ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI. Β. Μεγαλοοικονόμου. Δεικτοδότηση Πολυμέσων
|
|
- Κύμα Γιάνναρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Β. Μεγαλοοικονόμου Δεικτοδότηση Πολυμέσων (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και Sudarshan και του C. Faloutsos)
2 Γενική Θεώρηση Σχεσιακό μοντέλο SQL,σχεδιασμός ΒΔ Δεικτοδότηση, Q-opt, Επεξεργασία δοσοληψιών Προχωρημένα θέματα Κατανεμημένες Βάσεις RAID Authorization / Stat. DB Spatial Access Methods Δεικτοδότηση Πολυμέσων
3 Πολυμέσα- λεπτομερώς Πολυμέσα Motivation / ορισμός προβλήματος Κύρια ιδέα / time sequences εικόνες sub-pattern matching Αυτόματη εξαγωγή χαρακτηριστικών / FastMap
4 Πρόβλημα Δοθείσας μίας μεγάλης συλλογής (πολυμεσικών) εγγραφών (πχ. μετοχές) Επιτρέπει γρήγορα, ερωτήματα ομοιότητας
5 Εφαρμογές time series: χρηματοοικονομικά, marketing (click-streams!), ECGs, ήχος; εικόνες: ιατρική, ψηφιακές βιβλιοθήκες, εκπαίδευση, τέχνη higher-d σήματα: επιστημονικές ΒΔ (πχ. αστροφυσική, ιατρική (MRI ακτινογραφίες), ψυχαγωγία (video)
6 Παραδείγματα Ερωτημάτων Βρες ιατρικές υποθέσεις παρόμοιες και του κ. Παπαδόπουλου Βρες ζεύγη μετοχών που κινούνται με συγχρονισμό Βρες ζεύγη εγγράφων που είναι παρόμοια (λογοκλοπία;) Βρες πρόσωπα παρόμοια με του Tiger Woods
7 Λεπτομ. ορισμός προβλήματος: Πρόβλημα: δοθείσαςμιαςσυλλογήςπολυμεσικών αντικειμένων, βρες αυτά που είναι παρόμοια με ένα επιθυμητό αντικείμενο-ερώτημα για παράδειγμα:
8 τιμή τιμή τιμή μέρα μέρα μέρα συνάρτηση απόστασης: από ειδικό (πχ. Ευκλείδεια απόσταση)
9 Τύποι ερωτημάτων Ολική ταύτιση εν. sub-pattern match ερωτήματα εύρους εν. πλησιέστερων γειτόνων όλα τα ζεύγη ερώτημα (all pairs queries or spatial joins)
10 Στόχοι σχεδίου Γρήγορα (γρηγορότερα από σειρ. αναζήτηση) ορθό (πχ., όχιψεύτικοισυναγερμοί, όχι λάθος απορρίψεις)
11 Πολυμέσα- λεπτομερώς Πολυμέσα Motivation / ορισμός προβλήματος Κύρια ιδέα / time sequences εικόνες sub-pattern matching Αυτόματη εξαγωγή χαρακτηριστικών / FastMap
12 Κεντρική ιδέα Πχ., χρονικές ακολουθίες, ολική ταύτιση, ερωτήματα εύρους, Ευκλείδεια απόσταση τιμή τιμή τιμή μέρα μέρα μέρα
13 Κεντρική ιδέα Η ακολουθιακή αναζήτηση δουλεύει πώς μπορεί να γίνει πιο γρήγορα;
14 Ιδέα: GEMINI (GEneric Multimedia INdexIng) Εξήγαγε μερικά αριθμητικά χαρακτηριστικά, για γρήγορο και πρόχειρο έλεγχο
15 GEMINI - Παραστατικά S1 πχ,. std F(S1) μέρα F(Sn) Sn πχ, avg μέρα
16 GEMINI Λύση: Γρήγορο-και-πρόχειρο' φίλτρο: εξήγαγε n χαρακτηριστικά (αριθμούς, πχ., avg, κτλ.) πρόβαλε σε ένα σημείο στο n-διάστατο χώρο χαρακτηριστικών οργάνωσε τα σημεία με έτοιμη spatial access μέθοδο ( SAM ) Απόρριψε false alarms
17 GEMINI Σημαντικό: Ε: πώς να εγγυηθεί απουσία ψευδών απορρίψεων; A1: διατήρηση αποστάσεων (αλλά: δύσκολο/ακατόρθωτο) A2: Lower-bounding λήμμα: αν η αποτύπωση κάνειταπράγματαναείναι εγγύτερα, τότεδενυπάρχουνψευδείς απορρίψεις
18 GEMINI Σημαντικό : Q: πώς να εξάγουμε τα χαρακτηριστικά? A: Εάν έχω μόνο έναν αριθμό για να περιγράψω το αντικείμενο μου ποιο θα έπρεπε να είναι αυτό?
19 Χρονικές Ακολουθίες Q: ποια χαρακτηριστικά?
20 Χρονικές Ακολουθίες Q: ποια χαρακτηριστικά? A: Συντελεστές Fourier (θα τους δούμε στην συνέχεια)
21 Χρονικές Ακολουθίες white noise brown noise Fourier spectrum... in log-log
22 Χρονικές Ακολουθίες Eg.:
23 Χρονικές Ακολουθίες Συμπέρασμα: οι χρωματικοί θόρυβοι προσεγγίζονται από τους πρώτους Fourier συντελεστές Οι χρωματικοί θόρυβοι εμφανίζονται στην φύση
24 Χρονικές Ακολουθίες brown noise: τιμές μετοχών(1/f 2 energy spectrum) pink noise: works of art (1/f spectrum) black noises: δεξαμενές νερού (1/f b, b>2) (slope: related to Hurst exponent, for self-similar traffic, like, eg. Ethernet/web [Schroeder], [Leland+]
25 Χρονικές Ακολουθίες-Αποτελέσματα time κράτησε τους πρώτους 2-3 Fourier συντελεστές Πιο γρήγορας από ακολουθιακή αναζήτηση NO false dismissals (see book) total cleanup-time r-tree time # coeff. kept
26 Χρονικές Ακολουθίες - βελτιστοποιήσεις Βελτιστοποιήσεις/παραλλαγές: [Kanellakis+Goldin], [Mendelzon+Rafiei] Μπορούν να χρησιμοποιηθούν Wavelets, or DCT Μπορούν να χρησιμοποιηθούν segment averages [Yi+2000]
27 Πολυμεσικά Δεδομένα Πολυμεσικά δεδομένα Κίνητρο/ ορισμός προβλήματος Κύρια ιδέα/ χρονικές ακολουθίες εικόνες (χρώμα, σχήμα) sub-pattern matching Αυτόματη εξαγωγή χαρακτηριστικών/ FastMap
28 Images - color what is an image? A: 2-d array
29 Images - color Color histograms, and distance function
30 Images - color Mathematically, the distance function is:
31 Images - color Problem: cross-talk : Features are not orthogonal -> SAMs will not work properly Q: what to do? A: feature-extraction question
32 Images - color possible answers: avg red, avg green, avg blue it turns out that this lower-bounds the histogram distance -> no cross-talk SAMs are applicable
33 Images - color performance: time seq scan w/ avg RGB selectivity
34 Multimedia - Detailed outline multimedia Motivation / problem definition Main idea / time sequences images (color; shape) sub-pattern matching automatic feature extraction / FastMap
35 Images - shapes distance function: Euclidean, on the area, perimeter, and 20 moments (Q: how to normalize them?
36 Images - shapes distance function: Euclidean, on the area, perimeter, and 20 moments (Q: how to normalize them? A: divide by standard deviation)
37 Images - shapes distance function: Euclidean, on the area, perimeter, and 20 moments (Q: other features / distance functions?
38 Images - shapes distance function: Euclidean, on the area, perimeter, and 20 moments (Q: other features / distance functions? A1: turning angle A2: dilations/erosions A3:... )
39 Images - shapes distance function: Euclidean, on the area, perimeter, and 20 moments Q: how to do dim. reduction?
40 Images - shapes distance function: Euclidean, on the area, perimeter, and 20 moments Q: how to do dim. reduction? A: Karhunen-Loeve (= centered PCA/SVD)
41 Images - shapes Performance: ~10x faster log(# of I/Os) all kept # of features kept
42 Case study: Informedia Video database system, developed at CMU 2+ TB of video data (broadcast news) retrieval by text, image and face similarity
43 Case study: Informedia next foils: visualization features by space by time by concept
44 geo mapping automatic place recognition ambiguity resol. + lookup
45
46 time line
47 concept space
48 Multimedia - Detailed outline multimedia Motivation / problem definition Main idea / time sequences images (color; shape) sub-pattern matching automatic feature extraction / FastMap
49 Sub-pattern matching Problem: find sub-sequences that match the given query pattern
50 $price $price $price day day day
51 Sub-pattern matching Q: how to proceed? Hint: try to turn it into a whole-matching problem (how?)
52 Sub-pattern matching Assume that queries have minimum duration w; (eg., w=7 days) divide data sequences into windows of width w (overlapping, or not?)
53 Sub-pattern matching Assume that queries have minimum duration w; (eg., w=7 days) divide data sequences into windows of width w (overlapping, or not?) A: sliding, overlapping windows. Thus: trails Pictorially:
54 Sub-pattern matching
55 Sub-pattern matching sequences -> trails -> MBRs in feature space
56 Sub-pattern matching Q: do we store all points? why not?
57 Sub-pattern matching Q: how to do range queries of duration w?
58 Sub-pattern matching (very recent improvement [Moon+2001]) use non-overlapping windows, for data
59 Conclusions GEMINI works for any setting (time sequences, images, etc) uses a quick and dirty filter faster than seq. scan (but: how to extract features automatically?)
60 Multimedia - Detailed outline multimedia Motivation / problem definition Main idea / time sequences images (color; shape) sub-pattern matching automatic feature extraction / FastMap
61 FastMap Automatic feature extraction: Given a dissimilarity function of objects Quickly map the objects to a (k-d) `feature' space. (goals: indexing and/or visualization)
62 FastMap O1 O2 O3 O4 O5 ~100 O O O3 O ~1 O
63 FastMap Multi-dimensional scaling (MDS) can do that, but in O(N**2) time
64 MDS Multi Dimensional Scaling
65 Main idea: projections We want a linear algorithm: FastMap [SIGMOD95]
66 FastMap - next iteration
67 Results Documents /cosine similarity -> Euclidean distance (how?)
68 Results bb reports recipes
69 Applications: time sequences given n co-evolving time sequences visualize them + find rules [ICDE00] GBP rate JPY HKD time
70 Applications - financial currency exchange rates [ICDE00] USD(t) FRF HKD USD(t) HKD(t) USD(t-5) HKD(t-5) FRF(t-5) DEM(t-5) FRF(t) JPY(t) JPY(t-5) DEM(t) DEM JPY DEM FRF GBP HKD JPY USD GBP(t-5) USD(t-5) USD GBP GBP(t)
71 VideoTrails [ACM MM97]
72 Conclusions GEMINI works for multiple settings FastMap can extract features automatically (-> indexing, visual d.m.)
73 References Faloutsos, C., R. Barber, et al. (July 1994). Efficient and Effective Querying by Image Content. J. of Intelligent Information Systems 3(3/4): Faloutsos, C. and K.-I. D. Lin (May 1995). FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets. Proc. of ACM-SIGMOD, San Jose, CA. Faloutsos, C., M. Ranganathan, et al. (May 25-27, 1994). Fast Subsequence Matching in Time-Series Databases. Proc. ACM SIGMOD, Minneapolis, MN. Flickner, M., H. Sawhney, et al. (Sept. 1995). Query by Image and Video Content: The QBIC System. IEEE Computer 28(9): Goldin, D. Q. and P. C. Kanellakis (Sept , 1995). On Similarity Queries for Time-Series Data: Constraint Specification and Implementation. Int. Conf. on Principles and Practice of Constraint Programming (CP95), Cassis, France.
74 References Leland, W. E., M. S. Taqqu, et al. (Feb. 1994). On the Self- Similar Nature of Ethernet Traffic. IEEE Transactions on Networking 2(1): Moon, Y.-S., K.-Y. Whang, et al. (2001). Duality-Based Subsequence Matching in Time-Series Databases. ICDE, Heidelberg, Germany. Rafiei, D. and A. O. Mendelzon (1997). Similarity-Based Queries for Time Series Data. SIGMOD Conference, Tucson, AZ. Schroeder, M. (1991). Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York, W.H. Freeman and Company. Yi, B.-K. and C. Faloutsos (2000). Fast Time Sequence Indexing for Arbitrary Lp Norms. VLDB, Kairo, Egypt.
Αρχές Βάσεων Δεδομένων. Β.Μεγαλοοικονόμου. Δεικτοδότηση Πολυμέσων. (κάποιες διαφάνειες βασίζονται σε σημειώσεις του C. Faloutsos)
Αρχές Βάσεων Δεδομένων Β.Μεγαλοοικονόμου Δεικτοδότηση Πολυμέσων (κάποιες διαφάνειες βασίζονται σε σημειώσεις του C. Faloutsos) Γενική Θεώρηση Σχεσιακό μοντέλο SQL,σχεδιασμός ΒΔ Δεικτοδότηση, Q-opt, Επεξεργασία
Βάσεις Δεδομένων ΙΙ Ενότητα 10
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Δεδομένων ΙΙ Ενότητα 10: Βάσεις Δεδομένων Πολυμέσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Β. Μεγαλοοικονόμου Μέθοδοι Προσπέλασης Χωρικών Δεδομένων ΙΙ Spatial Access Methods (SAMs) II (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz,
Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker
Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589) Μεγαλοοικονόμου Βασίλειος Τμήμα Μηχ. Η/ΥκαιΠληροφορικής Επιστημονικός Υπεύθυνος Στόχος Προτεινόμενου Έργου Ανάπτυξη μεθόδων
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
substructure similarity search using features in graph databases
substructure similarity search using features in graph databases Aleksandros Gkogkas Distributed Management of Data Laboratory intro Θα ενασχοληθούμε με το πρόβλημα των ερωτήσεων σε βάσεις γραφημάτων.
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes
Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Ανάκτηση Πληροφορίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Βάσεις Δεδομένων ΙΙ Ενότητα 12
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Δεδομένων ΙΙ Ενότητα 12: Μέθοδοι Προσπέλασης Χωρικών Δεδομένων ΙΙ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν
Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ
Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας Μεταπτυχιακό Πρόγραµµα Σπουδών2007-2008 ιδάσκουσα: Κατερίνα Τοράκη (Οι διαλέξεις περιλαµβάνουν
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Β. Μεγαλοοικονόμου Μέθοδοι Προσπέλασης Χωρικών Δεδομένων Ι Spatial Access Methods (SAMs) I (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Β. Μεγαλοοικονόμου Κατανεμημένες Βάσεις Δεδομένων (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και Sudarshan και του C. Faloutsos)
Proforma C. Flood-CBA#2 Training Seminars. Περίπτωση Μελέτης Ποταμός Έ βρος, Κοινότητα Λαβάρων
Proforma C Flood-CBA#2 Training Seminars Περίπτωση Μελέτης Ποταμός Έ βρος, Κοινότητα Λαβάρων Proforma A B C D E F Case Η λογική Study Collecting information regarding the site that is to be assessed. Collecting
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ιαχείριση και Ανάκτηση Εικόνας µε χρήση Οµοιότητας Γράφων (WW-test)
ιαχείριση και Ανάκτηση Εικόνας µε χρήση Οµοιότητας Γράφων (WW-test) Θεοχαράτος Χρήστος Εργαστήριο Ηλεκτρονικής (ELLAB), Τµήµα Φυσικής, Πανεπιστήµιο Πατρών email: htheohar@upatras.gr http://www.ellab.physics.upatras.gr/users/theoharatos/default.htm
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008
SMD Wire Wound Ferrite Chip Inductors - LS Series LS Series LS Series is the newest in open type ferrite wire wound chip inductors. The wire wound ferrite construction supports higher SRF, lower DCR and
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Ειδικές Επιστηµονικές Εργασίες
Ειδικές Επιστηµονικές Εργασίες 2005-2006 1. Ανίχνευση προσώπων από ακολουθίες video και παρακολούθηση (face detection & tracking) Η ανίχνευση προσώπου (face detection) αποτελεί το 1 ο βήµα σε ένα αυτόµατο
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ
ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ Η ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ Τπνβάιιεηαη ζηελ νξηζζείζα από ηελ Γεληθή πλέιεπζε Δηδηθήο ύλζεζεο
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Βάσεις εδοµένων & Πολυµέσα
Βάσεις εδοµένων & Πολυµέσα Κουρέλης Στάθης Παρουσίαση πρακτικού µέρους 4ης εργασίας Καθηγητής: κ. Στυλιαράς Γ. Αθήνα - Απρίλιος 2009 Εισαγωγή Οι Βάσεις εδοµένων Πολυµέσων παρέχουν χαρακτηριστικά που επιτρέπουν
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
ΝΤUA. Τεχνολογία Πολυμέσων
ΝΤUA Τεχνολογία Πολυμέσων Contents 2. Lesson 5: Video Metadata What Metadata is data about data. An item of metadata may describe an individual datum, or content item, or a collection of data including
Proforma F. Flood-CBA#2 Training Seminars. Περίπτωση Μελέτης Ποταμός Έ βρος, Κοινότητα Λαβάρων
Proforma F Flood-CBA#2 Training Seminars Περίπτωση Μελέτης Ποταμός Έ βρος, Κοινότητα Λαβάρων Proforma A B C D E F Case Η λογική Study Collecting information regarding the site that is to be assessed. Collecting
ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ
Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε
Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #03 Βασικές έννοιες Ανάκτησης Πληροφορίας Δομή ενός συστήματος IR Αναζήτηση με keywords ευφυής
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Οδηγίες χρήσης. Registered. Οδηγίες ένταξης σήματος D-U-N-S Registered στην ιστοσελίδα σας και χρήσης του στην ηλεκτρονική σας επικοινωνία
Οδηγίες χρήσης υλικού D-U-N-S Registered Οδηγίες ένταξης σήματος D-U-N-S Registered στην ιστοσελίδα σας και χρήσης του στην ηλεκτρονική σας επικοινωνία Οδηγίες χρήσης υλικού D-U-N-S Για οποιαδήποτε ερώτηση
Ευρετηρίαση και Αναζήτηση Πολυμέσων Multimedia Indexing & Searching
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2006 Διάρθρωση Διάλεξης HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Το Πρόβλημα, Εφαρμογές και Παραδείγματα Επερωτήσεις
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής
oard Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή ιατριβή Τίτλος ιατριβής Masters Thesis Title Ονοµατεπώνυµο Φοιτητή Πατρώνυµο Ανάπτυξη διαδικτυακής
Ανάκτηση πολυμεσικού περιεχομένου
Ανάκτηση πολυμεσικού περιεχομένου Ανίχνευση / αναγνώριση προσώπων Ανίχνευση / ανάγνωση κειμένου Ανίχνευση αντικειμένων Οπτικές λέξεις Δεικτοδότηση Σχέσεις ομοιότητας Κατηγοριοποίηση ειδών μουσικής Διάκριση
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Multimedia IR. εικτοδότηση και Αναζήτηση. Ανάκτηση Πληροφορίας
Multimedia IR εικτοδότηση και Αναζήτηση 1 Εισαγωγή Μεγάλες ποσότητες πληροφορίες υπάρχουν σε αρχεία εικόνων, ήχου, video. Οι τυπικές µέθοδοι ανάκτησης κειµένου δεν µπορούν να εφαρµοστούν άµεσα στην περίπτωση
BRAND MANUAL AND USER GUIDELINES
ΑΠΟΓΡΑΦΗ ΠΛΗΘΥΣΜΟΥ-ΚΑΤΟΙΚΙΩΝ 2021 ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ BRAND MANUAL AND USER GUIDELINES BRIEF THE SCOPE Το 2021 θα πραγματοποιηθεί στην Ελλάδα η Γενική Απογραφή Πληθυσμού Κατοικιών που διενεργείται
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Εφαρμογές σε Χωρικά Δίκτυα
Εφαρμογές σε Χωρικά Δίκτυα Ελευθέριος Τιάκας Δεκέμβριος 2013 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εργαστήριο Τεχνολογίας και Επεξεργασίας Δεδομένων Τμήμα Πληροφορικής Α.Π.Θ. Σύνοψη Παρουσίασης Σημαντικά
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Multimedia IR. Εισαγωγή. Εισαγωγή. εικτοδότηση και Αναζήτηση
Multimedia IR εικτοδότηση και Αναζήτηση 1 Εισαγωγή Μεγάλες ποσότητες πληροφορίες υπάρχουν σε αρχεία εικόνων, ήχου, video. Οι τυπικές µέθοδοι ανάκτησης κειµένου δεν µπορούν να εφαρµοστούν άµεσα στην περίπτωση
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και
Αξιολόγηση µεθόδων σύνθεσης εικόνων. Β. Τσαγκάρης και Β. Αναστασόπουλος
Αξιολόγηση µεθόδων σύνθεσης εικόνων Β. Τσαγκάρης και Β. Αναστασόπουλος Περιεχόµενα Σύνθεση πληροφορίας - εικόνων Εφαρµογές Τύποι εικόνων Μέθοδοι σύνθεσης εικόνων Αξιολόγηση µεθόδων σύνθεσης εικόνων Θεωρία
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Ενότητα: Use Case - an example of ereferral workflow Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής
IMES DISCUSSION PAPER SERIES
IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI B. Μεγαλοοικονόμου Αντικειμενοστρεφή και αντικειμενο-σχεσιακά ΣΔΒΔ (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και Sudarshan και του
How to register an account with the Hellenic Community of Sheffield.
How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click
Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013"
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Επιμέλεια Κρανιωτάκη Δήμητρα Α.Μ. 8252 Κωστορρίζου Δήμητρα Α.Μ. 8206 Μελετίου Χαράλαμπος Α.Μ.
(pattern recognition) (symbol processing) (content) (raw data) - 1 -
(symbol processing) (pattern recognition) (content) (identify) (interpret) (raw data) - 1 - 9D-SPA - 2 - 2D string (Chang, Shi, and Yan, 1987) 2D G-string (Jungert, 1988) 2D C-string (Lee and Hsu, 1990)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Σχεσιακό Μοντέλο SQL- Μέρος Β Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan και του C. Faloutsos
Οδηγίες χρήσης υλικού D U N S Registered
Οδηγίες χρήσης υλικού D U N S Registered Οδηγίες ένταξης σήματος D U N S Registered στην ιστοσελίδα σας και χρήσης του στην ηλεκτρονική σας επικοινωνία Για οποιαδήποτε ερώτηση, σας παρακαλούμε επικοινωνήστε
1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα
IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «Σχεδιασμός, Διοίκηση και Πολιτική του Τουρισμού» ΜΑΡΚΕΤΙΝΓΚ ΑΘΛΗΤΙΚΩΝ ΤΟΥΡΙΣΤΙΚΩΝ
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Oracle SQL Developer An Oracle Database stores and organizes information. Oracle SQL Developer is a tool for accessing and maintaining the data
Αναζήτηση και ερωτήσεις (visual queries) με βάση την εικόνα: πρόσφατες τεχνολογίες και χρήσεις
ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΓΡΑΦΙΚΕΣ ΤΕΧΝΕΣ & ΠΟΛΥΜΕΣΑ ΣΕΜΙΝΑΡΙΑΚΗ ΠΑΡΟΥΣΙΑΣΗ 2015 ΥΠΕΥΘΥΝΟΣ ΚΑΘ: ΣΤΥΛΙΑΡΑΣ ΓΕΩΡΓΙΟΣ Αναζήτηση και ερωτήσεις (visual queries) με βάση την εικόνα: πρόσφατες τεχνολογίες
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Ευρετηρίαση και Αναζήτηση Πολυμέσων Multimedia Indexing & Searching
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ευρετηρίαση και Αναζήτηση Πολυμέσων Multimedia Indexing & Searching
Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30