδου που
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:
Διαβάστε περισσότεραΦΥΛΛΑΔΙΟ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μέρος Α. 6 Σημαντικά θεωρήματα Μέρος Β. 50 Άλυτες ασκήσεις με σχήματα
ΦΥΛΛΑΔΙΟ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μέρος Α. 6 Σημαντικά θεωρήματα Μέρος Β. 5 Άλυτες ασκήσεις με σχήματα ΓΕΝΑΡΗΣ 216 ΜΑΝΩΛΗΣ ΨΑΡΡΑΣ Σελίδα 1 6 Σημαντικά θεωρήματα της Γεωμετρίας 1. Ευθεία Euler
Διαβάστε περισσότεραΓεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα
Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
Διαβάστε περισσότεραΕισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι
Διαβάστε περισσότεραΌμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.
Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ
ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο
Διαβάστε περισσότεραΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία
Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού
Διαβάστε περισσότεραΜαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
Διαβάστε περισσότεραΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η.
Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. α) το τρίγωνο ΒΑΕ είναι ισοσκελές. (Μονάδες 7) β) το ΔΕΓΒ είναι παραλληλόγραμμο.
Διαβάστε περισσότερα1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
Διαβάστε περισσότεραΟνοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»
ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό
Διαβάστε περισσότεραΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Διαβάστε περισσότεραΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130
ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα
Διαβάστε περισσότερα