Κεφάλαιο 9. Επεξεργασία και Βελτιστοποίηση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 9. Επεξεργασία και Βελτιστοποίηση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4."

Transcript

1 Κεφάλαιο 9 Επεξεργασία και Βελτιστοποίηση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.40

2 Query Processing and Optimization Architecture of the Query Processor in a DBMS Query Processing Implementation of Relational Operators (join, select, project, aggregates, etc.) Use of Indices Buffering Query Optimization Plans Nested Queries Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.41

3 Architecture of the QUERY PROCESSOR TERMINAL MONITOR Query Language QUERY LANGUAGE COMPILER Internal Form (e.g., Relational Algebra) QUERY OPTIMIZER Internal Form (e.g., Relational Algebra) CODE GENERATOR / INTERPRETER Record-at-a-time calls embedded in a program ACCESS METHOD Page-at-a-time access to files FILE SYSTEM Select e.name from empl e, dept d where e.dno = d.dno and d.floor=3 Ð Name ( σ floor=3 (e >< d) Ð Name ( e >< ( σ floor=3 d) (plans) manipulate records manipulate pages Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.42

4 Query Processing in a DBMS The Query Language Compiler translates the query into an internal form, usually a relational algebra expression The Query Optimizer examines all the equivalent algebraic expressions (plans) and chooses the one that is estimated as cheapest Uses estimates of sizes, usage and contents of the relations (kept in catalogs and updated dynamically) Uses the knowledge of the Cost for relational database operations (how the joins are implemented, etc.) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.43

5 Query Processing in a DBMS -- (b) The Code Generator implements the access plan generated by the Optimizer The Access Methods support commands to access records of a file (one at a time). FUNCTIONS of an access method are: Record Layout on Pages Field Layout in Records Data Compression Indexing Records by Field Values Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.44

6 Query Processing in a DBMS -- (c) The File System supports page-at-a-time access to files FUNCTIONS of the File System are: Partitioning of the file into disks Managing Free Space on Disk Issuing Hardware I/O commands Managing Main Memory Buffers Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.45

7 Relational Operations -- Implementation We will consider how to implement: Selection ( ) Selects a subset of rows from relation. Projection ( ) Deletes unwanted columns from relation. >< Join ( ) Allows us to combine two relations. Set-difference ( ) Tuples in relation. 1, but not in relation. 2. U σ π Union ( ) Tuples in relation. 1 and in relation. 2. Aggregation (SUM, MIN, etc.) and GROUP BY Since each operation returns a relation, operations can be composed! After we cover the operations, we will discuss how to optimize queries formed by composing them. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.46

8 Schema for Examples Sailors (sid: integer, sname: string, rating: integer, age: real) Reserves (sid: integer, bid: integer, day: dates, rname: string) Similar to old schema; rname added for variations. Reserves: Each tuple is 40 bytes long, 100 tuples per page, 1000 pages. Sailors: Each tuple is 50 bytes long, 80 tuples per page, 500 pages. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.47

9 Equality Joins With One Join Column SELECT * FROM Reserves R1, Sailors S1 WHERE R1.sid=S1.sid >< In algebra: R S. Common! Must be carefully optimized. R S is large; so, R S followed by a selection is inefficient. Assume: M pages in R, p R tuples per page, N pages in S, p S tuples per page. In our examples, R is Reserves and S is Sailors. We will consider more complex join conditions later. Cost metric: # of I/Os. We will ignore output costs. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.48

10 Simple Nested Loops Join foreach tuple r in R do foreach tuple s in S do if ri == sj then add <r, s> to result For each tuple in the outer relation R, we scan the entire inner relation S. Cost: M + p R * M * N = *1000*500 I/Os. Page-oriented Nested Loops join: For each page of R, get each page of S, and write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page. Cost: M + M*N = *500 If smaller relation (S) is outer, cost = *1000 Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.49

11 Index Nested Loops Join foreach tuple r in R do foreach tuple s in S where ri == sj do add <r, s> to result If there is an index on the join column of one relation (say S), can make it the inner and exploit the index. Cost: M + ( (M*p R ) * cost of finding matching S tuples) For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding S tuples depends on clustering. Clustered index: 1 I/O (typical), un clustered: up to 1 I/O per matching S tuple. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.50

12 Examples of Index Nested Loops Hash-index on sid of Sailors (as inner): Scan Reserves: 1000 page I/Os, 100*1000 tuples. For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple. Total: 220,000 I/Os. Hash-index on sid of Reserves (as inner): Scan Sailors: 500 page I/Os, 80*500 tuples. For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os depending on whether the index is clustered. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.51

13 Block Nested Loops Join Use one page as an input buffer for scanning the inner S, one page as the output buffer, and use all remaining pages to hold ``block of outer R. For each matching tuple r in R-block, s in S-page, add <r, s> to result. Then read next R-block, scan S, etc. R & S... Hash table for block of R (k < B-1 pages)... Join Result... Input buffer for S Output buffer Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.52

14 Examples of Block Nested Loops Cost: Scan of outer + #outer blocks * scan of inner #outer blocks = With Reserves (R) as outer, and 100 pages of R: Cost of scanning R is 1000 I/Os; a total of 10 blocks. Per block of R, we scan Sailors (S); 10*500 I/Os. If space for just 90 pages of R, we would scan S 12 times. With 100-page block of Sailors as outer: # of pages of outer / Cost of scanning S is 500 I/Os; a total of 5 blocks. Per block of S, we scan Reserves; 5*1000 I/Os. blocksize With sequential reads considered, analysis changes: may be best to divide buffers evenly between R and S. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.53

15 Sort-Merge Join (R >< i=j S) Sort R and S on the join column, then scan them to do a ``merge (on join col.), and output result tuples. Advance scan of R until current R-tuple >= current S tuple, then advance scan of S until current S-tuple >= current R tuple; do this until current R tuple = current S tuple. At this point, all R tuples with same value in Ri (current R group) and all S tuples with same value in Sj (current S group) match; output <r, s> for all pairs of such tuples. Then resume scanning R and S. R is scanned once; each S group is scanned once per matching R tuple. (Multiple scans of an S group are likely to find needed pages in buffer.) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.54

16 Example of Sort-Merge Join sid sname rating age 22 dustin yuppy lubber guppy rusty sid bid day rname /4/96 guppy /3/96 yuppy /10/96 dustin /12/96 lubber /11/96 lubber /12/96 dustin Cost: M log M + N log N + (M+N) The cost of scanning, M+N, could be M*N (very unlikely!) With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: (BNL cost: 2500 to I/Os) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.55

17 Refinement of Sort-Merge Join We can combine the merging phases in the sorting of R and S with the merging required for the join. L With B >, where L is the size of the larger relation, using the sorting refinement that produces runs of length 2B in Pass 0, #runs of each relation is < B/2. Allocate 1 page per run of each relation, and `merge while checking the join condition. Cost: read+write each relation in Pass 0 + read each relation in (only) merging pass (+ writing of result tuples). In example, cost goes down from 7500 to 4500 I/Os. In practice, cost of sort-merge join, like the cost of external sorting, is linear. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.56

18 Hash-Join Original Relation OUTPUT 1 Partitions Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.... INPUT 2 hash function h B B-1 Disk B main memory buffers Disk Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches. Partitions of R & S hash fn h2 Hash table for partition Ri (k < B-1 pages) h2 Join Result Disk Input buffer for Si Output buffer B main memory buffers Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.57 Disk

19 Observations on Hash-Join #partitions k < B-1 (why?), and B-2 > size of largest partition to be held in memory. Assuming uniformly sized partitions, and maximizing k, we get: k= B-1, and M/(B-1) < B-2, i.e., B must be > If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed. If the hash function does not partition uniformly, one or more R partitions may not fit in memory. Can apply hash-join technique recursively to do the join of this R-partition with corresponding S-partition. M Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.58

20 Cost of Hash-Join In partitioning phase, read+write both relations; 2(M+N). In matching phase, read both relations; M+N I/Os. In our running example, this is a total of 4500 I/Os. Sort-Merge Join vs. Hash Join: Given a minimum amount of memory (what is this, for each?) both have a cost of 3(M+N) I/Os. Hash Join superior on this count if relation sizes differ greatly. Also, Hash Join shown to be highly parallelizable. Sort-Merge less sensitive to data skew; result is sorted. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.59

21 General Join Conditions Equalities over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname): For Index NL, build index on <sid, sname> (if S is inner); or use existing indexes on sid or sname. For Sort-Merge and Hash Join, sort/partition on combination of the two join columns. Inequality conditions (e.g., R.rname < S.sname): For Index NL, need (clustered!) B+ tree index.» Range probes on inner; # matches likely to be much higher than for equality joins. Hash Join, Sort Merge Join not applicable. Block NL quite likely to be the best join method here. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.60

22 Simple Selections σ R attr SELECT * FROM WHERE. ( R ) Reserves R R.rname < C% Of the form op value Size of result approximated as size of R * reduction factor; we will consider how to estimate reduction factors later. With no index, unsorted: Must essentially scan the whole relation; cost is M (#pages in R). With an index on selection attribute: Use index to find qualifying data entries, then retrieve corresponding data records. (Hash index useful only for equality selections.) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.61

23 Using an Index for Selections Cost depends on #qualifying tuples, and clustering. Cost of finding qualifying data entries (typically small) plus cost of retrieving records (could be large w/o clustering). In example, assuming uniform distribution of names, about 10% of tuples qualify (100 pages, tuples). With a clustered index, cost is little more than 100 I/Os; if un clustered, up to I/Os! Important refinement for un clustered indexes: 1. Find qualifying data entries. 2. Sort the rid s of the data records to be retrieved. 3. Fetch rids in order. This ensures that each data page is looked at just once (though # of such pages likely to be higher than with clustering). Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.62

24 General Selection Conditions (day<8/9/94 AND rname= Paul ) OR bid=5 OR sid=3 Such selection conditions are first converted to conjunctive normal form (CNF): (day<8/9/94 OR bid=5 OR sid=3 ) AND (rname= Paul OR bid=5 OR sid=3) We only discuss the case with no ORs (a conjunction of terms of the form attribute op value). An index matches (a conjunction of) terms that involve only attributes in a prefix of the search key. Index on <a, b, c> matches a=5 AND b= 3, but not b=3. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.63

25 Two Approaches to General Selections First approach: Find the most selective access path, retrieve tuples using it, and apply any remaining terms that don t match the index: Most selective access path: An index or file scan that we estimate will require the fewest page I/Os. Terms that match this index reduce the number of tuples retrieved; other terms are used to discard some retrieved tuples, but do not affect number of tuples/pages fetched. Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree index on day can be used; then, bid=5 and sid=3 must be checked for each retrieved tuple. Similarly, a hash index on <bid, sid> could be used; day<8/9/94 must then be checked. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.64

26 Intersection of Rids Second approach (if we have 2 or more matching indexes that use Alternatives (2) or (3) for data entries): Get sets of rids of data records using each matching index. Then intersect these sets of rids (we ll discuss intersection soon!) Retrieve the records and apply any remaining terms. Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day and an index on sid, both using Alternative (2), we can retrieve rids of records satisfying day<8/9/94 using the first, rids of records satisfying sid=3 using the second, intersect, retrieve records and check bid=5. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.65

27 The Projection Operation SELECT FROM DISTINCT R.sid, R.bid Reserves R An approach based on sorting: Modify Pass 0 of external sort to eliminate unwanted fields. Thus, runs of about 2B pages are produced, but tuples in runs are smaller than input tuples. (Size ratio depends on # and size of fields that are dropped.) Modify merging passes to eliminate duplicates. Thus, number of result tuples smaller than input. (Difference depends on # of duplicates.) Cost: In Pass 0, read original relation (size M), write out same number of smaller tuples. In merging passes, fewer tuples written out in each pass. Using Reserves example, 1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25 Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.66

28 Projection Based on Hashing Partitioning phase: Read R using one input buffer. For each tuple, discard unwanted fields, apply hash function h1 to choose one of B-1 output buffers. Result is B-1 partitions (of tuples with no unwanted fields). 2 tuples from different partitions guaranteed to be distinct. Duplicate elimination phase: For each partition, read it and build an in-memory hash table, using hash fn h2 (<> h1) on all fields, while discarding duplicates. If partition does not fit in memory, can apply hash-based projection algorithm recursively to this partition. Cost: For partitioning, read R, write out each tuple, but with fewer fields. This is read in next phase. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.67

29 Discussion of Projection Sort-based approach is the standard; better handling of skew and result is sorted. If an index on the relation contains all wanted attributes in its search key, can do index-only scan. Apply projection techniques to data entries (much smaller!) If an ordered (i.e., tree) index contains all wanted attributes as prefix of search key, can do even better: Retrieve data entries in order (index-only scan), discard unwanted fields, compare adjacent tuples to check for duplicates. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.68

30 Set Operations Intersection and cross-product special cases of join. Union (Distinct) and Except similar; we ll do union. Sorting based approach to union: Sort both relations (on combination of all attributes). Scan sorted relations and merge them. Alternative: Merge runs from Pass 0 for both relations. Hash based approach to union: Partition R and S using hash function h. For each S-partition, build in-memory hash table (using h2), scan corresponding R-partition and add tuples to table while discarding duplicates. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.69

31 Aggregate Operations (AVG, MIN, etc.) Without grouping: In general, requires scanning the relation. Given index whose search key includes all attributes in the SELECT or WHERE clauses, can do index-only scan. With grouping: Sort on group-by attributes, then scan relation and compute aggregate for each group. (Can improve upon this by combining sorting and aggregate computation.) Given tree index whose search key includes all attributes in SELECT, WHERE and GROUP BY clauses, can do index-only scan; if group-by attributes form prefix of search key, can retrieve data entries/tuples in group-by order. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.70

32 Impact of Buffering If several operations are executing concurrently, estimating the number of available buffer pages is guesswork. Repeated access patterns interact with buffer replacement policy. e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough buffer pages to hold inner, replacement policy does not matter. Otherwise, MRU is best, LRU is worst (sequential flooding). Does replacement policy matter for Block Nested Loops? What about Index Nested Loops? Sort-Merge Join? Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.71

33 Summary for Relational Operators Implementation A virtue of relational DBMSs: queries are composed of a few basic operators; the implementation of these operators can be carefully tuned (and it is important to do this!). Many alternative implementation techniques for each operator; no universally superior technique for most operators. Must consider available alternatives for each operation in a query and choose best one based on system statistics, etc. This is part of the broader task of optimizing a query composed of several ops. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.72

34 Overview of Query Optimization Plan: Tree of R.A. ops, with choice of algorithm for each op. Each operator typically implemented using a `pull interface: when an operator is `pulled for the next output tuples, it `pulls on its inputs and computes them. Two main issues: For a given query, what plans are considered?» Algorithm to search plan space for cheapest (estimated) plan. How is the cost of a plan estimated? Ideally: Want to find best plan. Practically: Avoid worst plans! We will study the System R approach. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.73

35 Highlights of System R Optimizer Impact: Most widely used currently; works well for < 10 joins. Cost estimation: Approximate art at best. Statistics, maintained in system catalogs, used to estimate cost of operations and result sizes. Considers combination of CPU and I/O costs. Plan Space: Too large, must be pruned. Only the space of left-deep plans is considered.» Left-deep plans allow output of each operator to be pipelined into the next operator without storing it in a temporary relation. Cartesian products avoided. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.74

36 Schema for Examples Sailors (sid: integer, sname: string, rating: integer, age: real) Reserves (sid: integer, bid: integer, day: dates, rname: string) Similar to old schema; rname added for variations. Reserves: Each tuple is 40 bytes long, 100 tuples per page, 1000 pages. Sailors: Each tuple is 50 bytes long, 80 tuples per page, 500 pages. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.75

37 Motivating Example RA Tree: sname SELECT S.sname FROM Reserves R, Sailors S WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5 bid=100 rating > 5 sid=sid Reserves Sailors Cost: *1000 I/Os By no means, the worst plan! Misses several opportunities: selections could have been `pushed earlier, no use is made of any available indexes, etc. Goal of optimization: To find more efficient plans that compute the same answer. Plan: sname bid=100 rating > 5 sid=sid (On-the-fly) (On-the-fly) (Simple Nested Loops) Reserves Sailors Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.76

38 Alternative Plans 1 (No Indexes) sname (On-the-fly) sid=sid (Sort-Merge Join) (Scan; write to temp T1) bid=100 rating > 5 (Scan; write to temp T2) Main difference: push selects. With 5 buffers, cost of plan: Reserves Sailors Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform distribution). Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings). Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250) Total: 3560 page I/Os. If we used BNL join, join cost = 10+4*250, total cost = If we `push projections, T1 has only sid, T2 only sid and sname: T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.77

39 Alternative Plans 2 With Indexes (On-the-fly) sname rating > 5 (On-the-fly) With clustered index on bid of Reserves, we get 100,000/100 = 1000 tuples on 1000/100 = 10 pages. INL with pipelining (outer is not materialized). Projecting out unnecessary fields from outer doesn t help. (Use hash index; do not write result to temp) sid=sid bid=100 Reserves (Index Nested Loops, with pipelining ) Sailors Join column sid is a key for Sailors. At most one matching tuple, un clustered index on sid OK. Decision not to push rating>5 before the join is based on availability of sid index on Sailors. Cost: Selection of Reserves tuples (10 I/Os); for each, must get matching Sailors tuple (1000*1.2); total 1210 I/Os. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.78

40 Query Blocks: Units of Optimization An SQL query is parsed into a collection of query blocks, and these are optimized one block at a time. Nested blocks are usually treated as calls to a subroutine, made once per outer tuple. (This is an over-simplification, but serves for now.) Outer block For each block, the plans considered are: SELECT S.sname FROM Sailors S WHERE S.age IN (SELECT MAX (S2.age) FROM Sailors S2 GROUP BY S2.rating) Nested block - All available access methods, for each relation in FROM clause. - All left-deep join trees (i.e., all ways to join the relations one-ata-time, with the inner relation in the FROM clause, considering all relation permutations and join methods.) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.79

41 Cost Estimation For each plan considered, must estimate cost: Must estimate cost of each operation in plan tree.» Depends on input cardinalities.» We ve already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.) Must estimate size of result for each operation in tree!» Use information about the input relations.» For selections and joins, assume independence of predicates. We ll discuss the System R cost estimation approach. Very inexact, but works ok in practice. More sophisticated techniques known now. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.80

42 Statistics and Catalogs Need information about the relations and indexes involved. Catalogs typically contain at least: # tuples (NTuples) and # pages (NPages) for each relation. # distinct key values (NKeys) and NPages for each index. Index height, low/high key values (Low/High) for each tree index. Catalogs updated periodically. Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok. More detailed information (e.g., histograms of the values in some field) are sometimes stored. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.81

43 Size Estimation and Reduction Factors Consider a query block: SELECT attribute list FROM relation list WHERE term1 AND... AND termk Maximum # tuples in result is the product of the cardinalities of relations in the FROM clause. Reduction factor (RF) associated with each term reflects the impact of the term in reducing result size. Result cardinality = Max # tuples * product of all RF s. Implicit assumption that terms are independent! Term col=value has RF 1/NKeys(I), given index I on col Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2)) Term col>value has RF (High(I)-value)/(High(I)-Low(I)) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.82

44 Relational Algebra Equivalences Allow us to choose different join orders and to `push selections and projections ahead of joins. ( ) ( R) ( ) R ( ) ( ) ( ( )) Selections: σ 1... R σ 1... σ σ σ R σ σ c cn c cn c1 c2 c2 c1 ( ( )) Projections: π ( R) π π ( R) a1 a1 an (Cascade) (Commute)... (Cascade) Joins: R >< (S >< T) (R >< S) >< T Show that: (R >< S) (S >< R) R >< (S >< T) (T >< R) >< S (Associative) (Commute) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.83

45 More Equivalences A projection commutes with a selection that only uses attributes retained by the projection. Selection between attributes of the two arguments of a crossproduct converts cross-product to a join. A selection on just attributes of R commutes with R S. (i.e., (R S) (R) S ) σ >< σ >< >< Similarly, if a projection follows a join R S, we can `push it by retaining only attributes of R (and S) that are needed for the join or are kept by the projection. >< Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.84

46 Enumeration of Alternative Plans There are two main cases: Single-relation plans Multiple-relation plans For queries over a single relation, queries consist of a combination of selects, projects, and aggregate ops: Each available access path (file scan / index) is considered, and the one with the least estimated cost is chosen. The different operations are essentially carried out together (e.g., if an index is used for a selection, projection is done for each retrieved tuple, and the resulting tuples are pipelined into the aggregate computation). Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.85

47 Cost Estimates for Single-Relation Plans Index I on primary key matches selection: Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index. Clustered index I matching one or more selects: (NPages(I)+NPages(R)) * product of RF s of matching selects. Non-clustered index I matching one or more selects: (NPages(I)+NTuples(R)) * product of RF s of matching selects. Sequential scan of file: NPages(R). Note: Typically, no duplicate elimination on projections! (Exception: Done on answers if user says DISTINCT.) Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.86

48 Example SELECT S.sid FROM Sailors S WHERE S.rating=8 If we have an index on rating: (1/NKeys(I)) * NTuples(R) = (1/10) * tuples retrieved. Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10) * (50+500) pages are retrieved. (This is the cost.) Un clustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10) * ( ) pages are retrieved. If we have an index on sid: Would have to retrieve all tuples/pages. With a clustered index, the cost is , with un clustered index, Doing a file scan: We retrieve all file pages (500). Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.87

49 Queries Over Multiple Relations Fundamental decision in System R: only left-deep join trees are considered. As the number of joins increases, the number of alternative plans grows rapidly; we need to restrict the search space. Left-deep trees allow us to generate all fully pipelined plans.» Intermediate results not written to temporary files.» Not all left-deep trees are fully pipelined (e.g., SM join). D D A B C D C C A B A B Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.88

50 Enumeration of Left-Deep Plans Left-deep plans differ only in the order of relations, the access method for each relation, and the join method for each join. Enumerated using N passes (if N relations joined): Pass 1: Find best 1-relation plan for each relation. Pass 2: Find best way to join result of each 1-relation plan (as outer) to another relation. (All 2-relation plans.) Pass N: Find best way to join result of a (N-1)-relation plan (as outer) to the N th relation. (All N-relation plans.) For each subset of relations, retain only: Cheapest plan overall, plus Cheapest plan for each interesting order of the tuples. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.89

51 Enumeration of Plans (Contd.) ORDER BY, GROUP BY, aggregates etc. handled as a final step, using either an `interestingly ordered plan or an additional sorting operator. An N-1 way plan is not combined with an additional relation unless there is a join condition between them, unless all predicates in WHERE have been used up. i.e., avoid Cartesian products if possible. In spite of pruning plan space, this approach is still exponential in the # of tables. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.90

52 Sailors: Example B+ tree on rating Hash on sid Reserves: B+ tree on bid Pass1: Sailors: B+ tree matches rating>5, and is probably cheapest. However, if this selection is expected to retrieve a lot of tuples, and index is un clustered, file scan may be cheaper.» Still, B+ tree plan kept (because tuples are in rating order). Reserves: B+ tree on bid matches bid=500; cheapest. Pass 2: Reserves sname sid=sid bid=100 rating > 5 Sailors We consider each plan retained from Pass 1 as the outer, and consider how to join it with the (only) other relation. e.g., Reserves as outer: Hash index can be used to get Sailors tuples that satisfy sid = outer tuple s sid value. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.91

53 Nested Queries Nested block is optimized independently, with the outer tuple considered as providing a selection condition. Outer block is optimized with the cost of `calling nested block computation taken into account. SELECT S.sname FROM Sailors S WHERE EXISTS (SELECT * FROM Reserves R WHERE R.bid=103 AND R.sid=S.sid) Implicit ordering of these blocks means that some good strategies are not considered. The non-nested version of the query is typically optimized better. Nested block to optimize: Equivalent non-nested query: SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid=R.sid AND R.bid=103 SELECT * FROM Reserves R WHERE R.bid=103 AND S.sid= outer value Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.92

54 Summary for Query Optimization Query optimization is an important task in a relational DBMS. Must understand optimization in order to understand the performance impact of a given database design (relations, indexes) on a workload (set of queries). Two parts to optimizing a query: Consider a set of alternative plans.» Must prune search space; typically, left-deep plans only. Must estimate cost of each plan that is considered.» Must estimate size of result and cost for each plan node.» Key issues: Statistics, indexes, operator implementations. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.93

55 Summary (Contd.) Single-relation queries: All access paths considered, cheapest is chosen. Issues: Selections that match index, whether index key has all needed fields and/or provides tuples in a desired order. Multiple-relation queries: All single-relation plans are first enumerated.» Selections/projections considered as early as possible. Next, for each 1-relation plan, all ways of joining another relation (as inner) are considered. Next, for each 2-relation plan that is `retained, all ways of joining another relation (as inner) are considered, etc. At each level, for each subset of relations, only best plan for each interesting order of tuples is `retained. Ι.Β -- Εκτέλεση Ερωτήσεων και Βελτιστοποίηση Σελίδα 4.94

Κεφάλαιο 13. Επεξεργασία και Εκτέλεση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων. Ι.Β -- Εκτέλεση Ερωτήσεων Σελίδα 4.1

Κεφάλαιο 13. Επεξεργασία και Εκτέλεση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων. Ι.Β -- Εκτέλεση Ερωτήσεων Σελίδα 4.1 Κεφάλαιο 13 Επεξεργασία και Εκτέλεση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων Ι.Β -- Εκτέλεση Ερωτήσεων Σελίδα 4.1 Επεξεργασία και Βελτιστοποίηση Επερωτήσεων Αρχιτεκτονική του ΕΠΕΞΕΡΓΑΣΤΗ ΕΠΕΡΩΤΗΣΕΩΝ σε

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 5: Tutorial on External Sorting Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών TUTORIAL ON EXTERNAL SORTING

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Κεφάλαιο 14. Βελτιστοποίηση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων. Ι.Β -- Βελτιστοποίηση Ερωτήσεων Σελίδα 4.48

Κεφάλαιο 14. Βελτιστοποίηση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων. Ι.Β -- Βελτιστοποίηση Ερωτήσεων Σελίδα 4.48 Κεφάλαιο 14 Βελτιστοποίηση Ερωτήσεων σε Σχεσιακές Βάσεις εδοµένων Ι.Β -- Βελτιστοποίηση Ερωτήσεων Σελίδα 4.48 Βελτιστοποίηση Επερωτήσεων Αρχιτεκτονική του ΕΠΕΞΕΡΓΑΣΤΗ ΕΠΕΡΩΤΗΣΕΩΝ σε ένα DBMS Βελτιστοποίηση

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Διάλεξη 5η: External sorting Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών EXTERNAL SORTING 1 Sorting A classic problem

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Oracle SQL Developer An Oracle Database stores and organizes information. Oracle SQL Developer is a tool for accessing and maintaining the data

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

ΚΕΡΑΜΟΠΟΥΛΟΣ ΕΥΚΛΕΙΔΗΣ

ΚΕΡΑΜΟΠΟΥΛΟΣ ΕΥΚΛΕΙΔΗΣ ΚΕΡΑΜΟΠΟΥΛΟΣ ΕΥΚΛΕΙΔΗΣ Πίνακας Πεδίο Τύπος Κύριο κλειδί Αναφορική ακεραιότητα οντοτήτων Ξένο κλειδί Αναφορική ακεραιότητα δεδομένων Δρ. Κεραμόπουλος Ευκλείδης 2 ΚΥΡΙΟ ΚΛΕΙΔΙ ΦΟΙΤΗΤΗΣ ΑΜ CHAR(5) ΟΝΟΜΑ VARCHAR(20)

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Δημήτρης Πλεξουσάκης. Physical DB Design

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Δημήτρης Πλεξουσάκης. Physical DB Design Data Structures for Primary Indices Structures that determine the location of the records of a file A primary index is based on a key; the location of a record is determined by its key value. Most common

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Επεξεργασία ερωτήσεων

Επεξεργασία ερωτήσεων Επεξεργασία ερωτήσεων Πολλές ευχαριστίες στους Πάνο Βασιλειάδη, Γ. Ιωαννίδη, Τ. Σελλή, Ε. Πιτουρά για την επαναχρησιµοποίηση κειµένων/διαφανειών τους Θεµατολόγιο Γενικές αρχές της αποτίµησης ερωτήσεων

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Optimal Impartial Selection

Optimal Impartial Selection Optimal Impartial Selection Max Klimm Technische Universität Berlin Head of Junior Research Group Optimization under Uncertainty Einstein-Zentrum für Mathematik Introduction select member of a set of agents

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

QUERY-BY-EXAMPLE. Η Γλώσσα SQL Σελίδα 1

QUERY-BY-EXAMPLE. Η Γλώσσα SQL Σελίδα 1 QUERY-BY-EXAMPLE Η Γλώσσα SQL Σελίδα 1 Query-by-Example (QBE) Μια Γλώσσα για ερωταποκρίσεις που αναπτύχθηκε στην IBM (από τον Moshe Zloof) και παρουσιάζεται σε ένα προϊόν (QMF) (που είναι εναλλακτικός

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα