Τεχνολογίες Υλοποίησης Αλγορίθµων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνολογίες Υλοποίησης Αλγορίθµων"

Transcript

1 Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών Ενότητα 9 1 / 46

2 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ϱητώς. 2 / 46

3 Χρηµατοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδηµαϊκά Μαθήµατα στο Πανεπιστήµιο Πατρών» έχει χρηµατοδοτήσει µόνο τη αναδιαµόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράµµατος «Εκπαίδευση και ια Βίου Μάθηση» και συγχρηµατοδοτείται από την Ευρωπαϊκή Ενωση (Ευρωπαϊκό Κοινωνικό Ταµείο) και από εθνικούς πόρους. 3 / 46

4 Περιεχόµενα Ευρετικές Βελτιώσεις του Αλγορίθµου Προροής-Προώθησης Πειραµατική Αξιολόγηση Ροή ικτύου & Αριθµητική Κινητής Υποδιαστολής 4 / 46

5 Πολυπλοκότητα Χειρότερης Περίπτωσης Αλγορίθµου Προροής-Προώθησης Επιλογή ενεργών κορυφών Αιθαίρετη: O(n 2 m) FIFO: O(n 3 ) Υψηλότερου Επιπέδου: O(n 2 m) 5 / 46

6 Πολυπλοκότητα Καλύτερης Περίπτωσης Αλγορίθµου Προροής-Προώθησης; Κόστος Ενηµέρωσης Ετικετών: Ω(n 2 ), αν Ω(n) κορυφές πρέπει να ανυψωθούν πάνω από το επίπεδο n v 0 v 1 v 2 v n 3 v n 2 v n Πολυπλοκότητα Καλύτερης Περίπτωσης των άλλων τµηµάτων: O(m) Μπορεί να ϐελτιωθεί ο χρόνος ενηµέρωσης/ανανέωσης ετικετών ; 6 / 46

7 Ευρετική Μέθοδος 1 - Ετικέτες Μεγάλων Αποστάσεων { υψηλή αν d(v) n κορυφή v : χαµηλή αλλιώς Τι διαφοροποιεί τις υψηλές από τις χαµηλές κορυφές ; Ενεργή υψηλή κορυφή v: v-t διαδροµή κατάλληλων ακµών στο G(f) πλεόνασµα των ενεργών υψηλών κορυφών πρέπει να σταλει πίσω στην s Ενεργή χαµηλή κορυφή u: κάποιο πλεόνασµα της u µπορεί να προωθηθεί στην t και κάποιο πρέπει να σταλεί πίσω στην s 7 / 46

8 Ευρετική Μέθοδος 1 - Ετικέτες Μεγάλων Αποστάσεων Πλεόνασµα: ϕτάνει σε ενεργές υψηλές κορυφές µέσω ακµών e E µε f(e) > 0 = Ροή µπορεί να σταλεί πίσω µέσω αυτών των ακµών E (f) = {e = (y, x) : e = (x, y) E και f(e) > 0 Χρήση µόνο ακµών του E (f) όταν προωθούµε ϱοή από ενεργές υψηλές κορυφές 8 / 46

9 Ευρετική Μέθοδος 1 - Ετικέτες Μεγάλων Αποστάσεων Τροποποιηµένος Αλγόριθµος Προροής-Προώθησης /* αρχικοποίηση */ Θέσε f(e) = cap(e) για όλες τις ακµές µε source(e) = s; Θέσε f(e) = 0 για όλες τις υπόλοιπες ακµές ; Θέσε d(s) = n και d(v) = 0 για όλες τις κορυφές ; /* κύριος ϐρόχος */ while ενεργή κορυφή { έστω v µια ενεργή κορυφή; if d(v) < n και κατάλληλη ακµή e = (v, w) E(f) ή d(v) n και κατάλληλη ακµη e = (v, w) E (f) then { προώθησε δ = min{excess(v), r(e) µονάδες ϱοής στην e; else { αύξησε το d(v); 9 / 46

10 Ευρετική Μέθοδος 1 Ετικέτες Μεγάλων Αποστάσεων Τροποποιηµένος Κύριος Βρόχος // MF_LH: main loop for(;;) { node v = U.del(); if (v == nil) break; if (v == t) continue; NT ev = excess[v]; // excess of v int dv = dist[v]; // level of v edge e; if ( dist[v] < n ) { // MF_BASIC: push across edges out of v if ( ev > 0 ) { // MF_BASIC: push across edges into v excess[v] = ev; if (ev > 0) { dist[v]++; num_relabels++; U.insert(v,dist[v]); 10 / 46

11 Ευρετική Μέθοδος 2 Τοπική Ανανέωση Ετικετών Ανανέωση ετικέτας της v (οποτεδήποτε χρειαστεί): d(v) = 1 + min{d(w) : (v, w) G(f) Τοπική Ανανέωση Ετικετών Οταν η ετικέτα της v ανανεώνεται, συνέχισε την ανανέωση έως ότου κατάλληλη εξερχόµενη ακµή από την v ιατήρηση µεταβλητής dmin, αρχικοποιηµένη σε MAXINT Αν e = (v, w) G(f) είναι κατάλληλη (d(w) < d(v)), τότε προώθησε ϱοή από την v Αν e = (v, w) G(f) δεν ειναι κατάλληλη (d(w) d(v)), τότε dmin = min{dmin, d(w) Αν η v είναι ακόµη ενεργή µετά την εξέταση όλων των γειτονικών υπολειπόµενων ακµών της, τότε d(v) = 1 + dmin 11 / 46

12 Ευρετική Μέθοδος 2 Τοπική Ανανέωση Ετικετών Τροποποιηµένος Κύριος Βρόχος // MF_LRH: main loop for(;;) { node v = U.del(); if (v == nil) break; if (v == t) continue; NT ev = excess[v]; // excess of v int dv = dist[v]; // level of v int dmin = MAXINT; // for local relabeling heuristic edge e; if ( dist[v] < n ) { // MF_LRH: push across edges out of v if ( ev > 0 ) { // MF_LRH: push across edges into v excess[v] = ev; if (ev > 0) { dist[v]++; num_relabels++; U.insert(v,dist[v]); 12 / 46

13 Ευρετική Μέθοδος 2 Τοπική Ανανέωση Ετικετών Τροποποιηµένος Κώδικας // MF_LRH: push across edges out of v for (e = G.first_adj_edge(v); e; e = G.adj_succ(e)) { num_edge_inspections++; NT& fe = flow[e]; NT rc = cap[e] - fe; if (rc == 0) continue; node w = target(e); int dw = dist[w]; if ( dw < dv ) // equivalent to ( dw == dv - 1 ) { num_pushes++; NT& ew = excess[w]; if (ew == 0) U.insert0(w,dw); if (ev <= rc) { ew += ev; fe += ev; ev = 0; // stop: excess[v] exhausted break; else { ew += rc; fe += rc; ev -= rc; else { if ( dw < dmin ) dmin = dw; 13 / 46

14 Ευρετική Μέθοδος 2 Τοπική Ανανέωση Ετικετών Τροποποιηµένος Κώδικας // MF_LRH: push across edges into v for (e = G.first_in_edge(v); e; e = G.in_succ(e)) { num_edge_inspections++; NT& fe = flow[e]; if (fe == 0) continue; node w = source(e); int dw = dist[w]; if ( dw < dv ) // equivalent to ( dw == dv - 1 ) { num_pushes++; NT& ew = excess[w]; if (ew == 0) U.insert0(w,dw); if (ev <= fe) { fe -= ev; ew += ev; ev = 0; // stop: excess[v] exhausted break; else { ew += fe; ev -= fe; fe = 0; else { if ( dw < dmin ) dmin = dw; 14 / 46

15 Ευρετική Μέθοδος 3 Καθολική Ανανέωση Ετικετών Ενηµερώνει τις τιµές d( ) όλων των κορυφών δ(v, t) αν v-t διαδροµή στο G(f) n + δ d(v) = (v, s) αν v-s διαδροµή στο G (f) και v-t διαδροµή στο G(f) 2n 1 αλλιώς δ(v, t) := µήκος (αριθµός ακµών) συντοµότερης v-t διαδροµής στο G(f) δ (v, s) := µήκος (αριθµός ακµών) συντοµότερης v-s διαδροµής στο G (f) 15 / 46

16 Ευρετική Μέθοδος 3 Καθολική Ανανέωση Ετικετών Καθολική Ανανέωση Ετικετών: υλοποίηση µε ΑΠΠ = O(m) χρόνο δεν ϑα πρέπει να εφαρµόζεται πολύ συχνά ΚΑΕ εφαρµόζεται (µετά από) κάθε h m επιθεωρήσεις ακµών (h κατάλληλη σταθερά) Πολυπλοκότητα χειρότερης περίπτωσης αυξάνεται µόνο κατά ένα σταθερό παράγοντα Πολυπλοκότητα καλύτερης περίπτωσης µπορει να ϐελτιωθεί σηµαντικά v 0 v 1 v 2 v n 3 v n 2 v n ΚΑΕ εφαρµόζεται µετά από τον κορεσµό της (v n 2, v n 1 ) Τοποθετεί την κορυφή v i στο επίπεδο n + i, i, 1 i n 2 Πλεόνασµα κορυφής v n 2 ϑα σταλεί πίσω στην s µετά από µια σειρά n προωθήσεων εν χρειάζεται ανανέωση ετικετών = Μείωση χρόνου από Ω(n 2 ) σε O(n) 16 / 46

17 Ευρετική Μέθοδος 3 Καθολική Ανανέωση Ετικετών Συναρτήσεις compute_dist_t και compute_dist_s (αποστάσεις προς t & s) compute_dist_t: dist[v] n, κορυφή v πριν από µία κλήση της συνάρτησης «ανάδροµη» ΑΠΠ στο G(f) compute_dist_s: dist[v] = 2n 1, κορυφή v που δεν µπορεί να προσπελάσει την t στο G(f) πρίν από µία κλήση της συνάρτησης dist[v] < n, κορυφή v που µπορεί να προσπελάσει την t στο G(f) «ανάδροµη» ΑΠΠ στο G (f) Ολες οι ενεργές κορυφές u τοποθετούνται στην U µε τις καινούριες dist[u] U = πριν την κλήση της compute_dist_t, και η U περιέχει όλες τις ενεργές κορυφές που προσπελάζουν την t στο G(f) πριν την κλήση της compute_dist_s «ανάδροµη» ΑΠΠ = η (αναγκαία) ουρά Q περνά σαν παράµετρος (η Q είναι άδεια πριν από κάθε κλήση, και µένει άδεια µετά από κάθε κλήση) compute_dist_t: υπολογισµός count[d] = {v dist[v] = d, 0 d < n 17 / 46

18 Ευρετική Μέθοδος 3 Καθολική Ανανέωση Ετικετών template<class NT, class SET> void compute_dist_t(const graph& G, node t, const edge_array<nt>& flow, const edge_array<nt>& cap, const node_array<nt>& excess, node_array<int>& dist, SET& U, b_queue<node>& Q, array<int>& count) { int n = G.number_of_nodes(); Q.append(t); dist[t] = 0; count.init(0); count[0] = 1; while (!Q.empty() ) { node v = Q.pop(); int d = dist[v] + 1; edge e; for(e = G.first_adj_edge(v); e; e = G.adj_succ(e)) { if ( flow[e] == 0 ) continue; node u = target(e); int& du = dist[u]; if ( du >= n ) { du = d; Q.append(u); count[d]++; if ( excess[u] > 0 ) U.insert(u,d); for(e = G.first_in_edge(v); e; e = G.in_succ(e)) { if ( cap[e] == flow[e] ) continue; node u = source(e); int& du = dist[u]; if ( du >= n ) { du = d; Q.append(u); count[d]++; if (excess[u] > 0) U.insert(u,d); 18 / 46

19 Ευρετική Μέθοδος 3 Καθολική Ανανέωση Ετικετών template<class NT, class SET> void compute_dist_s(const graph& G, node s, const edge_array<nt>& flow, const node_array<nt>& excess, node_array<int>& dist, SET& U, b_queue<node>& Q) { int n = G.number_of_nodes(); int max_level = 2*n - 1; Q.append(s); dist[s] = n; while (!Q.empty() ) { node v = Q.pop(); int d = dist[v] + 1; edge e; for(e = G.first_adj_edge(v); e; e = G.adj_succ(e)) { if ( flow[e] == 0 ) continue; node u = target(e); int& du = dist[u]; if ( du == max_level ) { du = d; if (excess[u] > 0) U.insert(u,d); Q.append(u); 19 / 46

20 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων Φάση 1 προώθησε ϱοή µόνο από τις κορυφές v µε d(v) < n τερµάτισε όταν ενεργή κορυφή v µε d(v) < n = µέγιστη προροή, αφού v-t διαδροµή στο G(f) Φάση 2 προώθησε ϱοή µόνο από τις κορυφές v µε d(v) n τερµάτισε όταν καµία ενεργή κορυφή 20 / 46

21 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων // MF_GRH: initialization // initialize flow and excess and saturate edges out of s, as in MF_BASIC // MF_GRH: additional data structures b_queue<node> Q(n); int phase_number = 1; array<int> count(n); list<node> S; int heuristic = (int) (h*m); int limit_heur = heuristic; // MF_GRH: initialize dist and U for first phase node_array<int> dist(g); dist.init(g,n); compute_dist_t(g,t,flow,cap,excess,dist,u,q,count); // MF_GRH: initialize counters num_relabels = num_pushes = num_edge_inspections = 0; num_global_relabels = 0; // MF_GRH: main loop 21 / 46

22 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων // MF_GRH: main loop for(;;) { // MF_GRH: extract v from queue NT ev = excess[v]; // excess of v int dv = dist[v]; // level of v int dmin = MAXINT; edge e; if ( dist[v] < n ) { // push across edges out of v if ( ev > 0 ) { // push across edges into v excess[v] = ev; if (ev > 0) { // MF_GRH: update distance label(s) 22 / 46

23 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων Πώς επιλέγουµε κορυφές από την U; // MF_GRH: extract v from queue node v = U.del(); if (v == nil) { if ( phase_number == 2 ) break; // done dist.init(g,n); compute_dist_t(g,t,flow,cap,excess,dist,u,q,count); node u; forall_nodes(u,g) { if (dist[u] == n) { S.append(u); // S collects all nodes that cannot reach t dist[u] = max_level; phase_number = 2; compute_dist_s(g,s,flow,excess,dist,u,q); continue; if (v == t) continue; 23 / 46

24 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων Πώς ενηµερώνουµε τις ετικέτες αποστάσεων ; Ακέραιες µεταβλητές limit_heur και heuristic Αρχικοποίησε την heuristic σε h m, αύξησε την limit_heur κατά heuristic οποτεδήποτε εφαρµόζεται η ΚΑΕ, και εφάρµοσε την ΚΑΕ όποτε ο αριθµών επιθεωρήσεων των ακµών υπερβαίνει το limit_heur // MF_GRH: update distance label(s) if (num_edge_inspections <= limit_heur) { // MF_GRH: update the distance label of v else { limit_heur += heuristic; num_global_relabels++; // MF_GRH: global relabel 24 / 46

25 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων Αν phase = 1 και dmin n, τότε dist[v] = n και δεν εισάγεται η v στην U, αφού η v δεν µπορεί να προσπελάσει πλέον την t στο G(f) // MF_GRH: update the distance label of v dmin++; num_relabels++; if ( phase_number == 1 && dmin >= n) dist[v] = n; else { dist[v] = dmin; U.insert(v,dmin); 25 / 46

26 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων Καθολική Ανανέωση Ετικετών Φάση 1: v, υπολογισµός της v-t απόστασης στο G(f) κορυφές που δεν µπορούν να προσπελάσουν την t λαµβάνουν απόσταση n Αν ενεργή κορυφή που να προσπελάζει την t, η Φάση 1 τελειώνει το S περιέχει όλες τις κορυφές που δεν µπορούν να προσπελάσουν την t Φάση 2: (επανα)υπολόγισε την απόσταση v-s, v S οι κορυφές στο V S προσπελαύνουν την t στο G(f) και άρα είναι άνευ σηµασίας για τη Φάση 2 26 / 46

27 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων // MF_GRH: global relabel U.clear(); if (phase_number == 1) { dist.init(g,n); compute_dist_t(g,t,flow,cap,excess,dist,u,q,count); if ( U.empty() ) { node u; forall_nodes(u,g) { if (dist[u] == n) { S.append(u); dist[u] = max_level; phase_number = 2; compute_dist_s(g,s,flow,excess,dist,u,q); else { node u; forall(u,s) dist[u] = max_level; compute_dist_s(g,s,flow,excess,dist,u,q); 27 / 46

28 Ευρετική Μέθοδος 4 Καθολική Ανανέωση Ετικετών: µέθοδος δύο ϕάσεων template<class NT, class SET> NT MAX_FLOW_GRH_T(const graph& G, node s, node t, const edge_array<nt>& cap, edge_array<nt>& flow, SET& U, int& num_pushes, int& num_edge_inspections, int& num_relabels, int& num_global_relabels, float h) { if (s == t) error_handler(1,"maxflow: source == sink"); // MF_GRH: initialization // MF_GRH: main loop #ifdef TEST assert(check_max_flow_t(g,s,t,cap,flow)); #endif return excess[t]; 28 / 46

29 Ευρετική Μέθοδος 5 - GAP (Χάσµα) Αν η ανανέωση ετικετών της v (ϕάση 1) αφήνει το επίπεδο κορυφών d(v) κενό, τότε η v (και όλες οι κορυφές που µπορεί να προσπελάσει η v) δεν µπορούν να προσπελάσουν την t στο G(f) Ευρετική Μέθοδος Gap: µετακίνησε την v και όλες τις προσπελάσιµες από την v κορυφές στο επίπεδο n, οποτεδήποτε το επίπεδο της v µείνει κενό κορυφών µετά από µια ανανέωση ετικέτας της v 29 / 46

30 Ευρετική Μέθοδος 5 - GAP (Χάσµα) ιατήρηση πίνακα count[d], 0 d < n Επαναυπολογισµός count στην compute_dist_t και ενηµέρωσή του όταν ανανεώνεται η ετικέτα µιας κορυφής Οταν µία κορυφή v µετακινείται από ένα επίπεδο d(v) στο επίπεδο dmin, µειώνεται το count[d(v)] και αυξάνεται το count[dmin] (αν d(v) ή dmin είναι µικρότερες του n) Οταν count[d(v)] = 0, µετακίνηση της v και όλων των προσπελάσιµων κορυφών της στο G(f) στο επίπεδο n Οι προσπελάσιµες από την v κορυφές στο G(f) υπολογίζονται µε χρήση ΑΠΠ και ανακύκλωση της ουράς Q 30 / 46

31 Ευρετική Μέθοδος 5 - GAP (Χάσµα) // MF_GAP: update the distance label of v num_relabels++; if (phase_number == 1) { if ( --count[dv] == 0 dmin >= n - 1) { // v cannot reach t anymore // move all vertices reachable from v to level n else { dist[v] = ++dmin; count[dmin]++; U.insert(v,dmin); else // phase_number == 2 { dist[v] = ++dmin; U.insert(v,dmin); 31 / 46

32 Ευρετική Μέθοδος 5 - GAP (Χάσµα) // move all vertices reachable from v to level n dist[v] = n; if ( dmin < n ) { Q.append(v); node w,z; while (!Q.empty() ) { edge e; w = Q.pop(); num_gaps++; forall_out_edges(e,w) { if ( flow[e] < cap[e] && dist[z = G.target(e)] < n) { Q.append(z); count[dist[z]]--; dist[z] = n; forall_in_edges(e,w) { if ( flow[e] > 0 && dist[z = G.source(e)] < n) { Q.append(z); count[dist[z]]--; dist[z] = n; 32 / 46

33 Ευρετική Μέθοδος 5 - GAP (Χάσµα) Κύριος ϐρόχος: απαιτείται µόνο µία αλλαγή Οταν η ευρετική µέθοδος GAP µετακινεί µία κορυφή στο επίπεδο n, δεν την αφαιρεί από το σύνολο των ενεργών κορυφών (παρόλο που ϑα έπρεπε για την Φάση 1) Λύση: όταν µια κορυφή στο επίπεδο n αφαιρείται από το σύνολο των ενεργών κορυφών στη Φάση 1, αγνοούµε την κορυφή και συνεχίζουµε στην επόµενη επανάληψη 33 / 46

34 Ευρετική Μέθοδος 5 - GAP (Χάσµα) // MF_GAP: main loop for(;;) { // MF_GRH: extract v from queue if (dist[v] == n && phase_number == 1) continue; NT ev = excess[v]; // excess of v int dv = dist[v]; // level of v int dmin = MAXINT; edge e; if ( dist[v] < n ) { // push across edges out of v if ( ev > 0 ) { // push across edges into v excess[v] = ev; if (ev > 0) // MF_GAP: update distance label(s) { if (num_edge_inspections <= limit_heur) { // MF_GAP: update the distance label of v else { limit_heur += heuristic; num_global_relabels++; // MF_GRH: global relabel 34 / 46

35 Ευρετική Μέθοδος 5 - GAP (Χάσµα) template<class NT, class SET> NT MAX_FLOW_GAP_T(const graph& G, node s, node t, const edge_array<nt>& cap, edge_array<nt>& flow, SET& U, int& num_pushes, int& num_edge_inspections, int& num_relabels, int& num_global_relabels, int& num_gaps, float h) { if (s == t) error_handler(1,"maxflow: source == sink"); // MF_GRH: initialization num_gaps = 0; // number of nodes moved by the GAP heuristic // MF_GAP: main loop #ifdef TEST assert(check_max_flow_t(g,s,t,cap,flow)); #endif return excess[t]; 35 / 46

36 Ευρετικές Μέθοδοι Πειραµατική Μελέτη Σύνολα δεδοµένων: 1 τυχαίο (rand) και 3 συνθετικά (CG1, CG2, AMO) δίκτυα 36 / 46

37 Ευρετικές Μέθοδοι Πειραµατική Μελέτη ιαφορετικές ευρετικές µέθοδοι vs 3 κανόνες επιλογής: n {1000, / 46

38 Ευρετικές Μέθοδοι Πειραµατική Μελέτη ΚΑΕ (GRH) και GAP vs 3 κανόνες επιλογής: n = i, i = 0, 1, 2 38 / 46

39 Ροή ικτύου & Αριθµητική Κινητής Υποδιαστολής Αριθµητικά σφάλµατα στρογγυλοποίησης (π.χ., αριθµητική κινητής υποδιαστολής) ; 0.27 s 0.32 v t 0.71 Υπόθεση: αριθµητικό σύστηµα κινητής υποδιαστολής µε 2-ψήφιο δεκαδικό µέρος και στρογγυλοποίηση µε αποκοπή Μετά την αρχικοποίηση: excess(v) = = 1.3 σωστό απαλοιφή ψηφίου στην πράξη Αποστολή ροής πίσω στην s: άνω (v, s): = = µεσαία (v, s): = 0.8 κάτω (v, s): = 0.1 το τελευταιο ψηφίο απαλοίφεται όταν τα αθροίσµατα ευθυγραµµίζονται για την πράξη Πρόβληµα: excess(v) = 0.1, ακµή εξερχόµενη της v = µπορεί να ϑέσει το πρόγραµµα σε ατέρµονα ϐρόχο 39 / 46

40 Ροή ικτύου & Αριθµητική Κινητής Υποδιαστολής D = (s,v) E cap(s, v) χρησιµοποιούµενος αριθµητικός τύπος: double Αν όλες οι χωρητικότητες των ακµών είναι ακέραιες = υπερχείληση όσο D < 2 53 Αν οι χωρητικότητες των ακµών δεν είναι ακέραιες, τότε cap1[e] = sign(cap[e]) cap[e] S /S, S: µεγαλύτερη δύναµη του δύο έτσι ώστε S < 2 53 /D σφάλµα στρογγυλοποίησης σε σχέση µε τις cap1 απόλυτο σφάλµα στην τιµή της µέγιστης ϱοής m D 2 52 Τι συµβαίνει µε το σχετικό σφάλµα ; 40 / 46

41 Ροή ικτύου & Αριθµητική Κινητής Υποδιαστολής Ενας πιο εκλεπτισµένος τρόπος για να φράξουµε το σχετικό σφάλµα Αρχισε µε τις cap1 και υπολόγισε µια µέγιστη ϱοή f έστω f opt η µέγιστη ϱοή σε σχέση µε τις cap f opt f m D 2 52 Αν m D 2 52 f, τότε το σχετικό σφάλµα fopt f f είναι µικρό Αλλιώς, έστω B = f + m D 2 52 = f opt B Οποιοδήποτε cap[e] > B µπορεί να µειωθεί σε B χωρίς να αλλάξει η µέγιστη ϱοή Επαναυπολογισµός των D και S, και επανάληψη της διαδικασίας µέχρι το σχετικό σφάλµα να γίνει µικρό 41 / 46

42 Τέλος Ενότητας 42 / 46

43 Σηµείωµα Ιστορικού Εκδόσεων Εργου Το παρόν έργο αποτελεί την έκδοση / 46

44 Σηµείωµα Ιστορικού Εκδόσεων Εργου Copyright Πανεπιστήµιο Πατρών, Χρήστος Ζαρολιάγκης, «Τεχνολογίες Υλοποίησης Αλγορίθµων». Εκδοση: 1.0. Πάτρα ιαθέσιµο από τη δικτυακή διεύθυνση: 44 / 46

45 Σηµείωµα Ιστορικού Εκδόσεων Εργου Το παρόν υλικό διατίθεται µε τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εµπορική Χρήση, Οχι Παράγωγα Εργα 4.0 [1] ή µεταγενέστερη, ιεθνής Εκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. ϕωτογραφίες, διαγράµµατα κ.λ.π., τα οποία εµπεριέχονται σε αυτό. [1] Ως Μη Εµπορική ορίζεται η χρήση: που δεν περιλαµβάνει άµεσο ή έµµεσο οικονοµικό όφελος από την χρήση του έργου, για το διανοµέα του έργου και αδειοδόχο που δεν περιλαµβάνει οικονοµική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανοµέα του έργου και αδειοδόχο έµµεσο οικονοµικό όφελος (π.χ. διαφηµίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος µπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιµοποιεί το έργο για εµπορική χρήση, εφόσον αυτό του Ϲητηθεί. 45 / 46

46 ιατήρηση Σηµειωµάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού ϑα πρέπει να συµπεριλαµβάνει : το Σηµείωµα Αναφοράς το Σηµείωµα Αδειοδότησης τη δήλωση ιατήρησης Σηµειωµάτων το Σηµείωµα Χρήσης Εργων Τρίτων (εφόσον υπάρχει) µαζί µε τους συνοδευόµενους υπερσυνδέσµους 46 / 46

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 9 Μέγιστη Ροή ΙΙ Αλγόριθµος Προροής-Προώθησης &

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 8 1 / 44 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 8 Μέγιστη Ροή & Αριθµητική Ορθότητα Αλγορίθµων 1

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 11η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων

Εισαγωγή στους Αλγορίθμους Ενότητα 11η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων Εισαγωγή στους Αλγορίθμους Ενότητα η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Γρηγόρης Πράσινος Υποψήφιος ιδάκτωρ Τµήµα Μηχ/κων Η/Υ &

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 6 1 / 41 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 10

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 10 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 10 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Εισαγωγή στους Αλγορίθμους Ενότητα 10η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 5: Εντολές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 1

Δομές Δεδομένων Ενότητα 1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Συναρτήσεις-Δομές Ελέγχου : 1. Συναρτήσεις Χρήστη 2. Έλεγχος Ροής Προγράμματος 3.

Διαβάστε περισσότερα

Διοίκηση Επιχειρήσεων

Διοίκηση Επιχειρήσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων

Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 6 1 / 35 Ενότητα 6 - Συντοµότερες

Διαβάστε περισσότερα

Πληροφορική ΙΙ Θεματική Ενότητα 5

Πληροφορική ΙΙ Θεματική Ενότητα 5 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 7: Συναρτήσεις Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3: Ενισχυτές στις χαμηλές συχνότητες Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος

ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (Java) Ενότητα 3 ΕΛΕΓΧΟΣ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Ι. Ελεγκτές συνθηκών ή περιπτώσεων:

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Πίνακες & Δείκτες ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πίνακες Πίνακες Τα στοιχεία

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Ενότητα 5: Εντολές Επανάληψης

Προγραμματισμός Η/Υ. Ενότητα 5: Εντολές Επανάληψης Προγραμματισμός Η/Υ Ενότητα 5: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Έλεγχος της ροής του προγράμματος

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Ενότητα 4: Εντολές Επιλογής

Προγραμματισμός Η/Υ. Ενότητα 4: Εντολές Επιλογής Προγραμματισμός Η/Υ Ενότητα 4: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Έλεγχος της ροής ενός προγράμματος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 6: Προβλήματα ΤΝ και Lisp Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Προβλήματα ΤΝ και Lisp 1. Αναζήτηση και Στρατηγικές

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μάρκετινγκ Αγροτικών Προϊόντων

Μάρκετινγκ Αγροτικών Προϊόντων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Dijkstra Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Dijkstra

Διαβάστε περισσότερα

Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Υπερφόρτωση διμελών τελεστών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 8: Δείκτες Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση

Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Τεχνικό Σχέδιο - CAD

Τεχνικό Σχέδιο - CAD Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνικό Σχέδιο - CAD Ενότητα 7: SketchUp Αντικείμενα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 2: Εντολές/προτάσεις ελέγχου και συναρτήσεις Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα : Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Δρομολόγησης Στόλου Οχημάτων- Μέρος ΙΙ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 2: Η ΓΛΩΣΣΑ JAVA Σύγκριση JAVA-C ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΣΥΓΚΡΙΣΗ JAVA - C ΤΥΠΟΙ

Διαβάστε περισσότερα

Προγραμματισμός H/Y Ενότητα 5: Συναρτήσεις. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Προγραμματισμός H/Y Ενότητα 5: Συναρτήσεις. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Προγραμματισμός H/Y Ενότητα 5: Συναρτήσεις Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διδακτική Πληροφορικής

Διδακτική Πληροφορικής Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 12: Επίλυση προβλημάτων σε προγραμματιστικό περιβάλλον Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα