ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διοδική Επαφή p- n

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διοδική Επαφή p- n"

Transcript

1 ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διοδική Επαφή p- n Required Text: Microelectronic Devices, Keith Leaver (3 rd Chapter)

2 Τρέχον περιεχόμενο Η δίοδος σε ισορροπία Επίδραση της πόλωσης Περιοχές λειτουργίας της διόδου IV χαρακτηριστική της Επαφής PN Μοντέλα διόδου Αντίστροφη κατάρρευση και κατάρρευση Zener 2

3 Διοδική επαφή p- n Η δίοδος είναι το βασικότερο ηλεκτρονικό στοιχείο. Δημιουργείται φέροντας σε επαφή δύο ημιαγωγούς n και p τύπου Κύρια ιδιότητά τους είναι η ανόρθωση (rectifying). Ανόρθωση είναι η «μόνωση» των άκρων της διόδου, με την έννοια της διακοπής ροής ρεύματος δια μέσου αυτής, σε ανάστροφη πόλωση. 3

4 Διοδική επαφή p- n Κατασκευαστικά η δίοδος δεν προκύπτει με απλή επαφή των επιφανειών δύο ημιαγωγών διαφορικού τύπου (ασυνέχεια κρυσταλλικού πλέγματος). Στην πραγματικότητα προκύπτει με διάχυση διαδοχικών προσμίξεων π.χ. πρόσμιξη τύπου n σε ημιαγωγό p τύπου. Αυτό εξασφαλίζει την ύπαρξη ενός κρυσταλλικού πλέγματος. Στο κεφάλαιο αυτό υποθέτουμε οτι υπάρχει απότομη αλλαγή της πρόσμιξης στην επιφάνεια επαφής. Ιδανική Δίοδος Είναι όντως έτσι????? 4

5 Διοδική επαφή p- n Σε ιδανική δίοδο Με δεδομένο ότι σε κάθε πλευρά της επαφής υπάρχει περίσσεια οπών ή ηλεκτρονίων σε σχέση με την άλλη πλευρά, είναι προφανές ότι ένα ρεύμα διάχυσης (diffusion current) αντίστοιχων φορέων φορτίου από κάθε πλευρά, θα ρέει διά της επαφής. 5

6 Διοδική επαφή p- n Σε ιδανική δίοδο Στις δύο περιοχές πλησίον της επαφής οι φορείς πλειονότητας θα μετακινηθούν προς την απέναντι πλευρά, δημιουργώντας εκεί αντίστοιχη φορτισμένη περιοχή. Ετσι δημιουργείται μια περιοχή συγκεκριμένου εύρους από ακίνητα ιόντα (θετικά στην n και αρνητικά στην p) που ονομάζεται : περιοχή φορτίων χώρου ή εξάντλησης (depletion region). 6

7 Διοδική επαφή p- n Σε ιδανική δίοδο Στην περιοχή φορτίων χώρου δεν υπάρχουν κινητοί φορείς φορτίου (οι αντίστοιχοι φορείς πλειονότητας) γιατί αυτοί έχουν δεσμευτεί. Η εικόνα της συγκέντρωσης των φορέων πλειονότητας στη δίοδο (σε ισορροπία) θα είναι: Το εύρος των δύο περιοχών φορτίου χώρου δεν είναι συμμετρικό! 7

8 Διοδική επαφή p- n Τα ακίνητα ιόντα στην περιοχή φορτίων χώρου δημιουργούν με τη σειρά τους ένα (εσωτερικό) ηλεκτρικό πεδίο (Ε o ) και φυσικά ένα αντίστοιχο εσωτερικό δυναμικό (V o ) φράγμα δυναμικού. Το ηλεκτρικό αυτό πεδίο θα δημιουργήσει ένα ρεύμα ολίσθησης (drift current) με φορά αντίθετη του ρεύματος διάχυσης (diffusion current). 8

9 Διοδική επαφή p- n J e = neµ e E + D e e dn dx = 0 J p = peµ h E! D h e dp dx = 0 9

10 10

11 Διοδική επαφή p- n Ενεργειακά, η διαφορά δυναμικού μπορεί να υπολογιστεί ως εξής: o w n V = E dx w p Η αύξηση του φράγματος δυναμικού έχει ως αποτέλεσμα, το ηλεκτρόνιο να έχει μεγαλύτερη δυναμική ενέργεια στον p- τύπου ημιαγωγό. o Η Ενέργεια Fermi είναι και στις δύο περιοχές στο ίδιο επίπεδο. ΓΙΑΤΙ? 11

12 Υπολογισμός του φράγματος δυναμικού φράγμα δυναμικού = E cp! E cn = ev 0 n n = N c e! E cn!e F kt n p = N c e!e cp!e F kt Ecp Ecn evo n kt n kt kt kt D A = e = e Vo = ln Vo = ln 2 p p i n n N N n e n e n Σε Si με Ν Α =10 22 m - 3 και Ν D =10 24 m - 3 => V o =0.82V (300K) 12

13 Iσορροπία Ρευμάτων στη Επαφή neµ e E =!D e e dn dx " =! dv dx # dv dx = D $ e 1 & µ e % n dn dx ' ) ( #! $ dv dx dx = D # e 1 $ µ e n "# V 0 "#! $ dv = D e 1 $ µ e n dn 0 n n n p!v o = D % e ln n ( n µ ' e & n * p ) dn dx dx 13

14 Iσορροπία Ρευμάτων στη Επαφή Λαμβάνοντας υπόψη τη σχέση του Einstein: D e µ e = kt e καταλήγουμε στην ίδια σχέση με προηγουμένως (Διαφάνεια 12). V o = D! e ln n n µ # e " n p $ & % V o = kt! e ln n n # " n p $ & % (Διαφάνεια 12) 14

15 Τρέχον περιεχόμενο Η δίοδος σε ισορροπία Επίδραση της πόλωσης Περιοχές λειτουργίας της διόδου IV χαρακτηριστική της Επαφής PN Μοντέλα διόδου Αντίστροφη κατάρρευση και κατάρρευση Zener 15

16 Διοδική επαφή p- n Με δεδομένο το γεγονός της έλλειψης φορέων πλειονότητας στην περιοχή φορτίων χώρου (όπως φαίνεται στο σχήμα), Η περιοχή αυτή εμφανίζει πολλή αυξημένη αντίσταση σε σχέση με τον υπόλοιπο ημιαγωγό, που εμφανίζει χαμηλή αντίσταση. Ετσι ουσιαστικά οποιαδήποτε διαφορά δυναμικού μεταξύ των άκρων του ημιαγωγού εφαρμόζεται στην περιοχή επαφής. 16

17 Περιοχές λειτουργίας της διόδου Για να γίνει κατανοητή πλήρως η λειτουργία της διόδου ως ηλεκτρονικού στοιχείου, θα μελετήσουμε τη λειτουργία της σε ορθή και ανάστροφη πόλωση. 17

18 Ανάστροφη Πόλωση 18

19 Ορθή Πόλωση 19

20 Ορθή πόλωση διόδου (forward biased) Οταν η n- τύπου περιοχή της διόδου βρίσκεται σε χαμηλότερο δυναμικό από την περιοχή p- τύπου τότε η δίοδος θεωρείται ορθά πολωμένη. (Forward- biased) Η περιοχή φορτίων χώρου συρρικνώνεται. Το φράγμα δυναμικού μειώνεται κατά την τιμή της εξωτερικά εφαρμοζόμενης τάσης. 20

21 Ορθή πόλωση διόδου (forward biased) Θεωρώντας ότι η συνολική πυκνότητα ρεύματος είναι αμελητέα σε σχέση με τα δύο, αντικρουόμενα ρεύματα διάχυσης και ολίσθησης και ότι η πυκνότητα ηλεκτρονίων δεν θα έχει παντού τις τιμές της κατάστασης ισορροπίας της διόδου, θα ισχύουν τα ακόλουθα: J e = 0! neµ e E = "D e e dn dx! V o "V n n # dv = D e i # 0 µ e n dn!v o = D e ln n n n p ' µ & e n p ')! % ( V o "V = kt $ e ln n ' n & n p ') % ( Απ όπου υπολογίζεται η πυκνότητα ηλεκτρονίων n p στο όριο της περιοχής φορτίων χώρου της p πρόσμιξης: n p ' = n e n ev ( V o ) kt $ ' 21

22 Ορθή πόλωση διόδου (forward biased) Η αύξηση των φορέων μειονότητας σε κάθε περιοχή (οπών στην n- τύπου περιοχή) θα οδηγήσει στην αύξηση των ρευμάτων διάχυσης (υπό την προϋπόθεση ότι το φαινόμενο της επανασύνδεσης είναι αμελητέο). 22

23 Ορθή πόλωση διόδου (forward biased) Ετσι τόσο η ροή οπών, όσο και η αντίστοιχη ροή ηλεκτρονίων στις δύο περιοχές θα είναι ίσες. ev dp pn' pn Dhep n kt Jp = Dhe = Dhe Jp = e 1 dx Ln Ln ev dn np' np Deenp kt Je = Dee = Dee Je = e 1 dx Lp Lp 23

24 Ορθή πόλωση διόδου (forward biased) Προσθέτοντας τα δύο ρεύματα προκύπτει η γενική σχέση του ρεύματος μέσα από δίοδο ορθά πολωμένη: ev kt I = IS e 1 Οπου το ρεύμα κόρου (I S )της διόδου δίνεται από τη σχέση: I S Den Dep = A + Lp Ln e p h n (Α = επιφάνεια της επαφής) Από τι εξαρτάται το ρεύμα κόρου??? Για τάσεις μεγαλύτερες μιας τιμής κατωφλίου (για Si 600mV και για Ge 200mV) μπορούμε να θεωρήσουμε ότι ισχύει με καλή προσέγγιση η σχέση: I = I e S ev kt 24

25 Ανάστροφη πόλωση διόδου (reverse biased) Οταν η p- τύπου περιοχή της διόδου βρίσκεται σε χαμηλότερο δυναμικό από την περιοχή n- τύπου τότε η δίοδος θεωρείται ανάστροφα πολωμένη. Η περιοχή φορτίων χώρου επεκτείνεται. Το φράγμα δυναμικού αυξάνεται κατά την τιμή της εξωτερικά εφαρμοζόμενης τάσης. 25

26 Ανάστροφη πόλωση διόδου (reverse biased) Ισχύουν οι ίδιες σχέσεις με πριν, με το εξωτερικό δυναμικό V να είναι αρνητικό. Συνεπώς από τη σχέση n p ' = n e ev ( V o ) kt θα προκύπτει ότι n p <<n p n Αντί να εισέρχονται φορείς φορτίου στις απέναντι περιοχές, απωθούνται από την περιοχή της επαφής, λόγω του ηλεκτρικού πεδίου, με αποτέλεσμα την αναστροφή της κλίσης της συγκέντρωσης φορτίων 26

27 Ανάστροφη πόλωση διόδου (reverse biased) Τότε τα ρεύματα διάχυσης θα είναι: dn n n ' D en Je = Dee = Dee Je = dx L L p p e p dp p p ' D ep Jp = Dhe = Dhe Jp = dx L L n n h n Και κατά συνέπεια το μόνο ρεύμα που θα υπάρχει θα είναι το πολύ μικρό ρεύμα κόρου I S, που στην περίπτωση αυτή αποτελεί το ρεύμα διαρροής της διόδου: p n p n I S Den Dep = A + Lp Ln e p h n 27

28 Χαρακτηριστική της διόδου (I- V) Ως χαρακτηριστική καμπύλη ενός ηλεκτρονικού διπόλου στοιχείου ορίζεται η γραφική παράσταση (και θεωρητική σχέση) ρεύματος δια του στοιχείου σε συνάρτηση με την τάση στα άκρα του. Στην περίπτωση της διόδου η χαρακτηριστική της (I- V) καλύπτει τόσο την ορθή πόλωση όσο και την ανάστροφη. Στην ορθή πόλωση έχουμε ομαλή μεταβολή του ρεύματος συναρτήσει της τάσης στα άκρα της διόδου. Τυπικά δεν υπάρχει κάποιο κατώφλι έναρξης της αγωγής της διόδου. Στην ανάστροφη πόλωση το ρεύμα σταθεροποιείται για πολώσεις της τάξης του - 3kT/e και πάνω. 28

29 Χαρακτηριστική της διόδου (I- V) Σε ισχυρές πολώσεις τα πράγματα είναι πολύ πιο «ιδανικά» και η δίοδος θεωρείται ότι αποκόπτει από κάποιο κατώφλι πόλωσης και κάτω. Στην περίπτωση της διόδου η χαρακτηριστική της (I- V) καλύπτει τόσο την ορθή πόλωση όσο και την ανάστροφη. Στην ορθή πόλωση έχουμε ομαλή μεταβολή του ρεύματος συναρτήσει της τάσης στα άκρα της διόδου. Τυπικά δεν υπάρχει κάποιο κατώφλι έναρξης της αγωγής της διόδου. Στην ανάστροφη πόλωση το ρεύμα σταθεροποιείται για πολώσεις της τάξης του - 3kT/e και πάνω. 29

30 Χαρακτηριστική της διόδου (I- V) Στην ορθή πόλωση έχουμε ομαλή μεταβολή του ρεύματος συναρτήσει της τάσης στα άκρα της διόδου. Τυπικά δεν υπάρχει κάποιο κατώφλι έναρξης της αγωγής της διόδου. Στην ανάστροφη πόλωση το ρεύμα σταθεροποιείται για ανάστροφες πολώσεις της τάξης του - 3kT/e και πάνω. 30

31 Χαρακτηριστική της διόδου (I- V) Η χαρακτηριστική (I- V) που περιγράφηκε αφορούσε ιδανική δίοδο, αφού δεν λάμβανε υπόψη τα ακόλουθα τρία φαινόμενα: Το φαινόμενο της επανασύνδεσης φορέων (recombination) στην περιοχή φορτίων χώρου. Την πτώση τάσης και εκτός της περιοχής φορτίων χώρου. Το φαινόμενο της κατάρρευσης (breakdown), στην ανάστροφη πόλωση. 31

32 Χαρακτηριστική της διόδου (I- V) Επανασύνδεση φορέων (Recombination) Το φαινόμενο της επανασύνδεσης φορέων, που προέρχονται από (θερμική) δίδυμη γένεση ηλεκτρονίων οπών και διάχυση στην περιοχή φορτίων χώρου, έχει ως αποτελέσματα: την αύξηση του ρεύματος I s και την απόκλιση της χαρακτηριστικής ορθής πόλωσης από την ιδανικότητα, σύμφωνα με τη προσέγγιση: ev ηkt I = IS e 1 Ο συντελεστής η είναι σταθερός αριθμός η τιμή του οποίου καθορίζεται από την χρησιμοποιούμενη τεχνολογία κατασκευής της διόδου. 32

33 Χαρακτηριστική της διόδου (I- V) Επανασύνδεση φορέων (Recombination) Η πιο ακριβής σχέση είναι: I = I S " $ # ev kt e!1 % ' + I " e Ro $ & # ev 2kT!1 Ο συντελεστής I Ro είναι ανάλογος του όγκου της περιοχής απογύμνωσης - Για μικρά ρεύματα ορθής πόλωσης και αντίστροφης πόλωσης ο δεύτερος όρος γινεται σημαντικός - Για μεγάλα ρεύματα ορθής πόλωσης ο όγκος της περιοχής απογύμνωσης γίνεται πολύ μικρός και έτσι ο δεύτερος όρος γίνεται αμελιτέος. % ' & 33

34 Χαρακτηριστική της διόδου (I- V) Πτώση τάσης εκτός της περιοχής φορτίων χώρου Η ύπαρξη πολύ μικρής, αλλά υπαρκτής αντίστασης και στο χώρο εκτός της περιοχής φορτίων χώρου, οδηγεί σε περιορισμό του ρεύματος της διόδου (κυρίως στην περίπτωση υψηλών ρευμάτων ορθής πόλωσης). Η διόρθωση στην περίπτωση αυτή έχει ως ακολούθως: ev ( IRS ) kt I = IS e 1 Και φυσικά οδηγεί σε μικρότερη πτώση τάσης στην περιοχή της επαφής σε σχέση με τη συνολικά εφαρμοζόμενη στα άκρα της διόδου. 34

35 Χαρακτηριστική της διόδου (I- V) Φαινόμενο κατάρρευσης στην ανάστροφη πόλωση Το φαινόμενο της κατάρρευσης (breakdown) διόδου εμφανίζεται σε συγκεκριμένες τιμές ανάστροφης τάσης πόλωσης και συνίσταται στην αύξηση του ανάστροφου ρεύματος διά της διόδου, ανεξαρτήτως της τάσης της. Η κατάρρευση οφείλεται στην εφαρμογή υψηλής έντασης (ανάστροφου) ηλεκτρικού πεδίου στην περιοχή φορτίων χώρου. Υπάρχουν δυο μηχανισμοί με τους οποίους ερμηνεύεται το φαινόμενο: το φαινόμενο του καταιγισμού φορέων (χιονοστοιβάδας) και το φαινόμενο tunneling 35

36 Φαινόμενο tunneling 36

37 Χαρακτηριστική της διόδου (I- V) Φαινόμενο κατάρρευσης στην ανάστροφη πόλωση Το φαινόμενο της καταιγισμού φορέων Στην περίπτωση μεγάλης περιοχής φορτίων χώρου, λαμβάνει χώρα το φαινόμενο του καταιγισμού φορέων (avalanche). Oι εισερχόμενοι φορείς φορτίου μπορούν να επιταχυνθούν από το εξωτερικό ηλεκτρικό πεδίο τόσο, που να δημιουργούν με κρούση νέους επιταχυνόμενους φορείς φορτίου, με συνακόλουθη αύξηση του ρεύματος. Μπορώ να έχω κατάρρευση της ανάστροφης πόλωσης σε τιμές μέχρι και 1kV. Χρήση στις διόδους zener 37

38 Δυναμική αντίσταση διόδου Με τον όρο δυναμική αντίσταση διόδου (r d ) ορίζουμε την αντίσταση που εμφανίζει η επαφή p- n στην διέλευση εναλλασσόμενου ρεύματος διά μέσου αυτής, όταν είναι ορθά πολωμένη. Ο υπολογισμός της γίνεται μέσω της αντίστοιχης δυναμικής αγωγιμότητας g d (g d =1/r d ). ev ev di d e kt kt gd = = ISe = ISe dv dv kt ei kt gd = rd = kt ei 38

39 Εύρος περιοχής φορτίων χώρου Στην ισορροπία, οι φορείς φορτίου σε κάθε περιοχή δίνονται από τις σχέσεις: n = N e c p = N e v Ec E kt Η δραματική αλλαγή της διαφοράς E c - E F οδηγεί και στο σχεδόν μηδενισμό των ηλεκτρονίων (ή οπών) μέσα στην περιοχή φορτίων χώρου. F EF Ev kt 39

40 Εύρος περιοχής φορτίων χώρου Το συνολικό φορτίο, σε κάθε τμήμα της περιοχής φορτίων χώρου, θα είναι: q NDe NAe Ax = = Σύμφωνα με τον νόμο Gauss: ε Φ = ε ExA () = q= en Ax E Εκτελώντας σειρά πράξεων: en D x E( x) A = en Ax E( x) = dv en D D D = x dv = xdx dx ε x en D endx V ( x) V (0) = xdx = ε 2ε 0 en ε D ε 2 40

41 Εύρος περιοχής φορτίων χώρου Η συνολική κλιμάκωση της διαφοράς δυναμικού κατά μήκος της περιοχής φορτίων χώρου θα είναι: V o 2 endw en n AW V = + 2ε 2ε Εύρεση του εύρους περιοχής φορτίων χώρου: Επειδή ο κρύσταλλος συνολικά είναι ουδέτερος: WN n D WN p A = WN n D Wp = N Αντικαθιστώντας στην 1 η A σχέση της διαφάνειας, 2 2ε N A Wn = 2 ( Vo V) e N N + N A D D V 2εV W = W 1 µε W = o A n n0 n0 2 Vo e NAND + ND 2 p N 41

42 Εύρος περιοχής φορτίων χώρου Παρατηρούμε ότι η το εύρος κάθε τμήματος της περιοχής φορτίων χώρου εξαρτάται: Από την τάση πόλωσης. Μικραίνει στην ορθή πόλωση και αυξάνει στην ανάστροφη. Το επίπεδο πρόσμιξης στο κάθε τμήμα της επαφής. Ισχυρότερη πρόσμιξη στην μία πλευρά οδηγεί σε μείωση του εύρους του αντίστοιχου τμήματος και αύξηση του απέναντι τμήματος της περιοχής φορτίων χώρου (transistor fabrication). Ετσι σε επαφές p- n με ισχυρή πρόσμιξη μπορώ να έχω ευκολότερα κατάρρευση σε ανάστροφη πόλωση. 42

43 Χωρητικότητες επαφής p- n Η επαφή p- n διόδου μπορεί να εμφανίζει υπολογίσιμη χωρητική συμπεριφορά. Κάτω από κατάλληλες συνθήκες παρουσιάζει: χωρητικότητα επαφής (junction capacity), η οποία εμφανίζεται όταν η δίοδος είναι ανάστροφα πολωμένη και χωρητικότητα διάχυσης (diffusion or storage capacity), η οποία εμφανίζεται κατά την ορθή πόλωση της διόδου. 43

44 Χωρητικότητες επαφής p- n Χωρητικότητα επαφής (junction capacity) Σε ανάστροφη πόλωση η περιοχή φορτίων χώρου μεγαλώνει και τα ακίνητα ιόντα, εκατέρωθεν της επαφής, υλοποιούν έναν «εν δυνάμει» πυκνωτή. Βέβαια η μεταβολή φορτίου ΔQ λόγω της αλλαγής στον όγκο της περιοχής φορτίων χώρου, δεν είναι ευθέως ανάλογη της τάσης ΔV γιατί W V = V 2 2 n Wn0 1 o 44

45 Χωρητικότητες επαφής p- n Χωρητικότητα επαφής (junction capacity) Η χωρητικότητα επαφής θα ορίζεται ως εξής: C j ΔQ end AΔWn dwn = = enda ΔV ΔV dv endwn0 C j = V 2V o 1 V Με τη διαφορά V- V o να αυξάνει όταν αυξάνει η ανάστροφη πόλωση της διόδου. Οταν V o <<abs(v), τότε: C j 1 V o 45

46 Δίοδος varactor Πρόκειται για διόδους βέλτιστα κατασκευασμένες για να λειτουργούν σαν πυκνωτές ελεγχόμενοι από τάση. Βασίζονται στην αξιοποίηση της χωρητικότητας επαφής (junction capacitance), για την οποία ισχύει η σχέση: 1 C j V Οταν η διοδική επαφή είναι πολωμένη ανάστροφα. Σημειώνεται ότι αν το προφίλ της p- n επαφής δεν είναι ιδανικό, τότε στη σχέση C j endwn0 = V 2V o 1 V η τάξη της ρίζας παίρνει τιμές μεταξύ 2-3. o 46

47 Recombination and Lifetime So far ignored recombination (assumed short diodes) Need to assess effect of recombination At equilibrium in p-type silicon have n p & p p An increase to n p => increase in recombination since recombination rate is proportional to np i.e. dn dt =!c(n! n p ) Which has solution: (n! n p ) = Aexp(!ct) 47

48 Recombination and Lifetime Where is called the LIFETIME of electrons in the p- type semiconductor, and is the average time of survival of the excess electrons. Hence: " (n! n p ) = (n(0)! n p )exp!t % $ ' # &! e dn " dt =! n! n p $ #! e % ' & dp dt =! " p! p % n $ ' # &! h 48

49 The thick diode: recombination and diffusion length 49

50 The thick diode: recombination and diffusion length 50

51 The thick diode: recombination and diffusion length 51

52 The thick diode: recombination and diffusion length The rate of loss of electrons occurring within this volume by recombination is!n!t!x = " (n(x) " n p )! e "x from dn " dt =! n! n p $ #! e % ' & Out flow is #"n!d e "x + "2 n "x!x & % ( $ 2 ' 52

53 The thick diode: recombination and diffusion length The difference between influx and outflux is equal to recombination so D e d 2 n(x) dx 2! (n(x)! n p )! e = 0 Which has solution " %!x n(x)! n p = n' p! n p exp $ ' ( D e! ) 1/2 # $ e &' 53

54 The thick diode: recombination and diffusion length ( D e! ) 1/2 e is called the DIFFUSION LENGTH J n = D e e (n '! n p p ) ( D! ) 1/2 e Which is identical in form to that of the short diode, with L n replaced by the DIFFUSION LENGTH It should be noted that the hole current rises as x increased to supply the holes for recombination. 54

55 Δίοδοι LED Εκπομπή ακτινοβολίας από ημιαγωγό μπορούμε να έχουμε κατά την ενεργειακή μετάβαση ηλεκτρονίου από τη ζώνη αγωγιμότητας στη ζώνη σθένους. Αυτό μπορεί να γίνει μέσω του μηχανισμού της επανασύνδεσης, υπό την προϋπόθεση ότι αυτός λαμβάνει χώρα έξω από την περιοχή φορτίων χώρου (μεγάλου πάχους δίοδος). Στην περίπτωση αυτή η ενέργεια που από- δεσμεύεται, εκπέμπεται με τη μορφή φωτονίου. Για οριακή μετάβαση από τη ζώνη αγωγιμότητας στη ζώνη σθένους, το μήκος κύματος της ακτινοβολίας θα δίνεται από τη σχέση: hc λ = = ΔE hc E g 55

56 Δίοδοι LED Επειδή όμως στην ενεργειακή ζώνη σθένους και αγωγιμότητας τα ηλεκτρόνια έχουν μεγαλύτερη πιθανότητα να βρίσκονται σε ενέργιακο επίπεδο kt/2 πιο πάνω απο το E c, και kt/2 πιο κάτω απο το E v η ακτινοβολία είναι κυρίως των μήκων: hc hc λ = = E E + kt g g Χρησιμοποιώντας ημιαγωγό GaAs, με ενεργει- ακό χάσμα E g =1.4eV, εκπεμπόμενη ακτινοβο- λία θα έχει λ=860nm στο εγγύς υπέρυθρο. Στον ίδιο ημιαγωγό με προσμίξεις Al μπορούμε να μικρύνουμε το ενεργειακό χάσμα ώστε η εκπεμπόμενη ακτινοβολία να είναι στο ορατό. 56

57 Δίοδοι LED Με δεδομένο ότι ο ρυθμός εκπομπής φωτονίων εξαρτάται από np, απαιτούνται αρκετοί φορείς μειονότητας, ώστε το φαινόμενο της επανασύνδεσης να είναι ικανό να παράξει φως. Συνεπώς στις διόδους LED απαιτούνται ισχυρές προσμίξεις και αυξημένη πυκνώτητα ρεύματος με μόνον περιορισμό την θερμοκρασιακή αντοχή του υλικού. Οι δίοδοι LED αν και λειτουργούν ορθά πολωμένες απαιτούν μεγαλύτερη των 0.7V τάση, γύρω στο 1.5V, γιατί εκτός της πόλωσης της επαφής (που φτάνει να γίνει ίση με το V o ) έχουμε μεγάλη πτώση τάσης στην εκτός της περιοχής φορτίων χώρου, περιοχή. Η τάση κατάρρευσης σε ανάστροφη πόλωση είναι πολύ κοντά στο 1V (στενή περιοχή φορτίων χώρου). 57

58 Δίοδοι LED Σχεδόν όλη η ακτινοβολία εκπέμπεται στην περιοχή της επαφής (μικρό μήκος επανασύνδεσης L= Dτ, λόγω μικρού χρόνου ελεύθερης διαδρομής τ e ). Ο μικρός τ e οφείλεται στ τ e ν ισχυρή πρόσμιξη που έχει σα συνέπεια την γρήγορη επανασύνδεση ηλεκτρονίων- οπών. Υπάρχει ένα άνω όριο πρόσμιξης πάνω από το οποίο δεν έχω αύξηση της έντασης της εκπεμπόμενης ακτινοβολίας. Αυτό καθορίζεται από το φαινόμενο: παγιδευμένες οπές (σε n- τύπου περιοχή) να επανασυνδέονται με ηλεκτρόνια, αλλά αυτή τη φορά χωρίς εκπομπή ακτινοβολίας. Το φαινόμενο γίνεται εντονότερο όσο μεγαλύτερες προσμίξεις έχω. 58

59 Φωτοδίοδοι Πρόκειται δια διόδους που ανιχνεύουν το φως ή την ακτινοβολία γενικότερα. Βασίζονται στο φαινόμενο της γένεσης ζεύγους ηλεκτρονίου- οπής με την απορρόφηση κατάλληλης ακτινοβολίας (Ε φωτονίου >E g ). Ετσι, σε κάθε τέτοια δίοδο μπορεί να αυξηθεί το ρεύμα με απορρόφηση ακτινοβολίας, υπό την προϋπόθεση ότι το ζεύγος που δημιουργείται δεν θα επανασυνδεθεί. Η αποφυγή της επανασύνδεσης επιτυγχάνεται με εφαρμογή ηλεκτρικού πεδίου που απομακρύνει το ζεύγος που δημιουργείται. Για το λόγο αυτό προσπαθούμε η απορρόφηση φωτονίου και η γένεση ζεύγους ηλεκτρονίου- οπής να συμβαίνει κοντά στην περιοχή της p- n επαφής, όπου υπάρχει ηλεκτρικό πεδίο ακόμα και απουσία πόλωσης. 59

60 Φωτοδίοδοι Στην ορθή πόλωση η αύξηση του ρεύματος λόγω της ακτινοβολίας είναι ανεξάρτητη της πόλωσης. Στην ανάστροφη πόλωση το ρεύμα καθορίζεται σχεδόν αποκλειστικά από το ποσοστό (η) των ζευγών που φτάνουν στην επαφή χωρίς να επανασυνδεθούν. Για δέσμη φωτός συχνότητας f και με ρυθμό εκπομπής φωτονίων Ν/s, η ισχύς της θα είναι Nhf και το παραγόμενο από αυτήν ρεύμα ηne. Η ευαισθησία της διόδου θα είναι: ηne/ Nhf με μονάδα A (ρεύμα)/w (φωτός) 60

61 Φωτοδίοδοι Για να αυξηθεί η αποδοτικότητα (η) της διόδου πρέπει η απορρόφηση των φωτονίων να γίνεται σε περιοχή με ηλεκτρικό πεδίο, δηλαδή στην περιοχή απογύμωσης. Ο συντελεστής η εκφράζει ακριβώς αυτή την ευαισθησία και άρα την απόδοση της φωτοδιόδου. Ετσι αυξάνεται το εύρος της περιοχής φορτίων χώρου (περιοχή απογύμωσης) με μείωση των προσμίξεων (p- i- n diode). Υπάρχει εξάρτηση μήκους κύματος και ευαισθησίας απορρόφησης ακτινοβολίας της διόδου. Πώς εξηγείται??? 61

62 Μοντέλα διόδου Η μοντελοποίηση της συμπεριφοράς διόδου έχει οδηγήσει σε δύο είδη μοντέλων: Το Μοντέλο Μικρού Σήματος (small signal model). Είναι προσεγγιστικό και χρησιμοποιείται κυρίως σε υπολογισμούς στο χέρι. Το Μοντέλο Μεγάλου Σήματος (large signal model). Είναι αναλυτικό, με την έννοια ότι επιλύονται ακριβώς οι πλήρεις εξισώσεις που περιγράφουν τη συμπεριφορά της διόδου. Χρησιμοποιείται κυρίως σε προσομοιώσεις συμπεριφοράς διόδων με Η/Υ (αλγόριθμοι PSPICE). 62

63 Μοντέλo διόδου Μικρού Σήματος Πρόκειται για ισοδύναμο ηλεκτρικό κύκλωμα που μπορεί να παραστήσει την ηλεκτρική συμπεριφορά της διόδου για μικρά ac ρεύματα που επικάθονται του ρεύματος πόλωσης. Σημειώνονται τα ακόλουθα: Η αντίσταση R S αφορά την ωμική αντίσταση της ουδέτερης περιοχής (εκτός της περιοχής φορτίων χώρου). Η δυναμική αντίσταση της διόδου, ουσιαστικά καθορίζεται από το ρεύμα πόλωσής της (dc), μια και η ac συνιστώσα θα είναι πολύ μικρότερη. Στην ανάστροφη πόλωση η ισοδύναμη αντίσταση καθορίζεται από την αντίσταση διαρροής του περιβλήματος της διόδου. 63

64 Μοντέλo διόδου Μικρού Σήματος I = I S " $ # ev kt e!1 % ' & g d = di dv = e kt I S g d! e kt I exp ev kt για V>120mV χωρητικότητα επαφής C j (junction capacity), η οποία κυριαρχεί όταν η δίοδος είναι ανάστροφα πολωμένη και χωρητικότητα διάχυσης C d (diffusion or storage capacity), η οποία κυριαρχεί κατά την ορθή πόλωση της διόδου. 64

65 Χωρητικότητες επαφής p- n 65

66 Μοντέλα διόδου Μεγάλου Σήματος Μοντέλο Μεγάλου Σήματος Πρόκειται για αναλυτικό ισοδύναμο ηλεκτρικό κύκλωμα που μπορεί να παραστήσει όλων των ειδών ρευμάτων και βασίζεται στη επίλυση των εξισώσεων που περιγράφουν τη συμπεριφορά της διόδου με τη βοήθεια ηλεκτρονικού υπολογιστή. Ο υπολογιστής χρειάζεται τις παραμέτρους: I s = saturation current of diode at 25 C η= correction factor for the exponent in eqn (3.12) V 0 =built in voltage C j0 = depletion layer capacitance at zero bias V=0 in (Eqn 3.20) m= exponent in capacitance eqn 3.20 R s = Series resistance in neutral regions and device contacts τ t = so- called transit time. 66

67 Χωρητικότητες επαφής p- n Χωρητικότητα διάχυσης (diffusion or storage capacity) Ουσιαστικά πρόκειται για χωρητική συμπεριφορά της διόδου που εμφανίζεται κατά την ορθή πόλωσή της. Οφείλεται στην ύπαρξη φορτίων και στην ουδέτερη περιοχή της διόδου, δηλαδή εκτός της περιοχής φορτίων χώρου. Οι επιπλέον φορείς μειονότητας που διαχέονται στην περιοχή αυτή, με τη σειρά τους προκαλούν αύξηση και στους φορείς πλειονότητας (λόγω ουδετερότητας της περιοχής). Οποιαδήποτε μεταβολή στην τάση της διόδου οδηγεί και σε αντίστοιχη μετακίνηση φορτίων 67

68 Χωρητικότητες επαφής p- n Χωρητικότητα διάχυσης (diffusion or storage capacity) Ετσι αύξηση της ορθής πόλωσης κατά ΔV οδηγεί και σε αύξηση της συγκέντρωσης φορέων μειονότητας (σε p τύπου υλικό) n p. Q e = 1 2 (n ' p! n p )el p A = 1 2 L ean (exp(ev / kt )!1) p p και απο τη διάχυση των ηλεκτρονίων ξέρουμε ότι I e = AD e en p L p (! exp ev $ + * # &'1-. I L e p ) " kt %, AD e e = n (! ev $ + exp p * # &'1- ) " kt %, Ετσι το φορτίο γίνεται Q e = L 2! p I 2D e Q st = L 2 p # e " 2D e $ & I +! L 2 n e # % " 2D h $ & I h % 68

69 Χωρητικότητες επαφής p- n Ετσι το συνολικό φορτίο γίνεται! Q st = L 2 $ p # " 2D & I +! L 2 $ n e # e % " 2D & I h h %!! 2 L = # p # " #" 2D e $ & f +! L 2 n # % " 2D h $ $ & (1! f ) & % % & I Οπου το f αντιπροσωπεύει το ποσοστό του ρεύματος που μεταφέρεται απο ηλεκτρόνια C d = dq st dv = (! 2 L * p # ) *" 2D e $ & f +! L 2 n # % " 2D h $ + & (1' f ) - di %, - dv Και αφού di/dv= g d =ei/kt απο τη διαφάνεια 64: 69

70 Χωρητικότητες επαφής p- n (! 2 L $ C d = p # " 2D & f +! L 2 $ + * n # e % " 2D & (1' f ) - ) * h %, - g d (! 2 L $ = p # " 2D & f +! L 2 $ + * n # e % " 2D & (1' f ) - ei ) * h %, - KT =! t g d Οπου το τ t είναι ο συνολικός χρόνος διάβασης (effective transit time) και g d η δυναμική αγωγιμότητα της διόδου Γιατί τον ονομάζουμε το τ t χρόνο διάβασης; Q = t. ( Q / t) = t.i Απο τη διαφάνεια 68: Q e = L 2 p I 2D e! L 2 p = t e 2D e 70

71 Χωρητικότητες επαφής p- n Χωρητικότητα διάχυσης (diffusion or storage capacity) Η χωρητικότητα διάχυσης είναι συμμετέχει μαζί με τη δυναμική αντίσταση της διόδου στην εμφάνιση μιας σταθεράς χρόνου (καθυστέρησης): τ == Cr t Ετσι, εύκολα εξάγεται ερμηνεία για την καθυστέρηση στην αποκοπή της διόδου. d d 71

72 Η Μετάβαση απο ορθή σε Ανάστροφη Πόλωση (Large- signal Switching) 72

73 Διόδοι Schottky και Ohmic Επαφές e! b Schottky barrier (Shottky φραγμός)!e! b kt I = e " $ # ev kt e!1 % ' & Ohmic Junction I = 1 R V 73

74 Schottky Diode Lower C d than p- n diodes why? Faster switching than p- n diodes Usually have lower forward voltage drop (0.25V for Al- Si) If doping is very high (i.e. n+) Shottky diode can have ohmic behaviour because of tunneling 74

75 Summary of Terminology 75

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ Δίοδος επαφής 1 http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ 2 Θέματα που θα καλυφθούν Ορθή πόλωση Forward bias Ανάστροφη πόλωση Reverse bias Κατάρρευση Breakdown Ενεργειακά

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς Required Text: Microelectronic Devices, Keith Leaver (1 st Chapter) Μέτρηση του μ e και προσδιορισμός του προσήμου των φορέων φορτίου Πρόβλημα: προσδιορισμός

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου 7. Απαραίτητα όργανα και υλικά. Τροφοδοτικό DC.. Πολύμετρα (αμπερόμετρο, βολτόμετρο).. Πλακέτα για την

Διαβάστε περισσότερα

Ξεκινώντας από την εξίσωση Poisson για το δυναμικό V στο στατικό ηλεκτρικό πεδίο:

Ξεκινώντας από την εξίσωση Poisson για το δυναμικό V στο στατικό ηλεκτρικό πεδίο: 1 2. Διοδος p-n 2.1 Επαφή p-n Στο σχήμα 2.1 εικονίζονται δύο μέρη ενός ημιαγωγού με διαφορετικού τύπου αγωγιμότητες. Αριστερά ο ημιαγωγός είναι p-τύπου και δεξια n-τύπου. Και τα δύο μέρη είναι ηλεκτρικά

Διαβάστε περισσότερα

Ορθή πόλωση της επαφής p n

Ορθή πόλωση της επαφής p n Δύο τρόποι πόλωσης της επαφής p n Ορθή πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ορθή πόλωση p n Άνοδος Κάθοδος Ανάστροφη πόλωση p n Άνοδος Κάθοδος

Διαβάστε περισσότερα

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2 ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Ημιαγωγοί Δίοδος Επαφής Κεφάλαιο 3 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας SI Techology ad Comuter Architecture ab ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση 1. Φράγμα δυναμικού.

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν

Διαβάστε περισσότερα

Ορθή πόλωση της επαφής p n

Ορθή πόλωση της επαφής p n Δύο τρόποι πόλωσης της επαφής p n Ορθή πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ορθή πόλωση p n Άνοδος Κάθοδος Ανάστροφη πόλωση p n Άνοδος Κάθοδος

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς Δρ. Ιούλιος Γεωργίου Required Text: Microelectronic Devices, Keith Leaver (1 st Chapter) Τρέχον περιεχόμενο Αγωγή ηλεκτρικών φορτίων σε ημιαγωγούς

Διαβάστε περισσότερα

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 3: Δίοδος Επαφής Δρ. Δημήτριος Γουστουρίδης Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Διάλεξη 1: Ημιαγωγοί Δίοδος pn Δρ. Δ. ΛΑΜΠΑΚΗΣ 1 Ταλαντωτές. Πολυδονητές. Γεννήτριες συναρτήσεων. PLL. Πολλαπλασιαστές. Κυκλώματα μετατροπής και επεξεργασίας σημάτων. Εφαρμογές με

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 3ο ΚΡΥΣΤΑΛΛΟΔΙΟΔΟΙ Επαφή ΡΝ Σε ένα κομμάτι κρύσταλλο πυριτίου προσθέτουμε θετικά ιόντα 5σθενούς στοιχείου για τη δημιουργία τμήματος τύπου Ν από τη μια μεριά, ενώ από την

Διαβάστε περισσότερα

Θέµατα που θα καλυφθούν

Θέµατα που θα καλυφθούν Ηµιαγωγοί Semiconductors 1 Θέµατα που θα καλυφθούν Αγωγοί Conductors Ηµιαγωγοί Semiconductors Κρύσταλλοι πυριτίου Silicon crystals Ενδογενείς Ηµιαγωγοί Intrinsic semiconductors ύο τύποι φορέων για το ρεύµασεηµιαγωγούς

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς Δρ. Ιούλιος Γεωργίου Required Text: Microelectronic Devices, Keith Leaver Επικοινωνία Γραφείο: Green Park, Room 406 Ηλ. Ταχυδρομείο: julio@ucy.ac.cy

Διαβάστε περισσότερα

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από την μία κατεύθυνση, ανάλογα με την πόλωσή της. Κατασκευάζεται

Διαβάστε περισσότερα

Επαφές μετάλλου ημιαγωγού

Επαφές μετάλλου ημιαγωγού Δίοδος Schottky Επαφές μετάλλου ημιαγωγού Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Τι είναι Ημιαγωγός Κατασκευάζεται με εξάχνωση μετάλλου το οποίο μεταφέρεται στην επιφάνεια

Διαβάστε περισσότερα

Περιοχή φορτίων χώρου

Περιοχή φορτίων χώρου 1. ΔΙΟΔΟΙ (ΚΑΙ ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ) 1.1. Γενικά Η δίοδος αποτελείται από έναν ημιαγωγό τύπου «p» (φορείς πλειονότητας: οπές) και έναν ημιαγωγό τύπου «n» (φορείς πλειονότητας: ηλεκτρόνια). Γύρω από την επαφή

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 2

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 2 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 2: Ένωση pn Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διατάξεις ημιαγωγών. Δίοδος, δίοδος εκπομπής φωτός (LED) Τρανζίστορ. Ολοκληρωμένο κύκλωμα

Διατάξεις ημιαγωγών. Δίοδος, δίοδος εκπομπής φωτός (LED) Τρανζίστορ. Ολοκληρωμένο κύκλωμα Δίοδος, δίοδος εκπομπής φωτός (LED) Διατάξεις ημιαγωγών p n Άνοδος Κάθοδος Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Άνοδος Κάθοδος dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας ΔΙΟΔΟΣ Οι περισσότερες ηλεκτρονικές συσκευές όπως οι τηλεοράσεις, τα στερεοφωνικά συγκροτήματα και οι υπολογιστές χρειάζονται τάση dc για να λειτουργήσουν σωστά.

Διαβάστε περισσότερα

Περιοχή φορτίων χώρου

Περιοχή φορτίων χώρου 1. ΔΙΟΔΟΙ 1.1. Γενικά Η δίοδος αποτελείται από έναν ημιαγωγό τύπου «p» (φορείς πλειονότητας: οπές) και έναν ημιαγωγό τύπου «n» (φορείς πλειονότητας: ηλεκτρόνια). Γύρω από την επαφή p-n, δημιουργείται μια

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED

ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED Απαραίτητα όργανα και υλικά 15.1 Απαραίτητα όργανα και υλικά 1. LED, Φωτοδίοδοι (φωτοανιχνευτές). 2. Τροφοδοτικό με δύο εξόδους.

Διαβάστε περισσότερα

Αρχές φωτοβολταϊκών διατάξεων

Αρχές φωτοβολταϊκών διατάξεων Τι είναι ένα ηλιακό κύτταρο Αρχές φωτοβολταϊκών διατάξεων Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή pn +,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Σχήμα 1 Σχήμα 2 Σχήμα 3

ΑΠΑΝΤΗΣΕΙΣ. Σχήμα 1 Σχήμα 2 Σχήμα 3 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μάθημα: Φυσική Ημιαγωγών και Διατάξεων Εξεταστική Περίοδος: Ιούνιος 017 Καθηγητής: Δ. Τριάντης ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο (+=4 ΜΟΝΑΔΕΣ) Α) Θεωρούμε μια διάταξη MIS (Metal: Al, Isulator:

Διαβάστε περισσότερα

Βιοµηχανικά Ηλεκτρονικά (Industrial Electronics) Κ.Ι.Κυριακόπουλος Καθηγητής Ε.Μ.Π.

Βιοµηχανικά Ηλεκτρονικά (Industrial Electronics) Κ.Ι.Κυριακόπουλος Καθηγητής Ε.Μ.Π. Βιοµηχανικά Ηλεκτρονικά (Industrial Electronics) Κ.Ι.Κυριακόπουλος Καθηγητής Ε.Μ.Π. Εισαγωγή Control Systems Laboratory Γιατί Ηλεκτρονικά? Τι είναι τα Mechatronics ( hrp://mechatronic- design.com/)? Περιεχόμενο

Διαβάστε περισσότερα

Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode)

Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode) Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode) Εισαγωγή Στην προηγούµενη εργαστηριακή άσκηση µελετήσαµε την δίοδο ανόρθωσης ένα στοιχείο που σχεδιάστηκε για να λειτουργεί ως µονόδροµος αγωγός.

Διαβάστε περισσότερα

Επαφή / ίοδος p- n. Σχήµα 1: Επαφή / ίοδος p-n

Επαφή / ίοδος p- n. Σχήµα 1: Επαφή / ίοδος p-n Επαφή / ίοδος p- n 1. ΥΛΟΠΟΙΗΣΗ ΙΟ ΟΥ p-n ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΙ Επαφή p-n ή ένωση p-n δηµιουργείται στην επιφάνεια επαφής ενός ηµιαγωγού-p µε έναν ηµιαγωγό-n. ίοδος p-n ή κρυσταλλοδίοδος είναι το ηλεκτρονικό

Διαβάστε περισσότερα

Περιοχή φορτίων χώρου

Περιοχή φορτίων χώρου 1. ΔΙΟΔΟΙ 1.1. Γενικά Η δίοδος αποτελείται από έναν ημιαγωγό τύπου «p» (φορείς πλειονότητας: οπές) και έναν ημιαγωγό τύπου «n» (φορείς πλειονότητας: ηλεκτρόνια). Γύρω από την επαφή p-n, δημιουργείται μια

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος Φωτοδίοδος 1.Σκοπός της άσκησης Ο σκοπός της άσκησης είναι να μελετήσουμε την συμπεριφορά μιας φωτιζόμενης επαφής p-n (φωτοδίοδος) όταν αυτή είναι ορθά και ανάστροφα πολωμένη και να χαράξουμε την χαρακτηριστική

Διαβάστε περισσότερα

Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους

Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ Κριτική Ανάγνωση: Αγγελική Αραπογιάννη Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Copyright ΣΕΑΒ, 2015 Το παρόν έργο αδειοδοτείται υπό τους

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα: Η επαφή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commos. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Επικ. καθηγητής Αγωγοί- μονωτές- ημιαγωγοί Ενεργειακά διαγράμματα ημιαγωγού Ηλεκτρόνια (ΖΑ) Οπές (ΖΣ) Ενεργειακό χάσμα και απορρόφηση hc 1,24 Eg h Eg ev m max max Χρειάζονται

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ

Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ Κατά τη δηµιουργία µιας -n επαφής αρχικά υπάρχουν µόνο οπές στην -περιοχή και µόνο ηλεκτρόνια στην n-περιοχή. Οι οπές µε τα αρνητικά ιόντα της πρόσµιξης

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα: 3 Δίοδος. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα: 3 Δίοδος. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα: 3 Δίοδος Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα: 4 Διπολικά Τρανζίστορ (BJT) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα: 4 Διπολικά Τρανζίστορ (BJT) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα: 4 Διπολικά Τρανζίστορ (BJT) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reatve ommons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διπολικά Τρανζίστορ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διπολικά Τρανζίστορ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διπολικά Τρανζίστορ Rquird Txt: Microlctronic Dvics, Kith Lavr (5 th Chaptr) Τρανζίστορ Ανακαλύφθηκε το 1948 από τους William Shockly, John Bardn και Waltr Brattain στα εργαστήρια

Διαβάστε περισσότερα

Η επαφή p n. Η επαφή p n. Υπενθύμιση: Ημιαγωγός τύπου n. Υπενθύμιση: Ημιαγωγός τύπου p

Η επαφή p n. Η επαφή p n. Υπενθύμιση: Ημιαγωγός τύπου n. Υπενθύμιση: Ημιαγωγός τύπου p Η επαφή p n Τι είναι Που χρησιμεύει Η επαφή p n p n Η διάταξη που αποτελείται από μία επαφή p n ονομάζεται δίοδος. Άνοδος Κάθοδος Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Εισαγωγή Στο προηγούμενο κεφάλαιο προσεγγίσαμε τους ημιαγωγούς

Διαβάστε περισσότερα

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Για να κατανοήσουµε τη λειτουργία και το ρόλο των διόδων µέσα σε ένα κύκλωµα, θα πρέπει πρώτα να µελετήσουµε τους ηµιαγωγούς, υλικά που περιέχουν

Διαβάστε περισσότερα

Ηλεκτρονικά Ισχύος. ίοδος

Ηλεκτρονικά Ισχύος. ίοδος Ηλεκτρονικά Ισχύος Πρόκειται για στοιχεία κατασκευασμένα από υλικά με συγκεκριμένες μη γραμμικές ηλεκτρικές ιδιότητες (ημιαγωγά στοιχεία) Τα κυριότερα από τα στοιχεία αυτά είναι: Η δίοδος Το thyristor

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1 Η2 Μελέτη ηµιαγωγών 1. Σκοπός Στην περιοχή της επαφής δυο ηµιαγωγών τύπου p και n δηµιουργούνται ορισµένα φαινόµενα τα οποία είναι υπεύθυνα για τη συµπεριφορά της επαφής pn ή κρυσταλλοδιόδου, όπως ονοµάζεται,

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου)

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου) ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου) 1 FET Δομή και λειτουργία Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός

Διαβάστε περισσότερα

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών) Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός είδους

Διαβάστε περισσότερα

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Οπτικοί δέκτες Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Ένας αποδοτικός οπτικός δέκτης πρέπει να ικανοποιεί τις παρακάτω προϋποθέσεις:

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Ενεργειακές στοιβάδες προσμίξεων Η εισαγωγή προσμίξεων σε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Ενεργειακές στοιβάδες προσμίξεων Η εισαγωγή προσμίξεων σε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΧΑΤΖΟΠΟΥΛΟΣ ΑΡΓΥΡΗΣ ΚΟΖΑΝΗ 2005 ΕΙΣΑΓΩΓΗ ΣΥΜΒΟΛΙΣΜΟΙ Για τον καλύτερο προσδιορισµό των µεγεθών που χρησιµοποιούµε στις εξισώσεις, χρησιµοποιούµε τους παρακάτω συµβολισµούς

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα 2: Η επαφή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας (1από2) Η δομή του ημιαγωγού Ενδογενής ημιαγωγός Οπές και ηλεκτρόνια Ημιαγωγός με προσμίξεις:

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Εισαγωγή Στο προηγούμενο κεφάλαιο προσεγγίσαμε τους ημιαγωγούς

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN

ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN Το φαινόμενο Gunn, ή το φαινόμενο των μεταφερόμενων ηλεκτρονίων, που ανακαλύφθηκε από τον Gunn το 1963 δηλώνει ότι όταν μια μικρή τάση DC εφαρμόζεται κατά μήκος του

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

12. Εάν ένα κομμάτι ημιαγωγού τύπου n και ένα κομμάτι ΟΧΙ

12. Εάν ένα κομμάτι ημιαγωγού τύπου n και ένα κομμάτι ΟΧΙ Πρόβλημα 1 Απαντήστε στις ερωτήσεις Σωστό 1. Οι ημιαγωγοί δεν είναι καλοί αγωγοί ούτε καλοί μονωτές. * ΝΑΙ 2. Το ιόν είναι ένα άτομο που έχει χάσει ή έχει προσλάβει ένα ΝΑΙ ή περισσότερα ηλεκτρόνια. 3.

Διαβάστε περισσότερα

Ηλεκτρικη αγωγιµοτητα

Ηλεκτρικη αγωγιµοτητα Ηλεκτρικη αγωγιµοτητα Κίνηση φορτιων σε ενα υλικο υπο την επιδραση ενος εφαρμοζομενου ηλεκτρικου πεδιου Αγωγοι: μεγαλο αριθμο ελευθερων ηλεκτρονιων Στα μεταλλα, λογω μεταλλικου δεσμου, δημιουργειται μια

Διαβάστε περισσότερα

3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική

3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική 1 3. Κυκλώματα διόδων 3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική Στην πράξη η δίοδος προσεγγίζεται με τμηματική γραμμικοποίηση, όπως στο σχήμα 3-1, όπου η δυναμική αντίσταση της διόδου

Διαβάστε περισσότερα

1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί

1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί 1. Εισαγωγή 1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί Από την Ατομική Φυσική είναι γνωστό ότι οι επιτρεπόμενες ενεργειακές τιμές των ηλεκτρονίων είναι κβαντισμένες, όπως στο σχήμα 1. Σε

Διαβάστε περισσότερα

Δίοδος Εκπομπής Φωτός, (LED, Light Emitting Diode), αποκαλείται ένας ημιαγωγός ο οποίος εκπέμπει φωτεινή ακτινοβολία στενού φάσματος όταν του

Δίοδος Εκπομπής Φωτός, (LED, Light Emitting Diode), αποκαλείται ένας ημιαγωγός ο οποίος εκπέμπει φωτεινή ακτινοβολία στενού φάσματος όταν του L.E.D Δίοδος Εκπομπής Φωτός, (LED, Light Emitting Diode), αποκαλείται ένας ημιαγωγός ο οποίος εκπέμπει φωτεινή ακτινοβολία στενού φάσματος όταν του παρέχεται μία ηλεκτρική τάση κατά τη φορά ορθής πόλωσης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 1

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 1: Ημιαγωγική δίοδος Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διπολικά τρανζίστορ (BJT)

Διπολικά τρανζίστορ (BJT) Διπολικά τρανζίστορ (BJT) Το τρανζίστορ npn Εκπομπός Σλλέκτης Βάση Σχηματική παράσταση το τρανζίστορ npn Περιοχές λειτοργίας διπολικού τρανζίστορ Περιοχή EBJ BJ Αποκοπή Ανάστροφα Ανάστροφα Εγκάρσια τομή

Διαβάστε περισσότερα

ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET)

ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ ΕΠΑΦΗΣ (JFET) Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού

Διαβάστε περισσότερα

Δίοδοι εκπομπής φωτός Light Emitting Diodes

Δίοδοι εκπομπής φωτός Light Emitting Diodes Τι είναι η δίοδος εκπομπής φωτός (LED) Light Emitting Diodes Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Δίοδος p n από ημιαγωγό άμεσου ενεργειακού διάκενου πχ GaAs, InP,

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener 4. Ειδικές ίοδοι - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ ίοδος zener Χαρακτηριστική καµπύλη διόδου zener Τάση Zener ( 100-400 V για µια απλή δίοδο) -V Άνοδος Ι -Ι Κάθοδος V Τάση zener V Z I Ζ 0,7V

Διαβάστε περισσότερα

Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τα τρανζίστορ επίδρασης πεδίου Τα πιο βασικά στοιχεία δομής των ηλεκτρονικών κυκλωμάτων

Διαβάστε περισσότερα

Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης

Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 5 Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η μελέτη των

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΟΔΟΣ (Μάθημα 4 ο 5 ο 6 ο 7 ο ) 1/12 4 o εργαστήριο Ιδανική δίοδος n Συμβολισμός της διόδου n 2/12 4 o εργαστήριο Στατική χαρακτηριστική διόδου Άνοδος (+) Κάθοδος () Αν στην ιδανική

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΗΜΙΑΓΩΓΩΝ. Βοήθημα μελέτης. Τεύχος 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Δ. ΤΡΙΑΝΤΗΣ ΚΑΘΗΓΗΤΗΣ. 4. Επαφή p n και δίοδοι Φυσική Ημιαγωγών & Διατάξεων

ΦΥΣΙΚΗ ΗΜΙΑΓΩΓΩΝ. Βοήθημα μελέτης. Τεύχος 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Δ. ΤΡΙΑΝΤΗΣ ΚΑΘΗΓΗΤΗΣ. 4. Επαφή p n και δίοδοι Φυσική Ημιαγωγών & Διατάξεων ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΗ ΗΜΙΑΓΩΓΩΝ Βοήθημα μελέτης Τεύχος 2 Δ. ΤΡΙΑΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Δ. Τριάντης 148 4. ΕΠΑΦΗ p-n, ΔΙΟΔΟΙ 4.1 Εισαγωγή Με τον όρο επαφή p n εννοούμε μια παράθεση δύο περιοχών του

Διαβάστε περισσότερα

Συλλογή μεταφορά και έλεγχος Δεδομένων ΕΛΕΓΧΟΣ ΦΩΤΙΣΜΟΥ

Συλλογή μεταφορά και έλεγχος Δεδομένων ΕΛΕΓΧΟΣ ΦΩΤΙΣΜΟΥ Συλλογή μεταφορά και έλεγχος Δεδομένων ΕΛΕΓΧΟΣ ΦΩΤΙΣΜΟΥ Αισθητήρια φωτός Οι φωτοανιχνευτές (light detectors) διαιρούνται σε δύο κατηγορίες: τους κβαντικούς (quantum) και τους θερμικούς (thermal), ανάλογα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 4ο ΤΡΑΝΖΙΣΤΟΡ Διπολικά τρανζίστορ Το διπολικό τρανζίστορ (bipolar ή BJT) είναι ένας κρύσταλλος τριών στρωμάτων με διαφορετικό επίπεδο εμπλουτισμού: τον εκπομπό Ε, τη βάση

Διαβάστε περισσότερα

Υ53 Τεχνολογία Κατασκευής Μικροηλεκτρονικών Κυκλωμάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ53 Τεχνολογία Κατασκευής Μικροηλεκτρονικών Κυκλωμάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ53 Τεχνολογία Κατασκευής Μικροηλεκτρονικών Κυκλωμάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε. 1 Εξέλιξη

Διαβάστε περισσότερα

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Οπτικοί δέκτες Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Ένας αποδoτικός οπτικός δέκτης πρέπει να ικανοποιεί τις παρακάτω προϋποθέσεις:

Διαβάστε περισσότερα

2.9 ΚΥΚΛΩΜΑΤΑ ΠΕΡΙΟΡΙΣΤΩΝ Τρανζίστορ Διπολικής Επαφής (BJT) ΚΕΦΑΛΑΙΟ 3: ΤΡΑΝΖΙΣΤΟΡ ΔΙΠΟΛΙΚΗΣ ΕΠΑΦΗΣ (BJT)...131

2.9 ΚΥΚΛΩΜΑΤΑ ΠΕΡΙΟΡΙΣΤΩΝ Τρανζίστορ Διπολικής Επαφής (BJT) ΚΕΦΑΛΑΙΟ 3: ΤΡΑΝΖΙΣΤΟΡ ΔΙΠΟΛΙΚΗΣ ΕΠΑΦΗΣ (BJT)...131 Περιεχόμενα v ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΔΙΟΔΟΙ ΗΜΙΑΓΩΓΩΝ...1 1.1 ΕΙΣΑΓΩΓΗ...1 1.2 ΥΛΙΚΑ ΗΜΙΑΓΩΓΩΝ: Ge, Si ΚΑΙ GaAs...2 1.3 ΟΜΟΙΟΠΟΛΙΚΟΙ ΔΕΣΜΟΙ ΚΑΙ ΕΝΔΟΓΕΝΗ ΥΛΙΚΑ...3 1.4 ΕΝΕΡΓΕΙΑΚΕΣ ΣΤΑΘΜΕΣ...6 1.5 ΕΞΩΓΕΝΗ

Διαβάστε περισσότερα

Πόλωση των Τρανζίστορ

Πόλωση των Τρανζίστορ Πόλωση των Τρανζίστορ Πόλωση λέμε την κατάλληλη συνεχή τάση που πρέπει να εφαρμόσουμε στο κύκλωμα που περιλαμβάνει κάποιο ηλεκτρονικό στοιχείο (π.χ τρανζίστορ), έτσι ώστε να εξασφαλίσουμε την ομαλή λειτουργία

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Διάλεξη 2: Δίοδος pn Δρ Δημήτριος Λαμπάκης 1 Δίοδος pn Είναι μια μη γραμμική συσκευή Η γραφική παράσταση του ρεύματος σε σχέση με την τάση δεν είναι ευθεία γραμμή Η εξωτερική τάση

Διαβάστε περισσότερα

Δίοδοι Zener. Οι Zener χρησιμοποιούνται σε ρυθμιστές τάσεως (voltage. I s regulators) δηλαδή συσκευές όπου η τάση του φορτίου

Δίοδοι Zener. Οι Zener χρησιμοποιούνται σε ρυθμιστές τάσεως (voltage. I s regulators) δηλαδή συσκευές όπου η τάση του φορτίου ontrol Systems Laboratory Δίοδοι Zener συνεχ. Οι Zener χρησιμοποιούνται σε ρυθμιστές τάσεως (voltage I s regulators) δηλαδή συσκευές όπου η τάση του φορτίου I V Z υ διατηρείται σταθερή για μία ευρεία περιοχή

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VSI Techology ad Comuter Archtecture ab Ηµιαγωγοί Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Φράγμα δυναμικού. Ενεργειακές ζώνες Ημιαγωγοί

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ Ι. Ενότητα 1: Δίοδοι ανόρθωσης. Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΗΛΕΚΤΡΟΝΙΚΑ Ι. Ενότητα 1: Δίοδοι ανόρθωσης. Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΗΛΕΚΤΡΟΝΙΚΑ Ι Ενότητα 1: Δίοδοι ανόρθωσης Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΗΥ335: Προχωρημένη Ηλεκτρονική

ΗΥ335: Προχωρημένη Ηλεκτρονική ΗΥ335: Προχωρημένη Ηλεκτρονική «Καθρέπτες ρεύματος, ενεργά φορτία και αναφορές τάσης ρεύματος» Φώτης Πλέσσας fplessas@inf.uth.gr ΤΗΜΜΥ Σκοπός διάλεξης Παρουσίαση των καθρεπτών ρεύματος και της χρήσης τους

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

ηλεκτρικό ρεύµα ampere

ηλεκτρικό ρεύµα ampere Ηλεκτρικό ρεύµα Το ηλεκτρικό ρεύµα είναι ο ρυθµός µε τον οποίο διέρχεται ηλεκτρικό φορτίο από µια περιοχή του χώρου. Η µονάδα µέτρησης του ηλεκτρικού ρεύµατος στο σύστηµα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α. Στα ερωτήµατα Α.1 έως Α.5 να απαντήσετε χωρίς να αιτιολογήσετε τις απαντήσεις σας. Α.1. Σε ένα τµήµα ηµιαγωγού πρόσµιξης τύπου n:

ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α. Στα ερωτήµατα Α.1 έως Α.5 να απαντήσετε χωρίς να αιτιολογήσετε τις απαντήσεις σας. Α.1. Σε ένα τµήµα ηµιαγωγού πρόσµιξης τύπου n: Επαναληπτικά Θέµατα ΟΕΦΕ 008 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΗΛΕΚΤΡΟΛΟΓΙΑ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Στα ερωτήµατα Α. έως Α.5 να απαντήσετε χωρίς να αιτιολογήσετε τις απαντήσεις σας. Α.. Σε ένα τµήµα ηµιαγωγού

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ

ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ 1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η εξοικείωση με το μηχανισμό λειτουργίας και τις ιδιότητες των ημιαγωγικών ηλιακών φωτοκυττάρων. Οι επιμέρους σκοποί

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Διάλεξη 3: Δίοδος pn (συνέχεια) - Δίοδος Zener Δρ Δημήτριος Λαμπάκης 1 Ημιανόρθωση Έχει μια δίοδο pn σε σειρά με μια αντίσταση φορτίου Η τάση στα άκρα της αντίστασης φορτίου είναι

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 4: Διπολικά Τρανζίστορ (BJT) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 4: Διπολικά Τρανζίστορ (BJT) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας Δομή και λειτουργία του τρανζίστορ npn (και pnp). Ρεύμα Βάσης, Εκπομπού, Συλλέκτη. Περιοχές λειτουργίας του

Διαβάστε περισσότερα