Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows
|
|
- Ζώνα Βουρδουμπάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales volume of mlk gallons for randoml selected weeks as follows Week Weekl sales level, Y* ellng prce, X, $ * Thousand of gallons catter Dagram 5 sales prce Correlaton coeffcent: r ()493 (44) ()56 44 ()488 86
2 WEEK ^ ^ sum Normal equatons: n () n n n ( ( ) ) ()56 (44) () ()49 (44)() 98 ()(493) (44) ()(56) (44) 84 ( 454) Lnear Regresson Model (Ftted model): tandard error of estmate (se): week Actual Estmated error error^ sum ( ) error σ e n n
3 Evews Output Dependent Varable: ALE Method: Least quares Date: 5/8/9 Tme: 8:3 ample: Included observatons: Coeffcent td Error t-tatstc Prob PRICE C R-squared Mean dependent var Adjusted R-squared 7385 D dependent var E of regresson Akake nfo crteron 53 um squared resd chwarz crteron 585 Log lkelhood -3 Hannan-Qunn crter F-statstc Durbn-Watson stat Prob(F-statstc) 84 ANOVA Table: Test for Equalt of Means Between eres Date: 5//9 Tme: : ample: Included observatons: Method df Value Probablt t-test atterthwate-welch t-test* Anova F-test (, 8) Welch F-test* (, 96349) *Test allows for unequal cell varances Analss of Varance ource of Varaton df um of q Mean q Between Wthn Total
4 Resdual Plot ALE Resduals Q-Q Plot of Resduals (Normalt check) 6 4 Quantles of Normal Quantles of REID 4
5 Predctng Y for a gven value of : uppose Mr Bump wshed to forecast the quantt of mlk sold f the prce were set at $63 E Y (454) or 8,44 gallons tandard error of the forecast measures when 63 s ( ) ( 63 44) σ p σ e 7 9 n 84 ( ) 95% predcton nterval for 63 s 844 ± t n-, 5 9 > 844±36(9) > (753, 5) Forecast: ALEF Actual: ALE Forecast sample: Included observatons: Root Mean quared Error 6 Mean Absolute Error 398 Mean Abs Percent Error 7984 Thel Inequalt Coeffcent 587 Bas Proporton Varance Proporton 763 Covarance Proporton ALEF ± E Inference on : tandard error of estmator of σ e σ e 7 σ 3 ( ) 84 5
6 The 95% confdence nterval for s ± c se( ) s: -4,54± t n-, 5 (3) > -454± 698 > (-458, -76) Hpothess Testng H : vs H A : 454 t 48 < -36 Reject Ho 3 p-value: Pr( T 4 8) Pr( T > 4 8) 3 6
7 Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE MULTIPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce, sales volume of mlk gallons and advertsng epense for randoml selected weeks as follows Week Weekl sales level, Y* ellng prce, X, $ Advertsng**, X * Thousand of gallons; ** hundreds of dollars Correlaton Matr sales prce sales 86 r prce 86 ads ads E-Vews Output of Correlaton matr Covarance Analss: Ordnar Date: 5/8/9 Tme: 8:59 ample: Included observatons: Covarance Correlaton ALE PRICE ALE 336 ADVERTIIME NT PRICE ADVERTIIMENT
8 catter Dagram Y versus X 5 sales prce catter dagram Y versus X sales advertsng 8
9 9 week X X ^ X ^ X ^ X X X X sum Normal equatons: n In matr form: X X X Y ( ) ) ( ) ( X Y X X X X X Y 336 ()488 ) ( n Multple Lnear regresson (Ftted or estmated ) Model
10 tandard error of estmate: week Prce Advertsng Actual Estmated error error^ UM 59 σ e R error ( ) 59 5 n k n k 3 Eplaned Re sdual 5,9,93 Total total 33,6 Corrected or adjusted R A σ u σ r : 5,9/ 7 33,6/9,948 Varables used to eplan r ( ) varance of Y none 336 Prce Prce and advertsement Predcton on gven fed values of and : uppose Mr Bump wshed to forecast the quantt of mlk sold f the prce were set at $5 and advertsng ependtures of $ E Y 5, 64 85(5) 59() 993 or 993 gallons
11 Inferences on Parameters: H : vs H A : 585 t 4,37 >36 Reject Ho 3367 Evews Output Dependent Varable: ALE Method: Least quares Date: 5/8/9 Tme: 8:54 ample: Included observatons: Coeffcent td Error t-tatstc Prob PRICE ADVERTIIMENT C R-squared 9399 Mean dependent var Adjusted R-squared 948 D dependent var E of regresson 5796 Akake nfo crteron 3975 um squared resd 5949 chwarz crteron Log lkelhood Hannan-Qunn crter 384 F-statstc Durbn-Watson stat Prob(F-statstc) 8 ANOVA Table: Test for Equalt of Means Between eres Date: 5//9 Tme: :55 ample: Included observatons: Method df Value Probablt Anova F-test (, 7) Welch F-test* (, 863) 3654 *Test allows for unequal cell varances Analss of Varance ource of Varaton df um of q Mean q Between Wthn Total
12 Resdual Plot ALE Resduals Q-Q plot of resduals (Normalt check) 3 Quantles of Normal Quantles of REID
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η
# η &, ε ε 007, ιη Pearson r "η η ι ι ι η ι!ι ι ι η ι η!ηη ι ι!ηη. η ι ιηη ι" η ι!"ι 0 ι η ( α ι ι α η 9 ( ι ι / + -predctor varable). * ι ι ι ι η ι ι ι!ηη η "ι ι ι ι!ηη η ι ι η η ι 'ι ι ι (η ) ι η ( "
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10)
Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10) 1 2 y t = β 0 + β 1 x t + u t y t = Πληθωρισμός x t = Ανεργία 3 Dependent Variable: INFLATION Method: Least Squares Sample: 1948-1996 (49) C
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων
Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια Αθήνα, 6-4-7 Γραμμικά Μοντέλα Λύσεις Ασκήσεων η Άσκηση: (α) Eίναι η σχέση μεταξύ των δύο μεταβλητών γραμμική; Διάγραμμα Διασποράς Για το Υψόμετρο & τις Αρνητικές Τιμές
Προβλέψεις ισοτιμιών στο EViews
Προβλέψεις ισοτιμιών στο EViews Θεωρητικό πλαίσιο προβλέψεων σημείου Σημαντικές επιλογές πλαισίου: Τί θα κάνουμε με την πρόβλεψη; Θα την μοιραστούμε με πολλούς πελάτες, που θα την χρησιμοποιήσουν με διαφορετικό
ΧΡΟΝΟΣΕΙΡΕΣ TUTORIAL 3 ΣΤΑΣΘΜΟΤΗΤΑ ΔΘΑΔΘΚΑΣΘΕΣ ΜΟΝΑΔΘΑΣ ΡΘΖΑΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΙΙ 7-6-1012 Landis Conrad ΧΡΟΝΟΣΕΙΡΕΣ TUTORIAL 3 ΣΤΑΣΘΜΟΤΗΤΑ ΔΘΑΔΘΚΑΣΘΕΣ ΜΟΝΑΔΘΑΣ ΡΘΖΑΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗ Για τθν άςκθςθ χρθςιμοποιοφμε τισ παρακάτω μεταβλθτζσ, ςε θμεριςια κλίμακα,
ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
/
: 2014 2010 2015/2014 : 2014 2010 2015/2014 I II الملخص The aim of this study is to know the effect of the number of the financial indicators on the prices of organizations shares in Dubai s stock exchange,
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΕΤΡΙΑΣ LAB 2
Landis Conrad conrad@aueb.gr AΣΥΜΠΤΩΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΣΤΑΣΙΜΕΣ- ΑΣΘΕΝΩΣ ΕΞΑΡΤΩΜΕΝΕΣ ΧΡΟΝΟΣΕΙΡEΣ ΔΙΑΔΙΚΑΣΙΕΣ ΜΟΝΑΔΙΑΙΑΣ ΡΙΖΑΣ Οι παρατηρήσεις που θα χρησιµοποιήσουµε σε
ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ Μάθηµα: Εφαρµοσµένη Οικονοµετρία (Aκαδηµαϊκό έτος: 2008-2009) Σπύρος Σκούρας Ονοµατεπώνυµο: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΙΟΥΛΙΟΥ 2009
Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7)
Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7) 1 Dependent Variable: T_BILLS3 Method: Least Squares Sample: 1948-2003 C 1.25 0.44 2.83 0.01 INFLATION 0.61 0.08 8.09 0.00 DEFICIT 0.70
ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.
ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται
Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square
Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07
Generalized Linear Model [GLM]
Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις
ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη.
ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ, ΑΕΠ, ΕΞΑΓΩΓΕΣ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΕΛΛΑΔΑ- ΙΣΠΑΝΙΑ-ΠΟΡΤΟΓΑΛΙΑΠΟΡΤΟΓΑΛΙΑ Επιβλέπων καθηγητής: Δριτσάκης Νικόλαος Εκπονήθηκε από: Τέμπου Αικατερίνη (11/37) ΕΙΣΑΓΩΓΙΚΑ Μελέτη
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΑΛΙΝΔΡΟΜΗΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΑΛΙΝΔΡΟΜΗΣΗ Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 4 0 εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ ΕΙΣΑΓΩΓΗ Σχέσεις εξάρτησης μεταξύ των μεταβλητών
β) (βαζκνί: 2) Έζησ όηη ε ρξνλνινγηθή ζεηξά έρεη κέζε ηηκή 0 θαη είλαη αληηζηξέςηκε. Δίλεηαη ην αθόινπζν απνηέιεζκα από ην EViews γηα ηε :
1 ΝΑ ΑΠΑΝΤΗΘΟΥΝ 2 ΑΠΟ ΤΑ 3 ΘΕΜΑΤΑ ΘΕΜΑ 1 α) (βαζκνί: 3) Έζησ όηη ε ρξνλνινγηθή ζεηξά είλαη ζηάζηκε, αληηζηξέςηκε θαη αθνινπζεί ην ΑR(1) ππόδεηγκα. Να βξεζνύλ ε κέζε ηηκή, ε δηαζπνξά θαη ε απηνζπζρέηηζε
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Μοντελοποίηση των αποδόσεων των κρατικών ομολόγων των χωρών της Ευρωζώνης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ & ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μοντελοποίηση των αποδόσεων των κρατικών
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans
S1 of S11 Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans Eveline Dirinck, Alin C. Dirtu, Govindan Malarvannan, Adrian
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους
Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004
Qualtatve Varables Marh, Poltal See 55 Qualtatve Varables Dhotomous Predtor Y PID Geder ( male, female) Y ( ) Y Y Y Y Dummy Varables-Geder. FT-BUSH PID GENDER. ge geder(v9). regress v6 v5 geder v6 Coef.
Εισαγωγή στην Ανάλυση Διακύμανσης
Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Table A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια
Analyze/Forecasting/Create Models
(εκδ 11) (εκδ 11) Σχολή Κοινωνικών Επιστημών Τμήμα Οικονομικών Επιστημών 24 Οκτωβρίου 2014 1 / 12 Εισαγωγή (εκδ 11) 1 2 2 / 12 ΧΣ (εκδ 11) ΧΣ μέσω υποδειγμάτων ARIM A/SARIM A Αϕου δημιουργήσουμε τον χώρο
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς
ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
ΚΕΦΑΛΑΙΟ 7 ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ (Non Parametrc Regresson) Το κεφάλαιο αυτό συνδέεται άμεσα με το κεφάλαιο που αναφέρεται στην συσχέτιση τάξης μεγέθους με την έννοια υπό την οποία η κλασική παραμετρική
794 Appendix A:Tables
Appendix A Tables A Table Contents Page A.1 Random numbers 794 A.2 Orthogonal polynomial trend contrast coefficients 800 A.3 Standard normal distribution 801 A.4 Student s t-distribution 802 A.5 Chi-squared
ΔPersediaan = Persediaan t+1 - Persediaan t
Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000
$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.
η &, 7!# v # $ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. - ι% ιι* ι' F ι ι ι% MS F MS between within MS MS
( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.
STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =
LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.
LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA
Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων
Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων Γεώργιος Παπανίκος Τμ. Εφ. Πληροφορικής, Πανεπιστήμιο Μακεδονίας Εγνατία 156, 54006 Θεσσαλονίκη it0837@uom.gr Νικόλαος Σαμαράς Τμ.
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
Table S1: Inpatient Diet Composition
Table S1: Inpatient Diet Composition Diet Components (% of Energy) Inpatient Period Baseline Intervention Protein 15.1 ± 0.0 15.0 ± 0.1 Total fat 30.0 ± 0.0 30.0 ± 0.1 Saturated fat 8.6 ± 0.8 8.4 ± 0.9
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT
DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT Prepared for Dr. Robert Progar U.S. Forest Service Forest Sciences Laboratory Corvallis, Oregon January 2005 By Greg Brenner Pacific Analytics
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
Κεφάλαιο 7. Γραμμική και λογιστική παλινδρόμηση. Σύνοψη. Προαπαιτούμενη γνώση. 7.1 Απλή και Πολλαπλή Γραμμική Παλινδρόμηση (Linear Regression)
Κεφάλαιο 7 Σύνοψη Γραμμική και λογιστική παλινδρόμηση Στο κεφάλαιο αυτό γίνεται ανάλυση της μεθοδολογίας της απλής και πολλαπλής γραμμικής παλινδρόμησης, και αναφορά στη μεθοδολογία της λογιστικής παλινδρόμησης.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΙΟΙΚΗΤΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΣΥΜΜΕΤΡΙΑ ΣΤΙΣ ΤΙΜΕΣ ΤΩΝ ΑΚΙΝΗΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΙΟΙΚΗΤΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΣΥΜΜΕΤΡΙΑ ΣΤΙΣ ΤΙΜΕΣ ΤΩΝ ΑΚΙΝΗΤΩΝ ΕΥΕΛΥΝ ΣΑΚΚΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΝΙΚΟΛΑΟΣ ΑΠΕΡΓΗΣ ΕΠΙΤΡΟΠΗ: ΛΕΚΤΟΡΑΣ Ν. ΚΟΥΡΟΓΕΝΗΣ
Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.
Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Οι παρούσες σημειώσεις επιχειρούν να αποτελέσουν μια βοήθεια τόσο στην παρακολούθηση της διάλεξης όσο και στη μελέτη κάποιων εκ των θεμάτων της Γραμμικής
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
ΔΗΜΗΤΡΗΣ- ΘΕΟΔΩΡΟΣ ΦΙΛΙΠΠΑΚΟΣ
ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Τμήμα Δημόσιας Διοίκησης Μεταπτυχιακό Πρόγραμμα Σπουδών:Οικονομικά της Παραγωγής και των Διακλαδικών Σχέσεων ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΔΙΕΡΕΥΝΗΣΗ ΚΙΝΔΥΝΟΥ
Lampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
Το πρόβλημα της διαχείρισης των μεταβλητών δαπανών αποτελεί αντικείμενο που χρήζει
ΔIOIKHTIKH ENHMEPΩΣH 95 ΔΙΟΙΚΗΣΗ ΔΗΜΟΣΙΩΝ ΝΟΣΟΚΟΜΕΙΑΚΩΝ ΜΟΝΑΔΩΝ- ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΩΝ ΠΟΣΟΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΤΟΝ ΕΛΕΓΧΟ ΤΩΝ ΔΑΠΑΝΩΝ Tου Μάριου Τσάκα 1. ΕΙΣΑΓΩΓΗ Το πρόβλημα της διαχείρισης των μεταβλητών δαπανών
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ (TEST: Unit Root-Cointegration ) ΦΑΙΝΟΜΕΝΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η στασιμότητα των δεδομένων (χρονοσειρών) είναι θεωρητική προϋπόθεση για την παλινδρόμηση, δηλ. την εκτίμηση
LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26
LAMPIRAN Lampiran 1 Uji Chow Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs =
EXERCISES: 2.57, 2.58, 2.63, 11.33, 11.34
201 EXERCISES: 2.57, 2.58, 2.63, 11.33, 11.34 Μάθημα: ΔΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ Μεταπτυχιακοί Φοιτητές: Θεοδωρακόπουλος Παναγιώτης Καλοκάσης Ευάγγελος Κοτρωνιά Ζωή Μπουρούνη Ελένη Διδάσκουσα: κ. Σ. Κοέν 1 Exercise
Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio
Statistical Tools for SWGTOX Method Validation of 11 Benzodiazepines in Whole Blood by SPE and GC/MS Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio Disclaimer Neither I nor any member of my immediate
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Στατιστική Ανάλυση Δεδομένων II. Γραμμική Παλινδρόμηση με το S.P.S.S.
Στατιστική Ανάλυση Δεδομένων II Γραμμική Παλινδρόμηση με το S.P.S.S. μέρος Α (απλή παλινδρόμηση) Νίκος Τσάντας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά και Σύγχρονες Εφαρμογές Ακαδημαϊκό
1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
Σύγκριση Συνδυασµένων Παραγόντων
Σύγκριση Συνδυασµένων Παραγόντων Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Παραγοντικά Πειράµατα (Factorial Experiments)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),
Fused Bis-Benzothiadiazoles as Electron Acceptors
Fused Bis-Benzothiadiazoles as Electron Acceptors Debin Xia, a,b Xiao-Ye Wang, b Xin Guo, c Martin Baumgarten,*,b Mengmeng Li, b and Klaus Müllen*,b a MIIT Key Laboratory of ritical Materials Technology
Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος
ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις
η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p
ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1