ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
|
|
- Άφροδίτη Δασκαλόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Contents Effectve Bandwdths and Chargng of VBR servces Tme- and Volume-based Chargng of VBR servces Smple Chargng Scheme Propertes and Incentves Examples Smplfcatons CBR Chargng Guaranteed Servces- 2
2 Outlne of the VBR-Chargng Approach Total charge for a call s a( )T+b( )V+c( ) where T = duraton of call (e.g. seconds) V = volume of call (e.g. Mbts or Mcells) a( ), b( ), c( ) capture QoS, UNI choces (peak rate, etc), user s choce of tarff User-network contract: QoS requested User traffc parameters User choce of tarff User ATM traffc Call-Acceptance Control Calculaton of actual charge Accountng nformaton Guaranteed Servces- 3 Effectve Bandwdths Remnder k traffc classes class contrbutes n sources n n k... B: buffer C: capacty Whch do not volate QoS constrant (e.g. CLP < e - γ ( n,, nk ) )? K Acceptance Regon: lnear constrants of the form n α + K+ n α C k k * where [ ] sx t α j st (,) logee j [, ] = 0 st Guaranteed Servces- 4 2
3 Effectve Bandwdth Formula Effectve bandwdth of a source of type j [ ] sx t α j st = 0 (,) logee j [, ] st X j [0,t]: load produced by source of type j n wndow t The effectve bandwdth α j (s,t) quantfes resource usage for a partcular operatng pont (s,t) Effectve bandwdth for connecton k of type j can be computed usng emprcal estmate T / t k sx [( ) t, t ] jk αˆ = jk ( s, t) log e st T k = Tk: duraton of connecton k t: nterval length Guaranteed Servces- 5 Economc theory remnder Socal welfare maxmsaton: max U ( n) n st.. n A A n α + K+ n α C n * k k * Prces defned by shadow costs of effectve bandwdth constrants p eb = p j eb j Prcng n proporton to effectve bandwdths: captures QoS requrements ncentve compatble content ndependent well understood theory IS IT OBVIOUS? Guaranteed Servces- 6 3
4 The slow ON/OFF Source Model At an nterval of duraton t << Ton, : Toff ether OFF: X=0 (wth probablty -p) or ON: X=ht (wth probablty p) on h off m h mean rate m = p*h effectve bandwdth t α on/ off sth ( e ) m ( s, t) = log + st h ON/OFF has the largest possble effectve bandwdth (over all traffc models) for gven m and h and operatng pont Guaranteed Servces- 7 Chargng VBR Servces - Idea Apply CAC wth effectve bandwdths and Charge (per unt tme) each VBR call proportonally to effectve bandwdth Pro: Theoretcally justfable and far Con: Requres accurate a pror knowledge of complex traffc statstcs If emprcal estmate from samplng prevous calls s used, users have the wrong ncentve to reach ths value user wll tend to overload the network => smlar to overeatng n allyou-can-eat restaurants Guaranteed Servces- 8 4
5 Chargng VBR Servces - Idea 2 Use traffc contracts specfyng: peak rate α worst sustanable cell rate, max burst sze Apply CAC wth the worst-case effectve bandwdths for contracts and Charge each VBR call proportonally to worst-case effectve bandwdth ( SCR, MBS, h) curve for fxed h, MBS SCR Pro: No complcated traffc statstcs Cons: Unfar to users wth mean rate < SCR, or peak rate < h Provdes the wrong ncentve to ncrease traffc Guaranteed Servces- 9 Dscusson Prevous approaches only based on statc a pror varables, determned by traffc contract Provded wrong ncentves to exhaust the resource usage permssble by contract Chargng should also employ dynamc a posteror varables, measured durng call Guaranteed Servces- 0 5
6 Chargng VBR Servces - Idea 3 Measure the effectve bandwdth durng each VBR call, and charge proportonally to t Pro: Provdes the rght ncentves Con: Incompatble wth statc CAC If eb estmated emprcally, dffcult for users to understand charges users may possbly not pay for all the resources reserved by CAC e.g. a user wth no traffc, would face 0 charge Guaranteed Servces- What s Needed? Charge accordng to both: statc varables reflectng traffc contract and resources reserved by CAC dynamc varables reflectng actual usage Fnal charge should be close to actual effectve bandwdth Allow the user to select a tarff: selecton should reveal some mportant addtonal nformaton to the network Guaranteed Servces- 2 6
7 Defnng the problem A reasonable model H = set of traffc contracts M = traffc parameters measured (mean, etc.) for each h H the avalable tarffs are functons of measurements M, ndexed by User chooses at call set up the traffc contract h the best tarff from F h by solvng arg mn Efh ( M) F = { f ( M)} h h Network computes statc at end of call dynamc h M fh ( M) Guaranteed Servces- 3 Defnng the problem (cont.) What s a reasonable choce of chargng functons f h charge corresponds to effectve bandwdth choce of tarff reveals useful nformaton requred measurements are smple (eg. T,V) h M fh ( M) Not obvous!! Use only statc parameters: f = worst case eb (peak rate) bad ncentves, all you can eat problem Use only measurements: f = actual eb of traffc sent no account of resource reservaton at call set up Combne statc wth dynamc parameters f = worst case eb gven h, M Guaranteed Servces- 4 7
8 An nterestng structural property for tarffs Boxes arrve to be packed a pror nfo: W charge = concave functon max a posteror nfo: W of weght Can tarffs make users reveal W? Charge W max slope b(m) tangent tarff-lne f( mw ; ) = am ( ) + bm ( ) W g( W) penalty due to naccurate tarff selecton a(m) m m W max W accurate selecton charge = g( W) Guaranteed Servces- 5 Applcaton: Smple Chargng Scheme for VBR Chargng of VBR calls a pror nformaton: peak rate h (polced) a posteror nformaton: mean rate M (measured) Use as chargng functon an effectve bandwdth eb(m) M for example, ht α on / off ( M) = [ + ( concave n M st h e )] charge = worst case eb gven h, M Construct tarffs as tangents to ponts m of the eb curve f( m; M) = am ( ) + bm ( ) M actual mean rate, measured as M = V/T = Volume / Tme user predcton of mean rate - defnes tarff Implct declaraton of M by users Guaranteed Servces- 6 8
9 Smple Chargng Scheme for VBR α on / off ( s, t) slope b(m) penalty due to naccurate declaraton tangent tarff-lne f( mm ; ) = am ( ) + bm ( ) M charge = T * f( m; M) = a( m) T + b( m) V effectve bandwdth α ON / OFF a(m) accurate declaraton charge = T α * ON / OFF Each traffc contract h defnes a famly of tarff lnes m declared M Guaranteed Servces- 7 Propertes of Smple Chargng Scheme Total charge = T [ am ( ) + bm ( ) M] = am ( ) T+ bm ( ) V Accounts both for resource reservaton => tme-component actual usage => volume-component Smple Accountng Requres only smple measurements: T and V Flexblty added to traffc contracts Ratonal users pay n proporton to ther effectve use Tarff coeffcents depend on traffc contract parameters Guaranteed Servces- 8 9
10 Incentves to the User Provdes the user wth the rght ncentves. In partcular: Incentve to accurately declare the mean rate M, f known a pror For random mean rate M : Expected charge s mnmsed for m=e[m] user has the ncentve to estmate ths (from emprcal nformaton), and declare t to the network Incentve to shape traffc, thus reducng peak rate h and the charge Guaranteed Servces- 9 Incentve Compatblty User s optmal declaraton of m s nformatve to the network provder Can be used by network provder n more effcent allocaton of resources, thus mprovng operaton of the network User s ncentve to shape traffc reduces burstness, thus also leadng to more effcent operaton of the network Guaranteed Servces- 20 0
11 Computaton of a(m) and b(m) Both a(m) and b(m) can be expressed n closed form If t=, then Approprate values of s,t can be derved numercally Guaranteed Servces- 2 Examples of Tarffs h = 3 Mbps st = sec/mbt M a(m) b(m) 0.20 Mbps Mbps Mbps Mbps Mbps h =.5 Mbps st = sec/mbt M a(m) b(m) 0.20 Mbps Mbps Mbps a(m) => $/sec b(m) => $/Mbt h = 3 Mbps st = 2 sec/mbt M a(m) b(m) 0.20 Mbps Mbps Mbps Mbps Mbps Guaranteed Servces- 22
12 How a(m) and b(m) Vary Guaranteed Servces- 23 How a(m) and b(m) Vary Guaranteed Servces- 24 2
13 How a(m) and b(m) Vary For fxed h, s, t, as m ncreases: a(m) ncreases b(m) decreases charge for tme ncreases, whle charge for volume decreases, because the ablty for multplexng dmnshes α on b(m 2 ) slope b(m ) / off ( s, t) a(m ) a(m 2 ) m m 2 M Guaranteed Servces- 25 How a(m) and b(m) Vary (contnued) For fxed m, s, t, as h ncreases : both a(m) and b(m) ncrease the source s more bursty, thus reservng and usng more resources α on / off ( s, t) m h h 2 M Guaranteed Servces- 26 3
14 How a(m) and b(m) Vary (contnued) For fxed m, h (.e. source parameters), when st decreases : a(m) decreases b(m) ncreases and α on / off ( s, t) then decreases to for small st tme-charge decreases, and volume-charge ncreases, because the ablty for multplexng ncreases 45 o decreasng st m st = 0 M Guaranteed Servces- 27 Improvng accuracy of Smple Chargng Scheme The smple chargng scheme bounds the effectve bandwdth accordng to the ON/OFF bound does not capture general traffc contracts for VBR Other bounds can also be used functons of mean rate and the LBs of the traffc contract Same approach: charge per unt tme derved accordng to the tangent selected by the user slope b(m) a(m) α bound (,) st f( m; M ) = a( m) + b( m) M m declared M Guaranteed Servces- 28 4
15 Takng nto account leaky bucket constrants ON/OFF bound corresponds α to a sngle leaky bucket, on / constranng only the peak rate sth ( e ) m ( s, t) = log + st h For traffc contracts nvolvng multple leaky buckets, we tm sh() t can use the tghter bound α lb (,) st = log + ( e ) st Ht () where H(): t = mn{ ρ kt + β k} k K ρt + β off H() t Domnant LB t Guaranteed Servces- 29 Splttng of traffc peak rate = h mean rate = m effectve bandwdth = a total VC peak rate = h/2, mean rate = m/2 effectve bandwdth = a splt VC 2 Splttng can be benefcal to the user => possbly less total charge, because 2a splt < a total correlated traffc streams are erroneously charged as ndependent ones Guaranteed Servces- 30 5
16 Dscouragng splttng - fxed charge Traffc splttng s undesrable to provder, because: may lead to reduced revenue set of avalable VPI/VCI may be exhausted ncreased sgnallng overhead for settng more VCs Splttng should be dscouraged => add a fxed charge per VC Total Charge = am ( ) T + bm ( ) V + cm ( ) However, traffc splttng could be benefcal to provder, f substreams can only be accommodated through dfferent routes Guaranteed Servces- 3 Examples of a, b,c Tarffs h = 3 Mbps st = sec/mbt M a(m) b(m) c(m) 0.20 Mbps Mbps Mbps Mbps Mbps Fxed charge c(m) s expressed n $ was taken (n the examples) as a(m)*5sec+ Guaranteed Servces- 32 6
17 Dscouragng splttng of traffc (cont.) Use homothetc tarffs α( h, M) α( h, M) = kα( h / k, M / k) M h Pros: convexty makes users reveal ther mean rates, no ncentve to splt Cons: charge not proportonal to eb (but close!) Guaranteed Servces- 33 Smpler Chargng: Dspensng wth Duraton The tme-component of charge can be elmnated total charge = bv + c tarff wll be smpler dependence of usage-charge on QoS wll be clearer Reasonng: c can be set to account for typcal tme-charge, or we can assume a typcal value for m and nfer T V / m, hence a ( m) T+ b( m) V + c( m) a( m) ( V/ m) + b( m) V + c( m) = b'( m) V + c( m) However, users wll have no ncentve to close connectons set of avalable VPI/VCI may be exhausted provder can lmt the maxmum number of VPI/VCIs permssble per user Guaranteed Servces- 34 7
18 Chargng CBR Servces Smple chargng scheme can also be appled to CBR servces users should declare m = h Total Charge = a ( h) T + b( h) V + c( h) Volume-charge does not vansh, because b( h) 0 CBR servces should be charged only on the bass of tme, f ther peak rate s really reserved, and CBR s not multplexed statstcally smpler scheme already adopted n practce Guaranteed Servces- 35 Chargng PVCs So far have only dealt wth Swtched VCs for VBR servces (SVCs) Smple chargng scheme can also be appled to Permanent VCs (PVCs) for VBR servces However, PVCs can also be charged only on the bass of tme, f they are not multplexed statstcally, due to ther long duraton smpler scheme already adopted n practce Guaranteed Servces- 36 8
19 Takng nto account leaky bucket constrants ON/OFF bound corresponds α to a sngle leaky bucket, on / constranng only the peak rate sth ( e ) m ( s, t) = log + st h For traffc contracts nvolvng multple leaky buckets, we tm sh() t can use the tghter bound α lb (,) st = log + ( e ) st Ht () where H(): t = mn{ ρ kt + β k} k K ρt + β off H() t Domnant LB t Guaranteed Servces- 37 Effectve bandwdth of a traffc contract Smple bound of a traffc contract s effectve bandwdth: sh (t) ( e ) tscr α( SCR, PCR, MBS) = log + st H ( t) where { ρ t + β ρ + } H ( t) = mn t β 0 0, ( ( 0 ρ0, β ) = ( PCR,0) ρ, β ) = ( SCR,( MBS )( SCR / PCR) + ) Guaranteed Servces- 38 9
20 Effect of traffc mx and lnk capacty C=34 Mb/s C=55 Mb/s PCR=3 Mbt/s, MBS=200 Buffer=4 msec, MPEG- & voce traffc Guaranteed Servces- 39 Effect of PCR, SCR, MBS PCR= Mb/s PCR=3 Mb/s C=55 Mbt/s, Buffer=4 msec, 20% voce connectons Guaranteed Servces
21 Brtsh Telecom s (BT) tarffs Based on prce multplers Guaranteed Servces- 4 BT vs. EB tarffs BT EB PCR=5 Mbt/s C=55 Mbt/s, Buffer=4 msec, mx wth 20% voce traffc Guaranteed Servces- 42 2
22 BT vs. EB tarffs (2) MBS=200 PCR= Mbt/s C=55 Mbt/s, Buffer=4 msec PCR=5 Mbt/s Guaranteed Servces- 43 BT vs. EB tarffs (3) PCR/SCR=5, MBS=200 C=55 Mbt/s, Buffer=4 msec, mx wth 20% voce traffc Guaranteed Servces
23 The PCR/SCR<.8 condton EB EB PCR/2 PCR PCR/2 PCR Left graph s wthout the condton: f PCR/SCR<.8 then prce as MBS=200 Guaranteed Servces- 45 Χρέωση ΑΤΜ VBR VCs βάσει χρόνου Τέλος: a(x) T x παράμετροι σύνδεσης, T = διάρκεια της υπηρεσίας a(x): ι.ε.ζ. της μέγιστης κίνησης σύμφωνη με το συμβόλαιο x Για μεγάλο βαθμό στατιστικής πολυπλεξίας, η χρήση πόρων εξαρτάται από το PCR, SCR μόνο μέσω του λόγου τους PCR/SCR Υπολογισμός τελών σύνδεσης VBR βάσει των τελών σύνδεσης CBR με την χρήση πολλαπλασιαστών a VBR ( PCR,SCR,MBS) M( PCR/ SCR) M2( MBS,PCR/ SCR) a Μ : πολλαπλασιαστής του λόγου εκρηκτικότητας PCR/SCR Μ 2 : πολλαπλασιαστής του μεγέθους έκρηξης MBS CBR ( SCR) Guaranteed Servces
24 Prce Multplers for chargng Guaranteed Servces- 47 Prce Multplers Guaranteed Servces
25 Prce Multplers for chargng Guaranteed Servces- 49 Prce Multpler M2 Guaranteed Servces
26 Παραδείγματα χρέωσης ΑΤΜ VBR VCs βάσει χρόνου Burst Rato (PCR/SCR) Multpler MBS Multpler (PCR/SCR.8) Multpler (PCR/SCR<.8) Μεγάλη στατιστική πολυπλεξία (π.χ. PCR,SCR μέχρι % της χωρητικότητας) Burst Rato (PCR/SCR) Multpler MBS Multpler (PCR/SCR.8) Multpler (PCR/SCR<.8) Μικρή στατιστική πολυπλεξία (π.χ. PCR,SCR μέχρι 0 % της χωρητικότητας) Μικρότερη στατιστική πολυπλεξία οι πολλαπλασιαστές είναι πιο κοντά στην μονάδα Guaranteed Servces- 5 Brtsh Telecom s (BT) tarffs Based on prce multplers Guaranteed Servces
27 Comparson of EB and BT prce multplers Guaranteed Servces- 53 Comparson of EB and BT prce multplers (2) Guaranteed Servces
28 Chargng and CAC Consstency of CAC and chargng functon: Natural to charge wth the eb used n CAC Suppose CAC accordng to PCR. How to charge? Not a compettve CAC Better provde ncentves to reduce volume a b at + bv + c, a >> b Suppose perfect dynamc CAC s used call arrval and departures occur every T control mechansm (by blockng calls) acheves QoS at all tmes effectve bandwdth of a call = average of actual effectve bandwdth n each perod T = almost the mean rate!! PCR Guaranteed Servces- 55 More general chargng schemes 2-tax band scheme h A tme V 2 V V: volume of data durng ntervals wth less than A bytes V2: volume of data durng ntervals wth more than A Charge s f ( V = a + a V + a V, V2 ) where a < a 2 Guaranteed Servces
29 More general chargng schemes Smple scheme can not dstngush users havng the same mean mean Need for more detaled traffc measurements Consder the general lnear tarff f ( X ) = a0 + ag( X ) + K+ algl ( X ) X = X, K, X T, g ( X ) = measurement functon ( = X j ) T j=, T Other possble functons: ( = { X j > 0.9h} T j=, T Evaluate mplementaton cost vs accuracy gan Guaranteed Servces- 57 More general chargng schemes (cont.) Approach used n Smple Chargng Scheme can be extended Defne the effectve bandwdth to be the functon sx[, t] α( hm, ) = sup 0 logee X st t st.. Eg( X) = M, Xt Ξ( h) concave n M Construct lnear tarffs = tangent hyperplanes to α( M ) Example: the 2-tax band scheme K M 2 Guaranteed Servces- 58 M tme 29
30 Tme-of-day prcng Assume two perods, off-peak and on-peak, t= and 2 User utlty Socal welfare maxmzaton problem u ( x, x2 ) max N { x, x } 2 = 2 u ( x, x ), subject to N = x t C, t t =,2 User problem max[ u ( x, x2 ) px p2x2 ] x, x2 p, p2 set usng a tatonnement Guaranteed Servces- 59 Smple Tme-Volume scheme for ABR rate MCR tme at + bv + c can be used for ABR User buys an amount m of MCR at posted prce p MCR Network charges for a perod of usage T: p MCR m T for the data sent wthn MCR pubr V where V s the volume sent on top of MCR c (for sgnallng congeston, dscourage splttng) No ncentve for splttng connectons f excess capacty allocated proportonally to the amounts of MCR (note that c>0) Guaranteed Servces
31 Incentve compatblty and user-network nteracton Operatng pont of a lnk and tarffs are nter-related n a crcular fashon: tarffs Users Network traffc contracts Incentve compatblty: tarffs nduce users to select contracts that mnmze ther charges, and lead to socal welfare maxmum of the system Guaranteed Servces- 6 Equlbrum under determnstc multplexng We assume dentcal users & sngle leaky bucket Users-network nteract n lock-step fashon For determnstc multplexng (zero CLP): In both cases, operatng pont moves towards Q Q: maxmum number of users and Cβ Q =Bρ Q β t=0 Q=(ρ Q,β Q ) t = ρ Guaranteed Servces- 62 3
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Prcng and network control Incentves Smple modelng Network externaltes
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Διαδικαστικά Περιεχόμενο και στόχος μαθήματος Έλεγχος δικτύων -
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
Derivation for Input of Factor Graph Representation
Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Constant Elasticity of Substitution in Applied General Equilibrium
Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion
Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Network constraints Effective bandwidths 1 Network control for
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ
EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
LECTURE 4 : ARMA PROCESSES
LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony
Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας
Generalized Linear Model [GLM]
Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows
Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales
Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)
Appendx Appendx I. Detals used n M-step of Secton 4. Now wrte h (r) and expect ultmately t wll close to zero. and h (r) = [δq(α ; α (r) )/δα ] α =α (r 1) = [δq(α ; α (r) )/δα ] α =α (r 1) δ log L(α (r
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Newborn Upfront Payment & Newborn Supplement
GREEK Newborn Upfront Payment & Newborn Supplement Female 1: Το μωρό μου θα ρθει σύντομα, θα πρέπει να κανονίσω τα οικονομικά μου. Άκουσα ότι η κυβέρνηση δεν δίνει πλέον το Baby Bonus. Ξέρεις τίποτα γι
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump